
April 21-23, 2014 
Lectures 7-8 

CME342 - Parallel Methods in Numerical Analysis 

Graph Partitioning Algorithms 



Announcements 

•  Homework 2 on web page later today 
•  With all remaining homeworks, you will be asked to 

provide a short (< 1 page) writeup regarding your 
approach to the solution of the problems 

•  Comments on source code will account for 5% of the 
grade. 

•  Graph partitioning (2 lectures) 



Outline 
•  Definition of graph partitioning problem 
•  Sample applications 
•  N-P complete problem 
•  Available heuristic algorithms (with and without nodal 

coordinates) 
–  Inertial partitioning 
–  Breadth first search 
–  Kernighan-Lin 
–  Spectral bisection 

•  Multilevel acceleration (multigrid for graph partitioning 
problems) 

•  Metis, ParMetis, and others 



Definition of Graph Partitioning 
•  Given a graph G = (N, E, WN, WE) 

–  N = nodes (or vertices),   E = edges 
–  WN = node weights,    WE = edge weights 

•  N can be thought of as tasks, WN are the task costs, edge (j,k) in E means task 
j sends WE(j,k) words to task k 

•  Choose a partition N = N1 U  N2  U … U  NP such that 
–  The sum of the node weights in each Nj is distributed evenly (load balance) 
–  The sum of all edge weights of edges connecting all different partitions is 

minimized (decrease parallel overhead) 
•  In other words, divide work evenly and minimize communication 

•  Partition into two parts is called graph bisection, which recursively applied can 
be turned into algorithms for complete graph partitioning 



Applications 
•  Load balancing while minimizing communication 
•  Structured and unstructured mesh distribution for distributed memory 

parallel computing (FEM, CFD, RCS, etc.) 
•  Sparse matrix times vector multiplication 

–  Solving PDEs (above) 
–  N = {1,…,n},     (j,k) in E if  A(j,k) nonzero,  
–  WN(j) = #nonzeros in row j,   WE(j,k) = 1 

•  VLSI Layout 
–  N = {units on chip},  E = {wires}, WE(j,k) = wire length 

•  Telephone network design 
–  Original application, algorithm due to Kernighan 

•  Sparse Gaussian Elimination 
–  Used to reorder rows and columns to increase parallelism, decrease “fill-in” 



Applications-Unstructured CFD 
Partitioning of an undirected nodal graph for parallel computation 
of the flow over an S3A aircraft using 16 processors of an IBM 
SP2 system (1995). Colors denote the partition number.  Edge 
separators not shown. Solution via AIRPLANE code. 



Applications- SUmb Load Balancing 
The static load balancing procedure for the multiblock-structured flow 
solver, SUmb, developed for the ASC project at SU, uses a graph 
partitioning algorithm where the original graph has nodes corresponding to 
mesh blocks with weights equal to the total number of cells in the block, 
and where the edges represent the communication patterns in the mesh; the 
edge weights are proportional to the surface area of the face that is being 
communicated  

Now, that is where that silly 
picture comes from!!!!! 



Sparse Matrix Vector Multiplication 



Cost of Graph Partitioning 
•  Many possible partitionings to search: 

•  n choose n/2 ~ sqrt(2n/pi)*2n  bisection possibilities 
•  Choosing optimal partitioning is NP-complete 

–  Only known exact algorithms have cost that is exponential in the number of 
nodes in the graph, n 

•  We need good heuristics-based algorithms!! 



First Heuristic: Repeated Graph Bisection 
•  To partition N into 2k parts, bisect graph recursively k 

times 
–  Henceforth discuss mostly graph bisection 



Overview of Partitioning Heuristics for Bisection 
•  Partitioning with Nodal Coordinates 

–  Each node has x,y,z coordinates 
–  Partition nodes by partitioning space 

•  Partitioning without Nodal Coordinates 
–  Sparse matrix of Web: A(j,k) = # times keyword j appears in URL k 

•  Multilevel acceleration 
–  Approximate problem by “coarse graph”, do so recursively 



Edge Separators vs. Vertex Separators of G(N,E) 

•  Edge Separator: Es (subset of E) separates G if removing Es from E leaves two 
~equal-sized, disconnected components of N: N1 and N2  

•  Vertex Separator: Ns (subset of N) separates G if removing Ns and all incident 
edges leaves two ~equal-sized, disconnected components of N: N1 and N2 

•  Edge cut: Sum of the weights of all edges that form an edge separator 

•  Making an Ns from an Es: pick one endpoint of each edge in Es 

–  How big can |Ns| be, compared to |Es| ? 
•  Making an Es from an Ns: pick all edges incident on Ns 

–  How big can |Es| be, compared to |Ns| ? 
•  We will find Edge or Vertex Separators, as convenient 

Es = green edges or blue edges 
Ns = red vertices 



Graphs with Nodal Coordinates - Planar graphs 

•  Planar graph can be drawn in plane without edge 
crossings 

•  Ex: m x m grid of m2 nodes: ∃ vertex separator Ns 
with |Ns| = m = sqrt(|N|) (see last slide for m=5 ) 

•  Theorem (Tarjan, Lipton, 1979): If G is planar, ∃ Ns 
such that  
–  N = N1 U Ns U N2 is a partition, 
–  |N1| <= 2/3 |N|  and  |N2| <= 2/3 |N| 
–  |Ns| <= sqrt(8 * |N|) 

•  Theorem motivates intuition of following 
algorithms 



Graphs with Nodal Coordinates: Inertial Partitioning 

•  For a graph in 2D, choose line with half the nodes on one 
side and half on the other 
–  In 3D, choose a plane, but consider 2D for simplicity 

•  Choose a line L, and then choose an L⊥ perpendicular to it, 
with half the nodes on either side 

•  Remains to choose L 

1)  L given by a*(x-xbar)+b*(y-ybar)=0, 
      with a2+b2=1; (a,b) is unit vector ⊥ to L  
2)  For each nj = (xj,yj), compute coordinate 
     Sj = -b*(xj-xbar) + a*(yj-ybar) along L 
3)  Let Sbar = median(S1,…,Sn) 
4)  Let nodes with Sj < Sbar be in N1, rest in N2  



Inertial Partitioning: Choosing L 
•  Clearly prefer L on left below 

•  Mathematically, choose L to be a total least squares 
fit of the nodes 
–  Minimize sum of squares of distances to L (green lines on 

last slide) 
–  Equivalent to choosing L as axis of rotation that 

minimizes the moment of inertia of nodes (unit weights) - 
source of name 



Inertial Partitioning: choosing L 

Σj (length of j-th green line)2 
   = Σj  [ (xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xhar) + a*(yj - ybar))2 ] 
                    …   Pythagorean Theorem 
   = a2 * Σj (xj - xbar)2  +  2*a*b* Σj (xj - xbar)*(yj - ybar)  +  b2 Σj (yj - ybar)2 
   = a2 * X1                    +  2*a*b*  X2                                   +  b2 * X3 
   = [a b] *  X1   X2   *  a 
                  X2   X3      b 
 
Minimized by choosing 
       (xbar , ybar) = (Σj xj , Σj yj) / N = center of mass 
       (a,b) = eigenvector of smallest eigenvalue of    X1  X2 
                                                                                      X2  X3 

(a,b) is unit vector 
perpendicular to L 



Inertial Partitioning: Three Dimensions 

•  In 3D, the situation is almost identical only that the line 
separating the partitions is now a plane, and the vectors and 
points have three components. 

•  The matrix problem is simply 3x3, but conclusions are the 
same: 
–  Choose plane that contains the center of mass of the graph, and 
–  Has normal vector given by the eigenvector of the 3x3 eigenvalue 

problem 

•  Repeat recursively 



Partitioning with Nodal Coordinates - Summary 

•  Other algorithms and variations are available (random spheres, etc.) 
•  Algorithms are efficient 
•  Rely on graphs having nodes connected (mostly) to “nearest neighbors” 

in space 
–  algorithm does not depend on where actual edges are! 

•  Common when graph arises from physical model 
•  Can be used as good starting guess for subsequent partitioners, which do 

examine edges 
•  Can do poorly if graph less connected: 



Partitioning without Nodal Coordinates- 
Breadth First Search (BFS) 

•  Given G(N,E) and a root node r in N, BFS produces 
–  A subgraph T of G (same nodes, subset of edges) 
–  T is a tree rooted at r 
–  Each node assigned a level = distance from r 



Breadth First Search 
•  Queue (First In First Out, or FIFO) 

–  Enqueue(x,Q) adds x to back of Q 
–  x = Dequeue(Q) removes x from front of Q 

•  Compute Tree T(NT,ET) 

NT = {(r,0)}, ET = empty set            … Initially T = root r, which is at level 0 
Enqueue((r,0),Q)                             … Put root on initially empty Queue Q 
Mark r                                              … Mark root as having been processed 
While Q not empty                         … While nodes remain to be processed 
       (n,level) = Dequeue(Q)            … Get a node to process 
       For all unmarked children c of n 
              NT = NT U (c,level+1)        …  Add child c to NT 
              ET = ET U (n,c)                  …  Add edge (n,c) to ET 
              Enqueue((c,level+1),Q))   … Add child c to Q for processing 
              Mark c                                … Mark c as processed 
       Endfor 
Endwhile 
 



Partitioning via Breadth First Search 
•  BFS identifies 3 kinds of edges 

–  Tree Edges - part of T 
–  Horizontal Edges - connect nodes at same level 
–  Interlevel Edges - connect nodes at adjacent levels 

•  No edges connect nodes in levels 
       differing by more than 1 (why?) 
•  BFS partitioning heuristic 

–  N = N1 U N2, where  
•  N1 = {nodes at level <= L},   
•  N2 = {nodes at level > L} 

–  Choose L so |N1| close to |N2| 



Partitioning without nodal coordinates - 
Kernighan/Lin 

•  Take a initial partition and iteratively improve it 
–  Kernighan/Lin (1970), cost = O(|N|3) but easy to understand, better 

version has cost = O(|E| log |E|) 
–  Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more 

complicated (it uses the appropriate data structures) 

•  Given G = (N,E,WE) and a partitioning N = A U B, where |
A| = |B| 
–  T = cost(A,B) = edge cut of A and B partitions 
–  Find subsets X of A and Y of B with |X| = |Y| 
–  Swapping X and Y should decrease cost: 

•  newA = (A - X) U Y    and    newB = (B - Y) U X 
•  newT = cost(newA , newB) < cost(A,B), lower edge cut 

•  Need to compute newT efficiently for many possible X and 
Y, choose smallest 



Kernighan/Lin - Preliminary Definitions 

•  T = cost(A, B),   newT = cost(newA, newB) 
•  Need an efficient formula for newT; will use 

–  E(a) = external cost of a in A = Σ {W(a,b) for b in B} 
–  I(a)  = internal  cost of a in A = Σ {W(a,a’) for other a’ in A} 
–  D(a) = cost of a in A               = E(a) - I(a) 
–  E(b), I(b) and D(b) defined analogously for b in B 

•  Consider swapping X = {a} and Y = {b} 
–  newA = (A - {a}) U {b},   newB = (B - {b}) U {a} 

•  newT = T - ( D(a) + D(b) - 2*w(a,b) ) = T - gain(a,b) 
–  gain(a,b) measures improvement gotten by swapping a and b 

•  Update formulas 
–  newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b)   for a’ in A, a’ != a 
–  newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a)   for b’ in B, b’ != b 



Kernighan/Lin Algorithm 
    Compute  T = cost(A,B) for initial A, B                                        … cost = O(|N|2) 
    Repeat 
           Compute costs D(n) for all n in N                                          … cost = O(|N|2) 
           Unmark all nodes in N                                                            … cost = O(|N|)  
           While there are unmarked nodes                                           … |N|/2 iterations 
                 Find an unmarked pair (a,b) maximizing gain(a,b)         … cost = O(|N|2)  
                Mark a and b (but do not swap them)                               … cost = O(1) 
                Update D(n) for all unmarked n,  
                        as though a and b had been swapped                      … cost = O(|N|)  
            Endwhile 
                … At this point we have computed a sequence of pairs 
                …  (a1,b1), … , (ak,bk)   and gains gain(1),…., gain(k) 
                …  for k = |N|/2,  ordered by the order in which we marked them 
           Pick j maximizing Gain = Σk=1 to j   gain(k)                         … cost = O(|N|) 
                … Gain is reduction in cost from swapping (a1,b1) through (aj,bj) 
           If Gain > 0 then   … it is worth swapping 
                 Update newA = (A - { a1,…,ak }) U { b1,…,bk }                 … cost = O(|N|) 
                 Update newB = (B - { b1,…,bk }) U { a1,…,ak }                 … cost = O(|N|) 
                 Update T = T - Gain                                                          … cost = O(1) 
           endif 
     Until Gain <= 0 
 
•  One pass greedily computes |N|/2 possible X and Y to swap, picks best 



     
 Comments on Kernighan/Lin Algorithm 

•  Most expensive line show in red 
•  Some gain(k) may be negative, but if later gains are 

large, then final Gain may be positive 
–  can escape “local minima” where switching no pair helps 

•  How many times do we Repeat? 
–  K/L tested on very small graphs (|N|<=360) and got 

convergence after 2-4 sweeps 
–  For random graphs (of theoretical interest) the probability 

of convergence in one step appears to drop like 2-|N|/30 



Partitioning without nodal coordinates - 
Spectral Bisection 

•  Based on theory of Fiedler (1970s), popularized by Pothen, 
Simon, Liou (1990) 

•  Motivation, by analogy to a vibrating string 
•  Basic definitions 
•  Implementation via the Lanczos Algorithm 

–  To optimize sparse-matrix-vector multiply, we graph partition 
–  To graph partition, we find an eigenvector of a matrix associated 

with the graph 
–  To find an eigenvector, we do sparse-matrix vector multiply 
–  No free lunch ... 



Motivation for Spectral Bisection: 
Vibrating String 

•  Think of G = 1D mesh as masses (nodes) connected by 
springs (edges), i.e. a string that can vibrate 

•  Vibrating string has modes of vibration, or harmonics 
•  Label nodes by whether mode - or + to partition into N- 

and N+ 
•  Same idea for other graphs (eg planar graph ~ trampoline) 



Basic Definitions 
•  Definition: The incidence matrix In(G) of a graph G(N,E) is an |N| by |E| 

matrix, with one row for each node and one column for each edge. If 
edge e=(i,j) then column e of In(G) is zero except for the i-th and j-th 
entries, which are +1 and -1, respectively. 

•  Slightly ambiguous definition because multiplying column e of In(G) by 
-1 still satisfies the definition, but this won’t matter... 

•  Definition: The Laplacian matrix L(G) of a graph G(N,E) is an |N| by |N| 
symmetric matrix, with one row and column for each node. It is defined 
by 
–  L(G) (i,i) = degree of node I (number of incident edges) 
–  L(G) (i,j) = -1 if i != j and there is an edge (i,j) 
–  L(G) (i,j) = 0 otherwise 



Example of In(G) and L(G) for 1D 
and 2D meshes 



Properties of Incidence and 
Laplacian matrices 

•  Theorem 1: Given G, In(G) and L(G) have the following properties   
•  L(G) is symmetric. (This means the eigenvalues of L(G) are real and its 

eigenvectors are real and orthogonal.) 
–  Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0. 
–  In(G) * (In(G))T = L(G). This is independent of the signs chosen for each 

column of In(G). 
–  Suppose L(G)*v = λ*v, v != 0, so that  v is an eigenvector and λ an 

eigenvalue of L(G). Then 

–  The eigenvalues of L(G) are nonnegative: 
•  0 = λ1 <= λ2 <= … <= λn 

–  The number of connected components of G is equal to the number of λi 
equal to 0. In particular, λ2 != 0 if and only if G is connected. 

•  Definition: λ2(L(G)) is the algebraic connectivity of G 

λ = || In(G)T * v ||2 / || v ||2                                                    … ||x||2 = Σk xk2  
   =  Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σi v(i)2 



Spectral Bisection Algorithm 
•  Spectral Bisection Algorithm: 

–  Compute eigenvector v2 corresponding to λ2(L(G)) 
–  For each node n of G 

•  if v2(n) < 0 put node n in partition N- 
•  else put node n in partition N+ 

•  Why does this make sense? First reasons. 
•  Theorem 2 (Fiedler, 1975): Let G be connected, and N- and 

N+ defined as above. Then N- is connected. If no v2(n) = 0, 
then N+ is also connected. Proof available. 

•  Recall λ2(L(G)) is the algebraic connectivity of G 
•   Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of 

G(N,E), so that G1 is “less connected” than G. Then 
λ2(L(G))  <=  λ2(L(G)) , i.e. the algebraic connectivity of G1 
is less than or equal to the algebraic connectivity of G.  
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Review 

•  Partitioning with nodal coordinates 
–  Rely on graphs having nodes connected (mostly) to “nearest 

neighbors” in space 
–  Common when graph arises from physical model 
–  Finds a circle or line that splits nodes into two equal-sized groups 
–  Algorithm very efficient, does not depend on edges 

•  Partitioning without nodal coordinates 
–  Depends on edges 
–  Breadth First Search (BFS) 
–  Kernighan/Lin - iteratively improve an existing partition 
–  Spectral Bisection - partition using signs of components of second 

eigenvector of L(G), the Laplacian of G 



Introduction to Multilevel Partitioning 

•  If we want to partition G(N,E), but it is too big to do 
efficiently, what can we do? 
–  1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), 

and partition Gc instead 
–  2) Use partition of Gc to get a rough partitioning of G, 

and then iteratively improve it 
•  What if Gc still too big? 

–  Apply same idea recursively 
•  This is identical to the multigrid procedure that is 

used in the solution of elliptic and hyperbolic PDEs 



Multilevel Partitioning - High Level Algorithm 
       (N+,N- ) = Multilevel_Partition( N, E ) 
             … recursive partitioning routine returns N+ and N- where N = N+ U N- 
             if |N| is small 
(1)               Partition G = (N,E)  directly to get N = N+ U N- 
                   Return (N+, N- ) 
             else 
(2)               Coarsen G to get an approximation Gc = (Nc, Ec) 
(3)               (Nc+ , Nc- ) = Multilevel_Partition( Nc, Ec ) 
(4)               Expand (Nc+ , Nc- ) to a partition  (N+ , N- ) of N 
(5)               Improve the partition ( N+ , N- ) 
                   Return ( N+ , N- ) 
             endif 

(2,3) 

(2,3) 

(2,3) 

(1) 

(4) 

(4) 

(4) 

(5) 

(5) 

(5) 

How do we 
    Coarsen? 
    Expand? 
    Improve? 

“V - cycle:” 



Multilevel Kernighan-Lin 

•  Coarsen graph and expand partition using     
maximal matchings 

•  Improve partition using Kernighan-Lin 
•  This is the algorithm that is implemented in 

Metis (see references in web page) 



Maximal Matching 
•  Definition: A matching of a graph G(N,E) is a subset Em of 

E such that no two edges in Em share an endpoint 
•  Definition: A maximal matching of a graph G(N,E) is a 

matching Em to which no more edges can be added and 
remain a matching 

•  A simple greedy algorithm computes a maximal matching: 

let Em be empty 
mark all nodes in N as unmatched 
for i = 1 to |N|      … visit the nodes in any order 
     if i has not been matched 
            if there is an edge e=(i,j)  where j is also unmatched,  
                  add e to Em 
                  mark i and j as matched 
             endif 
     endif 
endfor 



Maximal Matching - Example 

Maximal matching 
given by red edges: 
 
Any additional edge 
will connect to one of 
the nodes already 
present 



Coarsening using a maximal matching 
Construct a maximal matching  Em of G(N,E) 
 
for all edges e=(j,k) in Em 
     Put node n(e) in Nc 
      W(n(e)) = W(j) + W(k)     … gray statements update node/edge weights 
for all nodes n in N not incident on an edge in Em 
     Put n in Nc      … do not change W(n) 
… Now each node r in N is “inside” a unique node n(r) in Nc 
 
… Connect two nodes in Nc if nodes inside them are connected in E 
for all edges e=(j,k) in Em   
     for each other edge e’=(j,r) in E incident on j  
           Put edge ee = (n(e),n(r)) in Ec    
             W(ee) = W(e’) 
     for each other edge e’=(r,k) in E incident on k 
           Put edge ee = (n(r),n(e)) in Ec 
            W(ee) = W(e’) 
 
If there are multiple edges connecting two nodes in Nc, collapse them, 
          adding edge weights                  



Example of Coarsening 



Example of Coarsening 



Expanding a partition of Gc 
to a partition of G 



Multilevel Spectral Bisection 

•  Coarsen graph and expand partition using    
maximal independent sets 

•  Improve partition using Rayleigh Quotient 
Iteration 



Maximal Independent Sets 
•  Definition: An independent set of a graph G(N,E) is a subset Ni of N 

such that no two nodes in Ni are connected by an edge 
•  Definition: A maximal independent set of a graph G(N,E) is an 

independent set Ni to which no more nodes can be added and remain 
an independent set 

•  A simple greedy algorithm computes a maximal independent set: 

let Ni be empty 
for i = 1 to |N|      … visit the nodes in any order 
     if  node i is not adjacent to any node already in Ni 
          add i to Ni 
     endif 
endfor 



Coarsening using Maximal Independent Sets 
… Build “domains” D(i) around each node i in Ni to get nodes in Nc 
… Add an edge to Ec whenever it would connect two such domains 
Ec = empty set 
for all nodes i in Ni 
     D(i) = ( {i}, empty set )      
     … first set contains nodes in D(i), second set contains edges in D(i) 
unmark all edges in E 
repeat 
     choose an unmarked edge e = (i,j) from E 
     if exactly one of i and j (say i) is in some D(k) 
           mark e 
           add j and e to D(k) 
     else if i and j are in two different D(k)’s (say D(ki) and D(kj)) 
           mark e 
           add edge (ki, kj) to Ec 
     else if both i and j are in the same D(k) 
           mark e 
           add e to D(k) 
     else 
           leave e unmarked 
     endif 
until no unmarked edges 



Available Implementations 
•  Multilevel Kernighan/Lin 

–  METIS (www.cs.umn.edu/~metis) 
–  ParMETIS - parallel version 

•  Multilevel Spectral Bisection 
–  S. Barnard and H. Simon, “A fast multilevel 

implementation of recursive spectral bisection …”, Proc. 
6th SIAM Conf. On Parallel Processing, 1993 

–  Chaco (www.cs.sandia.gov/CRF/papers_chaco.html) 
•  Hybrids possible  

–  Ex: Using Kernighan/Lin to improve a partition from 
spectral bisection 



Available Implementations 
•  Multilevel Kernighan/Lin 

–  Demonstrated in experience to be the most efficient 
algorithm available. 

•  Multilevel Spectral Bisection 
–  Gives good partitions but cost is higher than multilevel K/

L 

•  Hybrids possible  
–  For example: Using Kernighan/Lin to improve a partition 

from spectral bisection 


