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Abstract—The identification of critical nodes in a graph is
a fundamental task in network analysis. Centrality measures
are commonly used for this purpose. These methods rely on
two assumptions that restrict their applicability. First, they only
depend on the topology of the network and do not consider the
activity over the network. Second, they assume the entire network
is available. However, in many applications, it is the underlying
activity of the network such as interactions and communications
that makes a node critical, and it is hard to collect the entire
network topology, when the network is vast and autonomous.

We propose a new measure, Active Betweenness Cardinality,
where the importance of the nodes are based not on the static
structure, but the active utilization of the network. We show how
this metric can be computed efficiently by only local information
for a given node and how we can locate the critical nodes by
using only a few nodes. We also show how this metric can be
used to monitor a network and identify node failures. We evaluate
our metric and algorithms on real-world networks and show the
effectiveness of the proposed methods.

I. INTRODUCTION
Identifying critical elements of a network is an important

task in infrastructure security and social network analysis. The
critical elements are those, whose presence are essential for a
network to maintain its functionality at or near its maximum.
Subsequently, the network science community have proposed
many metrics to quantify the criticality of network elements
and algorithms to compute these metrics efficiently.

A major thrust in this area is centrality, which assigns a
number to each node as a measure for its importance. For
details on centrality, we refer the reader to [1]. Centrality
measures are valuable, but they all rely on two assumptions,
which restrict their effectiveness and applicability (1) they
depend only on the topology of a graph and not consider the
dynamics on the graph or how the graph is being utilized,
and (2) entire graph is available. First, we cannot assume
interactions between all pairs of nodes on a large graph to
be at the same level or frequency. This may be due to lack of
interest (e.g., not every user visits every web page) or some
nodes provide identical services and users only interact with
the nearest such server (one goes to a close-by hospital, not
necessarily all the hospitals). It should be noted that centrality
measures were initiated by the social science studies on much
smaller networks, where neither of the these two limitations
apply. But one should be careful before applying the same
ideas to current datasets, where the graphs are much larger
and contain nodes with identical functionalities. Secondly,
many networks such as the Internet are vast, distributed, and
autonomous. Moreover, both their topology and the dynamics

on them keep evolving. Determining the exact topology or
even predicting their topological features are far from trivial.

We propose a new approach for centrality that considers the
network dynamics and does not require having access to the
entire network. We call our approach the Active Betweenness
Cardinality (ABC) model. The metric for our model is the
number of distinct pair of nodes that communicate through a
node within a specified period. In our data access model, we
know the source and destination for any interaction through a
node. We develop methods to compute the ABC value of any
node with only local information, i.e., knowing nothing about
the rest of the graph. We estimate the ABC values efficiently
(both in terms of runtime and memory) and accurately, using
a sublinear algorithm. We also show how to locate the nodes
with high ABC values and how to utilize this metric to identify
presence and the location of changes in a network. We claim
that this approach provides a critical capability for analysis for
vast distributed networks.

Let G = (V,E) be a simple undirected, unweighted graph
with n nodes and m edges. We assume any pair of nodes
can exchange messages and any interaction can be repeated.
We define G as an active network. If there is an interaction
between nodes u and v, it happens via a path p between u and
v, and all the communication thereafter also happens via the
same path p. For consistency with routing algorithms [2], we
restrict p to be one of the shortest paths between u and v. We
define the number of unique interactions that are transmitted
by a node i as the cardinality of i. We want to detect the nodes
with large cardinality by using only the local information.

1) Cardinality Estimation on Data Streams: An important
part of our problem is estimating the cardinality of a data
stream where we observe the elements of a set that can
occur repeatedly. Formally, given a stream x0, x1, . . . xK with
repetitions, where xi ∈ S for i = 0 . . .K, we have a dual
objective function: We want to estimate |S|, the cardinality
of the set S, as accurately as possible while using minimal
storage. For the purposes of this paper, the elements of the
stream will be the interacting pairs, and each entry in the
system will be one message exchange.

The difficulty of this problem lies in handling the repeti-
tions. A trivial solution is to maintain a hash table to keep
track of the previously observed elements. This gives an exact
solution, but associated memory requirement will be linear in
the size of the set S, which is impractical for many real- world
scenarios. The algorithmic challenge is in drastically reducing
storage, while maintaining accuracy. Using randomization forIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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the cardinality estimation, initiated by Flajolet and Martin [3],
is helpful to address this challenge. For a thorough survey of
this literature, we refer the readers to [4]. In our experiments
we used the HyperLogLog (HLL) method with parameter
b = 12 bits, and thus, m = 2b = 212 buckets, though our
methods do not depend on any particular cardinality estimation
method, we selected HLL for its well-accepted success.

2) Centrality Measures: The centrality metrics play an
important role in network and graph analysis since they are
related with several concepts such as reachability, importance,
influence, and power [5]–[8]. Betweenness and closeness
centralities (BC and CC) are two such metrics.

A lot has been done on the centrality measures to improve
their scalability with more efficient algorithm design [9],
approximation schemes [10], parallel algorithms [1], [8],
[11]–[13], and using sublinear memory in the size of the
graph [14], [15]. However, all of those approaches focus on
the graph topology information to infer the centrality, i.e.,
communications between each pair of nodes are assumed to
be same and non-repetitive, and the entire graph should be
known to highlight the most central nodes. We propose local
algorithms that can find the most critical nodes. Our focus
is on active networks where there can be non-uniform and
repetitive communications between nodes, which, to the best
of our knowledge, is not studied before.

II. ACTIVE BETWEENNESS CARDINALITY
A. A New Metric for Node Criticality on Active Networks

We introduce Active Betweenness Cardinality (ABC) as a
new metric that measures node criticality not only based on
topology, but on the activity in the network. ABC also has
the advantage that it can be computed based on only local
information without knowing the entire graph. Hence, our
metric relieves us from both assumptions explained in Sec I.
ABC of node v for time period [tb, te], ABC(v, tb, te) is
the number of distinct source-destination 〈s, d〉 tuples for an
intermediate node v, which we will also call as transaction.
We will only refer to the ABC value of a vertex, when the
time interval is clear from the context.

In the Internet context, a node s, connecting to the service
of a node d, may require multiple packages going back and
forth over v. The failure of this communication path causes
the user to lose access to one service. Thus, this behavior can
be modeled better with distinct tuple count than total count of
transactions.

B. Modeling Network Activity
Table I shows the data sets used in our experiments. As for

modeling network activities, there are 3 main aspects to model:
communication pathways, node activities, and time window.
We follow the model explained in detail in [16]. To summarize,
communication between a pair of nodes follows a randomly
selected shortest path throughout the experiment unless there is
a change in the graph structure. We model the communication
behaviors between node pairs by assigning certain send/receive
frequency levels to nodes. The probability of a communication
from node u to node v is proportional to the product of send

TABLE I: Graphs used in the experiments
Graph #Nodes #Edges Degree

min avg max
World Airports [17] 2,939 30,501 1 10.37 237

AS-733 [18] 6,474 12,572 1 3.88 1,458
Oregon-01 [18] 10,670 22,002 0 4.12 2,312

frequency level of node u and the receive frequency level
of node v. The rest of the paper presents the results using
the Gaussian distribution. And finally, we have selected a
sufficiently long time window to observe the numbers after
convergence to avoid additional variables in the presentation
of the algorithm. For practical purposes, we define interval as
the number of communications over the graph instead of actual
time units since in essence, it achieves the same purpose.
C. Computing ABC Accurately and Efficiently

First, we show how the ABC metric can be computed effi-
ciently, using only local information. We use HLL algorithm
to compute the cardinalities.

We start with verifying the HLL accuracy on our experi-
ments. HLL algorithm consistently provides good estimates,
always within ±2% range. Average Pearson Correlation for
Exact and HLL estimated cardinalities was 0.99994. We refer
the reader to the extended version [16] of this work for more
detailed explanation and experiments.
D. Finding Nodes with Highest ABC Scores

Here, we propose a set of heuristic search strategies to
identify nodes with the highest ABC scores in a distributed
fashion, starting from a handful of nodes, under the assumption
that we do not know about the presence of all the nodes in
the graph. Then, we empirically show their effectiveness.

1) Search Strategies: Our approaches are based on choos-
ing the neighbor of the current node most promising to have
a higher ABC value. We avoid revisiting a previously seen
node. Starting from C seed nodes, the strategies select C new
nodes to continue the search. We call each iteration a hop.

We show three approaches to find important nodes:
Jump to Best Neighbor (BN): For each neighbor of a

seed node, we maintain an HLL estimator (ABC value)
that counts the distinct pairs that communicated through that
neighbor/edge. Intuitively, if we have an important neighbor,
it would acquire most of our communication output, like a
communication hub. Following this, we select the neighbor
with the highest cardinality on the edge that connects the
current node to that neighbor as one of the next seed nodes.

Jump with Random Walk (RW): We implemented a random-
walk-like approach where the neighbors have probabilities
proportional to their corresponding ABC values on the edges.
For example, a node v has neighbors w, x, y, and z and the
ABC values on the edges are {34, 16, 36, 12}, respectively.
With BN strategy, we would jump to y and we might miss
the chance to see w. However, we can avoid this by treating
the ABC values as probabilities and randomly pick a neighbor
with respect to ABC values.

Biggest Collective Neighbor Selection (BCN): RW and BN
lets each seed node select one node. Alternatively, BCN lets
them collectively decide which nodes should be in the next



seed set. This will speed up the convergence in cases where
one of the subset nodes have all important neighbors but all the
others are not as important. For example, consider a scenario
where the seed set is {w, x, y, z}, and all the neighbors of node
w has ABC values an order of magnitude bigger than that of
x, y, and z. In this case, it would make much more sense to
select the new nodes from the neighbors of node w instead
of picking one neighbor from each seed node. More generally
expressed, we select the top C non-observed neighbors from
the union of neighbors of current seed set.

2) Quality Metric for Search Strategies: In this section we
define the quality metrics for the search strategies. First metric
is one-to-one correspondence of the critical nodes found in
the ground truth. Second, the sum total of ABC values found
compared to the ground truth. What constitutes a ground truth
(baseline) depends on the activity of the network, therefore,
we need to have a ground truth for that specific configuration.
The activity on the network follows a probability distribution,
thus, it fluctuates around a mean value. We generate samples
and use the mean of these samples as the baseline, i.e., we
generate a baseline by averaging the ABC value of each node
over 400 samples with the same configuration.

Top-K Found Matches: For all algorithms, we compare the
top K nodes found with the top K in the baseline. If the node
found by the algorithm is actually among the top K of the
baseline, then we count this as a hit. So, perfect result would
be to find K hits out of K. We report the average of 20 runs
for the experiment.

Total Cardinality of Top-K Found: If the cardinalities of the
most critical nodes are not distinguishably different, compar-
ing top-K vertices will not be fair. For such cases we compare
the the sum of the total cardinality of top-K found against the
sum of the total cardinality of top-K of baseline.

Fig. 1: Top-K found matches for three search strategies on
Airports graph (Top to bottom: RW, BN, BCN).

3) Experimental Results: Figure 1 shows the comparison
of the search strategies in terms of top-K nodes found for the
Airports graph with K = 20. Each bar represents a different
seed set size, i.e., C = {4, 8, 12, 16, 20}. As expected, as the
seed set size C increases, so the quality of the results. Our
search strategies require small number of hops to stabilize,
and they succeed to identify large portion of the critical nodes
with RW and BN variants, and all top-K nodes with BCN
even with modest sizes of C, where C u K. The figure also
depicts that the quality of the approaches increase from top to
bottom, having BCN the best and RW slightly worse results. It

also shows the results tend to converge in less than 6 hops for
all 3 of the graphs and reach a reasonable 75% with seed
set sizes {12, 16, 20}. Note that this means it reaches this
conclusion after checking only up to 6 · |C| nodes (72, 96,
and 120, respectively, for the seed set sizes) out of all nodes.
Finally, BCN also converges quicker than the others.

Figure 2 shows a comparison of the search strategies using
our second metric, total cardinality of top-K (K = 20) found,
where the baseline is displayed as blue solid line on the charts.
We show the results for Oregon graph. The total cardinality
found by each algorithm gets very close to the one identified
in baseline, implying that the nodes selected by BN and RW
in Figure 1 from top-K have similar ABC values to those
missed from the baseline.

Fig. 2: Total Cardinality of Top-K Found for the search
strategies on Oregon Graph (Top to bottom: RW, BN, BCN).

III. DETECTING CHANGES IN NETWORK
We present how the ABC values can be used to monitor

a network and detect significant changes in its topology. We
first show how to detect the failure of a critical node by using
a small number of sensors, then we discuss how to locate
those nodes. Sensor is a node that computes its ABC value
for a predefined time window and reports this information for
further analysis. We restrict ourselves to detecting failures of
nodes with high ABC scores (e.g., top 200), as failures of
such nodes make an overall impact on the functionality of the
network. We ask if this change can be captured by monitoring
only ABC values of a limited number of sensors.

The critical observation is that when the underlying network
is stable, the ABC values are steady. However, the same ABC
scores are sensitive to changes in the network, as we will show.
A. Detecting and Locating the Failure of Critical Nodes

Our initial experiments showed that the supervised learning
with SVM (rbf kernel) have near 100% accuracy in sensing
the removal of a critical node subset. Figure 3 motivated our

Fig. 3: Box and whiskers range for baseline and 7 instances
of critical node removals. The box corresponds to the first and
third quartiles. Whiskers show the range for ±1.5× IQR (the
difference between the third and first quantile).



Fig. 4: AS-733 graph. Rows are the node of which ABC value
is used as classifier. Columns are the classes(labels), that is,
top 7 nodes being disconnected from the network one-by-one.
Observing top i-th node’s (y-axis) ABC value helps classify
the top i-th node’s (x-axis) removal. Class (label) 0 is the graph
when there is no change.

work to go a step further. It shows the changes in top 50
ABC values in the Airports graph for intervals of size 200,000
transactions where the top 7 nodes are failed. We plot these
results on the baseline (box and whiskers). Label 0, shows
typical case, and the labels 1-7 correspond to failure of the
node with corresponding ABC rank. We observe each failure
pushes at least one ABC value significantly out of range.

The problem is trivial when we have sensors on all nodes,
we would look at the incoming or the lack of incoming data
from each node. However, we want to infer beyond what
we can observe to reduce the amount of work and cost. The
optimal is to have one sensor to detect all. The smaller number
of sensors we need, the better. To see what is the minimum
we need, we experiment what we can identify by each sensor
alone. We consider each node in the top M individually and
use it as the only information source. That is, we only look
at the ABC value of one node (called as feature) for the
classification algorithm. The experiment dataset consists of
200 (10 training and 190 test) instances per label each run.

We store the accuracy achieved by each feature for labels
(node failures) in a feature - label matrix. Figure 4 shows the
results for AS-733. Noting the assumption there is no other
change in the graph, we show that the classification algorithm
successfully (≥ %90 accuracy) works in most cases. We want
the Minimum Set Cover on feature - label matrix, where we try
to cover all the labels (failure cases) with the minimal number
of features (sensors) selected. For example, in Figure 4 we
can select 4th (or 2nd) and 5th as our features to successfully
cover all the labels with 2 nodes. We confirmed our findings
by repeating this experiment using combination of multiple
nodes. We refer to [16] for further experimental results.

B. Effect of Noise in Experiments
Not every node on the communication graph behaves the

same all the time. We achieve this in our experiments by
incorporating noise factor to the communication probabilities.

While each node initiates communication with others pro-
portional to its send frequency, and receives communication
proportional to its receiver frequency, these should be varying
from time to time (between intervals) so that we do not
assume that every node behaves exactly the same all the time.
To test the robustness, we have added a multiplicative noise
factor uniformly random in the ×0.8 − ×1.2 range to the
communication probability of the nodes.

The cardinality algorithm inherently is not affected by the
noise. However, the empirical failure detection use cases we
provided slightly deteriorate in the face of noisy data. In our
experiments, we saw that for the AS-733 and Airports graphs,
the accuracy decreased by 10% on average and up to 35% for
some feature-label combinations in AS-733 graph. Overall, the
algorithms are still able to successfully detect changes in most
cases. Sophisticated detection approaches can be implemented
to improve quality and make it even more robust to noise,
however, this is not in the scope of this paper.
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