CSE 610: Special Topics in Network Science

A. Erdem Sariyuce

What is "Network Science"?

- Study of complex networks (complex means non-trivial)
 - Social networks
 - Information networks
 - Web networks
 - Telecommunication networks
 - Computer networks
 - Biological networks
 - Cognitive and semantic networks
- Distinct entities: Nodes (or vertices)
- Connections: Links (or edges)

Graphs (networks) are everywhere

Transformers of disciplines

- Graph theory
 - Mathematics
- Statistical mechanics
 - Physics
- Data mining
 - Computer science
- Inferential modeling
 - Statistics
- Social structure
 - Sociology

Questions we ask

- Real-world networks
 - What characteristics do we observe?

- Nodes and edges
 - Which ones are more important than others?
 - What does important mean in this context?

Questions we ask

- Given a person in a social network;
 - How do we determine her social circles?
 - How do we suggest new friends?
 - Can we infer her spouse? (there is a paper on that)

- Or given a webpage about booking flights,
 - How likely it will be accessed next week?
 - How can we make it appear on top in search results?

Questions we ask

- Graph algorithms
 - What is used in the state-of-the-art search engines?
 - What about recommendation systems?

- How does a network evolve over time?
 - Which nodes will get more edges?
 - Which edges will be removed or added?

Logistics

Class hours: MW 3:00-4:20 @ 113A

- Office: 323 Davis Hall
- Office hours: MW 1:30-2:30 (before classes)

- erdem@buffalo.edu
- Website: http://sariyuce.com/specialTopicsNS.html
- Piazza page

This class is not hard

- No prerequisite needed
 - Background in graph theory, discrete math

- No textbook required. Will benefit from
 - Networks: An Introduction
 - By M. Newman
 - Networks, Crowds and Markets
 - By D. Easley and J. Kleinberg

Lectures and papers

- Papers will be pointed for advanced topics
 - Community Detection
 - Partitioning

- Great papers from the top venues!
 - Science, Nature
 - SIGKDD, WWW, WSDM, ICDM, SDM
 - VLDB, SIGMOD, ICDE

Grading

- Homeworks
 - 4 x 10%

- Random Attendance
 - Toss a coin every class
 - 3%

- Project
 - 57%

Homeworks

- Combination of exam-style questions
 - Require light coding

Analysis and discussions by charts, tables

Due in one week

Individually

Project

- Proposal by 3rd week
 - Report: 10%
 - Short presentation: 5%

- Progress by 10th week
 - -10% + 5%

- Final by last week
 - \bullet 10% + 5%

- Ideas will be provided
 - Don't worry, I'll guide
- Weekly meetings
 - 12 weeks: 12%
 - 15 mins at most
 - Mon or Wed
 - 12:00-1:15 or office hours

We aim to publish papers!

Academic integrity

- Don't cheat in homeworks, please, really easy to detect
- University policy
 - http://grad.buffalo.edu/study/progress/policylibrary.html
- Department policy
 - https://engineering.buffalo.edu/computer-scienceengineering/undergraduate/resources-for-currentstudents/academic-integrity-students.html
- Grads: Sanctions can even reach to RA/TA cancellation

Any questions?

Project Ideas

- Repeatability experiments for some popular papers
 - And extensions

- Surveys on certain hot topics
 - With a codebase for comparison

- Any idea you may want to go for!
 - Consultation with instructor

Project Ideas

- Graph coloring
 - With smart orderings of vertices

- Graph summarization by tree hierarchy
 - VLDB tutorial

- Clique enumeration up to 10
 - Extending existing triangle-based frameworks

Project Ideas

- Relations between core numbers of vertices and truss numbers of edges
 - Any patterns that do not appear? Any anomaly?
- Conductance measurement
 - State-of-the-art dense subgraph discovery algoritmhs
- Probing vertices for k-core
 - With recent local algorithms
 - Further generalizations?