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Abstract—Finding the dense regions in a graph is an
important problem in network analysis. Core decomposition
and truss decomposition address this problem from two
different perspectives. The former is a vertex-driven approach
that assigns density indicators for vertices whereas the latter
is an edge-driven technique that put density quantifiers on
edges. Despite the algorithmic similarity between these two
approaches, it is not clear how core and truss decompositions
in a network are related. In this work, we introduce the vertex
interplay (VI) and edge interplay (EI) plots to characterize
the interplay between core and truss decompositions. Based
on our observations, we devise CORE-TRUSSDD, an anomaly
detection algorithm to identify the discrepancies between core
and truss decompositions. We analyze a large and diverse set
of real-world networks, and demonstrate how our approaches
can be effective tools to characterize the patterns and anomalies
in the networks. Through VI and EI plots, we observe distinct
behaviors for graphs from different domains, and identify two
anomalous behaviors driven by specific real-world structures.
Our algorithm provides an efficient solution to retrieve the
outliers in the networks, which correspond to the two anomalous
behaviors. We believe that investigating the interplay between
core and truss decompositions is important and can yield
surprising insights regarding the dense subgraph structure of
real-world networks.

Index Terms—dense subgraph discovery, k-core decomposition,
k-truss decomposition

I. INTRODUCTION

Dense subgraphs in real-world networks contain significant

and unusual information. There are many application domains

where dense subgraphs are useful. A few use cases are finding

price value motifs in financial networks [1], locating spam link

farms in webs [2], and detecting DNA motifs in biological

networks [3]. Core and truss decompositions are effective

models to find dense regions with hierarchical relationships.

In the core decomposition [4], vertices are assigned density

pointers, core numbers, that indicate the cohesiveness in the

neighborhood. Truss decomposition [5] yields truss numbers

for edges which can be interpreted as the link strength.

Given the wide application space, core and truss decompo-

sitions are unified and extended by new models for different

types of graphs [6], [7]. However, the relationship between

the core and truss decompositions has been overlooked, and

it is not clear what aspects of the graph structure are covered

by each decomposition. Understanding the interplay between

those measures can enable more effective network analysis.

In this work, we investigate the interplay between core

and truss decompositions in real-world networks and random

graphs. Our first contribution is the vertex interplay (VI) and

edge interplay (EI) plots, which analyze the structure of dense

subgraphs from two different perspectives. Then, we propose

the CORE-TRUSSDD algorithm to identify the anomalies with

respect to the core-truss interplay. We use several real-world

networks from various domains and examine the similarities

and differences in the core-truss interplay. Our analysis on

VI and EI plots gives interesting results for the core-truss

interplay behavior in real-world networks. We also show that

those behaviors cannot be captured when the edges are rewired

with a realistic random graph model. Our algorithm provides

an efficient solution to retrieve the outliers in the networks,

which reveal the anomalous behaviors observed in the VI plots.

Codes for reproducing the results and figures are available at

https://github.com/penghangliu/Core-Truss.

II. BACKGROUND

Our study explores real-world networks which can be repre-

sented as a simple undirected unweighted graph G = (V,E),
where V is the set of vertices and E is the set of edges. We

represent the neighborhood of a vertex u as N(u).

A. Core decomposition

The k-core subgraph is introduced by Seidman [4] for social

networks analysis. The k -core is a connected, maximal

subgraph such that every node in the subgraph has degree

of at least k within the subgraph. The core number of a node

Fig. 1: Examples for core (left) and truss (right) decompositions.
On the left, core numbers are shown for each node and red,
blue, and orange regions show the 3-, 2-, and 1-cores. They form
a hierarchy by containment as denoted. For the same graph,
trusses and truss numbers of edges are presented on the right.
The entire graph is a 0-truss and the five nodes on the right form
a 1-truss. There are two 2-trusses and one of them is a subset of
the 1-truss, as denoted by the tree hierarchy.
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u, denoted as K(u), is the highest value of k such that the

node belongs to a k-core. The maximum core number of all

vertices in the graph is defined as the (core) degeneracy. Core

decomposition is the process of finding the core numbers of

nodes. This can be achieved by an efficient iterative peeling

algorithm in O(|E|) time [8]. k-core subgraph (for any k) is

found by a traversal that visits all reachable nodes whose core

numbers are at least k. The nested structure of k-cores reveals

a hierarchy by containment. Fig. 1 (left) presents an example

for the core numbers, k-core subgraphs, and hierarchy.

B. Truss Decomposition

The k-truss subgraph is inspired by the k-core. It considers

the edges and the triangles they participate in [9]. k -truss

is a connected, maximal subgraph such that every edge

in the subgraph participates in at least k triangles within

the subgraph. The truss number of an edge (u, v), denoted as

T (u, v), is the highest k such that the edge is part of a k-truss.

The maximum truss number of all edges in the graph is defined

as the truss degeneracy. Similar to the core decomposition, the

truss decomposition can be achieved by a peeling algorithm

in O(
∑

v∈V d(v)2) time. k-trusses also exhibit a hierarchy by

containment. Fig. 1 (right) presents the truss numbers of edges,

k-truss subgraphs, and their hierarchy on a toy graph.

Relationship between k-clique, and k-core, k-truss. The k-

clique is a fully connected subgraph that contains k nodes. For

any edge (u, v) in a k-clique, both u and v are connected to the

other k−2 nodes, thus every edge in the k-clique participates

in at least k − 2 triangles within the clique. This shows that

k-clique is also a (k − 1)-core and a (k − 2)-truss.

C. Random Graph Models

Random graph models are commonly used as the null model

for analyzing real-world networks. The Block Two-Level

Erdős-Rényi (BTER) model [10] can simulate networks with

community structures by preserving the degree distribution and

the clustering coefficient per degree distribution to the best

extent. A graph is generated through two phases in the BTER

model. In the first phase, vertices are clustered into communi-

ties and ER model is applied to generate edges within the same

community. In the second phase, edges between communities

are generated regarding the size of the communities.

III. DATASETS

In order to explore patterns in various types of real-world net-

works, we cover datasets from five different categories: social,

autonomous systems, citation, collaboration, and web hyper-

link networks. The datasets are obtained from SNAP [11],

DBLP [12], and Konect [13]. Various statistics are summarized

in Table I. For collaboration networks we consider three co-

authorship networks from DBLP, which include the venues

of data mining, database, and parallel processing respectively.

We also consider the random graph models to validate our

findings in real-world networks. Table I shows the average

core and truss degeneracy of 10 random graphs generated by

BTER model for each real-world network.

IV. VERTEX BASED ANALYSIS

In this section, we analyze the interplay of core and truss

numbers from the perspective of a vertex. We introduce the

vertex interplay (VI) plot to demonstrate the spectrum of

edges around vertices with a particular core number. Fig. 2

presents the VI plots for some real-world networks in our

dataset (all are available in [14]). We examine the neighbor-

hood of vertices with a particular core number and consider

the maximum and minimum truss numbers of edges adjacent

to a given vertex for a fixed core number. If there are multiple

vertices with the same core number, we report the average

and interquartile ranges. Formally, for each core number c,

we find the set S = {u ∈ V : K(u) = c} and compute
1
|S|

∑
u∈S min{T (u, v) : v ∈ N(u)} (likewise for maximum)

along with the interquartile ranges.

One general behavior we observe is that the maximum

truss number of adjacent edges is strongly correlated to the

core number of the vertex; larger core numbers yield larger

truss numbers overall. Figure 2a shows this pattern in the

VI plots for Catster, which is also commonly observed in

other social networks. Regarding the minimum truss numbers,

on the other hand, there is a consistent trend for all the

vertices regardless of their core numbers. Every vertex in the

network is connected to at least one edge with a very low truss

number. This is in line with the core-periphery structure [15];

each vertex in the core block is connected to both core and

periphery blocks – truss numbers of the edges between core

TABLE I: Statistics of real-world networks and random graphs.
The last four columns show the core degeneracy and truss
degeneracy numbers. In each group, Exact shows the core and
truss degeneracy numbers of real-world graphs, and BTER

presents the same numbers (on average) for the random graphs
generated with the BTER model.

Category Name |V | |E|
Core degen. Truss degen.

Exact BTER Exact BTER

Social

Catster 150K 5.45M 419 312 205 164
Dogster 427K 8.54M 248 300 91 192
Email 36.7K 184K 43 47 20 27

Email-Eu. 1.00K 25.5K 34 36 21 11
Flickr 1.72M 15.6M 568 310 276 110

LiveJour. 4.00M 34.7M 360 33 350 6
Orkut 3.07M 117M 253 80 76 40

YouTube 1.13M 2.99M 51 78 17 48

Auto. sys.

As-733 6.47K 12.6K 12 13 8 11
Caida 26.5K 53.4K 22 28 14 23

Gnutella 62.6K 148K 6 6 2 1
Oregon-2 10.9K 31.2K 31 22 23 16
Skitter 1.70M 11.1M 111 191 66 146

Citation

CiteSeer 384K 1.74M 15 14 11 3
Cora 23.2K 89.2K 13 9 9 3
DBLP 12.6K 49.6K 12 13 7 5
HepTh 27.7K 352K 37 31 28 14
Patent 3.78M 16.5M 64 9 34 1

Collab.

DBLP_dbs 8.10K 23.0K 35 10 34 2
DBLP_dm 16.4K 33.9K 24 7 23 1
DBLP_pp 8.41K 22.9K 44 16 43 3

Web

BerkStan 685K 6.65M 201 258 199 178
Blogs 1.22K 16.7K 36 38 23 12
Google 876K 4.32M 44 86 42 72

NotreDame 326K 1.09M 155 144 153 47
Stanford 282K 1.99M 71 123 60 93
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(a) Catster (b) DBLP-dbs (c) BerkStan

Fig. 2: Vertex interplay (VI) plots for some real-world graphs (all are available in [14]). For each vertex with a particular core
number, the maximum and minimum of the truss numbers of surrounding edges are shown. Average and interquartile ranges are
computed over the vertices with the same core number.

and periphery are likely to be low. Note that the variation for

vertices with the same core number is also very small, i.e.,

interquartile ranges are narrow, suggesting a high similarity

among those vertices. We observe this behavior in 7 (of 8)

social networks and most autonomous systems.

Collaboration networks exhibit a different behavior in the

VI plots. Figure 2b presents the DBLP-dbs network. The

minimum truss numbers are very close to the maximum ones,

as opposed to the consistent trend in the social networks.

Vertices with large core numbers are not connected to any

edge with a low truss number. This implies that cliques of

vertices with large core numbers are surrounded by some other

cliques with close core numbers. In some cases the minimum

truss number, maximum truss number, and core number are

almost equal, indicating both k-core and k-truss are derived

from a clique-like structure (Fig. 3a), as annotated in Fig. 2b.

In fact, a collaboration network can be seen as a union of

cliques, where authors of each paper form a clique, which in

turn yields closed clique-like structures that are not connected

to the nodes in the periphery.

We observe yet another distinct behavior in web networks.

Figure 2c shows the VI plot for BerkStan network. The

maximum truss numbers are very small for some vertices with

large core numbers, implying that the truss numbers of all

adjacent edges are small. Most of the neighbors are isolated

from each other, indicating a sparse neighborhood despite

the cohesiveness suggested by the large core number. Those

vertices serve as structural holes in the network [16], where

(a) Clique-like structure (b) Gatekeeper structure

Fig. 3: Examples of clique-like and gatekeeper structure behav-
iors. In the 6-clique, the core numbers (5) and the truss numbers
(4) are close. The gatekeeper (red) has three neighbors isolated
from each other. Although the core number (3) shows that the
gatekeeper belongs to a cohesive subgraph, its neighborhood
structure is not cohesive, as truss numbers are zero.

a node with a large core number is connecting multiple cores

isolated from each other (Fig. 3b). In Fig. 2c, there are 271

vertices with core number 113 but the largest truss number

adjacent to those is only 2. Note that, in the same network,

the vertices with core number 111 and 120 are connected to

very large truss numbers, indicating a clique-like structure.

Remark. We also investigate the VI plots of random graphs

[14] generated by BTER model, which capture the common

pattern observed in social networks but fail to capture the

other interesting behaviors in collaboration and web graphs.

This shows that the interesting behaviors driven by the unusual

structures (cliques and structural holes), seem to be distinctive

characteristics in real-world graphs. Given the benefit of

analyzing the interplay of core and truss numbers, it is natural

to think about using just the degrees of vertices and triangle

counts of edges for a similar analysis. However, the skewed

distributions of degrees/triangle counts prevent such analyses;

the VI plots become inconsistent for the networks from the

same domain and behaviors can be gamed with simple changes

in the graph. In the extended version [14], we present a few

examples. In all variations (degree-triangle count, degree-truss,

or core-triangle count) the VI plots fail to generate a consistent

and pervasive pattern. Core and truss numbers can be

considered as the regularized and more robust versions

of the vertex degrees and edges’ triangle counts.

Summary. VI plots present a meaningful graph summary by

showing the interplay between core and truss numbers. Con-

sidering the cohesiveness around vertices (i.e., core numbers)

with respect to various neighborhoods they are involved in

(i.e., truss numbers) is an effective way to understand the dense

regions and structural holes. VI plots of networks belonging to

the same domain exhibit consistent behaviors whereas the ones

from different domains suggest diverse characteristics. We

believe that VI plots would be handy for domain practitioners

to analyze the network structure.

V. EDGE BASED ANALYSIS

In this section we introduce the edge interplay (EI) plot

to address the interplay from the perspective of an edge.

Figure 4 presents the EI plots for some real-world networks

in our dataset (all are available in [14]). Here we examine the

truss number of edges between two vertices with particular

core numbers. If there are multiple edges having the same

pair of core numbers for their endpoints, we show the mean
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value of the truss numbers. Formally, for each pair of core

numbers c1 � c2, we find the set S = {(u, v) ∈ E :
K(u) = c1,K(v) = c2} and compute 1

|S|

∑
(u,v)∈S T (u, v).

In addition to the core-truss interplay, we consider the vertex

degrees and edges’ triangle counts for a similar analysis. For

all EI plot variations (degree-truss, degree-triangle count, and

core-triangle), we observe consistent behaviors in networks

from the same domains. Those alternative EI plots allow us

to discover some interesting behaviors.

One general behavior we observe is that the truss number of

an edge is strongly correlated to the core numbers of the two

endpoints. This also holds true for all the EI plot variations

regarding vertex degrees and edge triangle counts. Figure 4a

shows this pattern in the EI plot of Email network, and

we observe this pattern in all social networks, autonomous

systems, and collaboration networks.

Citation networks present a different behavior in the EI

plots. Figure 4b presents the EI plot of HepTh network, where

edges with large truss number are connecting two endpoints

with non-maximum degrees. Another interesting behavior ap-

pears consistently in web networks. Figure 4c presents the EI

plot of BerkStan network. Edges with large truss number

are connecting two vertices with very different degrees. This

implies that there are cohesive structures connecting core

and periphery blocks. This structure seems to be artificially

constructed for special purposes, e.g., spam link farms.

Summary. Similar to the VI plots, the EI plots present a

meaningful graph summary by showing the interplay from the

edge perspective. We also checked the EI plots of random

graphs generated by BTER model (in [14]) and show that

the interesting behaviors we observed in EI plot of web

and citation networks are, again, distinctive characteristics of

real-world networks driven by specific network structures. In

addition to the core and truss interplay, the EI plots are also

capable to capture consistent behavior in the interplay between

degrees and triangle counts. This allows us to distinguish

diverse characteristics from more domains.

VI. ANOMALY DETECTION BY CORE-TRUSS

DISCREPANCY

Based on our observations in Section IV and Section V,

we design the CORE-TRUSS DISCREPANCY DETECTION al-

Algorithm 1 CORE-TRUSSDD

Input: G = (V,E)
Output: The set A of anomalous vertices

1: A ← ∅,P ← ∅
2: K ← CORE-DECOMPOSITION(G)
3: T ← TRUSS-DECOMPOSITION(G)
4: threshold ← sort(K)[ |V |

4
] ⊲ filter nodes by core numbers

5: for all v ∈ V do
6: if K[v] ≥ threshold then

7: �Pv ← truss-profile of v ⊲ based on T

8: P .push( �Pv)

9: [C1, C2, · · · , Ck] ← k-means(P, k) ⊲ vertex clustering
10: for Ci ∈ [C1, C2, · · · , Ck] do
11: for v′ ∈ Ci do
12: z[v′] ← Z-score of K[v′] in cluster Ci

13: if |z[v′]| > 2 then
14: A.push(v′)

15: return A

gorithm (CORE-TRUSSDD) to detect the vertices showing

anomalous behaviors of core-truss interplay, and apply our

proposed algorithm on Email-Eu-core and BerkStan.

A. CORE-TRUSSDD algorithm

Algorithm 1 provides the pseudocode of CORE-TRUSSDD.

We first run the core and truss decompositions (Line 2 and

3) to compute the core numbers of all vertices and the truss

numbers of all edges. We introduce the vertex truss-profile to

represent the spectrum of truss numbers of all adjacent edges

for a vertex (Lines 5 to 8).

Definition 1 (Vertex Truss-profile): Given a graph G =
(V,E) and its truss degeneracy max(T ), the truss-profile of

vertex v ∈ V is a vector Pv = [p0, p1, · · · , pmax(T )], where

pi =
n(i)

∑max(T )
i=0 n(i)

and n(i) is the number of adjacent edges

having truss number i.

Real-world networks often present heterogeneous structures.

It is hard to capture a general pattern in truss-profiles of

all vertices as they can be highly diverse, making anomaly

detection challenging. To address this issue, we group the

vertices with similar truss-profiles (Line 9). Here we apply the

k-means clustering [17], which minimizes the within-cluster

squared distances. By default each vertex will be assigned to

a cluster, including those in the periphery with low importance.

(a) Email (b) HepTh (c) BerkStan

Fig. 4: Edge interplay (EI) plots for some real-world graphs. For each pair of endpoints with particular core numbers/degrees, the
average of the truss numbers/triangle counts of the edges are shown.
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In order to prevent the false positives caused by these vertices,

we ignore the 25% of nodes with the lowest core numbers

(Lines 4 and 6).

After clustering the vertices with respect to the truss-

profiles, we investigate the patterns and anomalies of core

numbers in each cluster. For this purpose, we compute the Z-

score of each vertex in order to measure the deviation of their

core numbers with respect to the general patterns (Line 12).

For a given vertex v with core number Kv , the Z-score is

calculated as zv = Kv−µ
σ

, where µ and σ are the mean

and standard deviation of all core numbers in the cluster.

In Lines 13 and 14, we identify the outliers which have the

absolute values of Z-scores larger than 2. This corresponds to

the 2.28% of the population in normal distribution. We also

plot the distribution of core numbers and identify anomalies

which deviate from the general patterns. Note that the k-

means algorithm only serves as a subroutine in our anomaly

detection algorithm. The purpose of clustering is to partition

the vertices into several groups where we can expect common

truss-profile behaviors. The clustering performance is not our

major concern as we only aim to have a scaled-down problem

size for the anomaly detection.

Time complexity: CORE-TRUSSDD starts with core and truss

decomposition, which takes O(|E|) and O(
∑

v∈V d(v)2) time

respectively. The algorithm generates truss-profiles for all

vertices in O(|V |max(T )) = O(|V |) time, since the truss

degeneracy max(T ) is O(1) for real-world networks. The k-

means clustering can be implemented by the Lloyd’s algorithm

[18], which takes O(k|V |max(T )2
√

|V |) time, where k is the

number of clusters. Therefore, the overall time complexity is

O(
∑

v∈V d(v)2 + k|V |2
√

|V |).
Space complexity: We first construct K and T for core and

truss decompositions, which take O(|E|) space. In addition,

we need O(|V |max(T )) = O(|V |) space for the truss-profiles

P . The k-means algorithm need O((|V | + k)max(T )) =
O(|V |) space. Arrays A and [C1, C2, · · · , Ck] take O(|V |)
space, so the total space complexity is O(|E|).
B. Anomalies in real-world networks

In general, we observe similar core numbers within the

clusters. Within the cluster, the major population of core

(a) Cluster G (gatekeepers) (b) Cluster C (clique-like outliers)

Fig. 5: Core number distributions of anomalous clusters in
BerkStan. Each figure represents the core number distribution
within a cluster. Fig. 5a shows an anomalous cluster where we
observe outliers with core numbers deviated from the major
population (K > 50). These outliers are found to be the
gatekeepers in later analysis. We also observe anomalous vertices
in Fig. 5b (K > 150), which appear to be clique-like structures.

(a) Cluster G (gatekeepers) (b) Cluster C (clique-like outliers)

Fig. 6: Gatekeeper and clique-like anomalies in BerkStan

clusters. In each scatter plot, the blue crosses denote normal
nodes and the red circles represent outliers. The x-axis represents
the core number of the vertex, while the y-axis denotes the
maximum truss number of the adjacent edges. The dashed line
is y = x− 1, which indicates the core-truss behavior of cliques.

numbers lies in a small interval. Since the vertices are clustered

based on their truss-profiles, it indicates that the core and

truss decompositions are consistent. We observe the consistent

patterns in 13 out of 15 clusters in BerkStan, as well as

in the most clusters in Email-Eu-core. In the remaining

two clusters (clusters G and C) of BerkStan, we identify

significant amounts of outliers (more than 5%). Fig. 5a shows

the core number distribution in cluster G. The majority of

vertices have core numbers ranging from 0 to 25, while some

outliers have much larger core numbers. Fig. 6a shows that

the core numbers of these outliers are much greater than the

maximum truss numbers of their adjacent edges. This indicates

that the anomalies discovered in this cluster are the gatekeepers

illustrated in Fig. 3b. In Fig. 5b we observe that most vertices

in cluster C have their core numbers lie between 0 and 55. We

identify 5352 outlier vertices with core number larger than 92.

As shown in Fig. 6b, the core numbers are extremely close to

the maximum truss numbers of the adjacent edges. For all of

the 5352 outliers, the difference between their core numbers

and the maximum truss numbers is equal to 2. According

to our discussion in Section IV, these are the clique-like

structures (Fig. 3a) in the network.

(a) Cluster A (b) Cluster B

Fig. 7: Core number distributions and the corresponding sub-
graphs of Email-Eu-core clusters. The histograms present the
core number distributions within the clusters. The subgraphs
at the bottom are induced by the vertices in the clusters, with
normal nodes colored in red and outliers colored in green.
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Next, we investigate the patterns and anomalies in the

Email-Eu-core clusters. Among the 15 clusters, four of

them present anomalous behaviors. Due to the space limit

we only show two of them in Fig. 7, along with the core

number distributions. In cluster A we observe the majority of

vertices have core numbers from 6 to 10, while there are six

outliers with core numbers larger than 12. Similar anomalies

are observed in the other two clusters, where the outliers

have core numbers significantly larger than the majority of

the population in the cluster. Cluster B presents a different

picture, where most of the vertices have core numbers of 33

and the outliers have core numbers less than 25. Fig. 7 shows

the subgraphs induced by the vertices in the clusters. Note that

we are not doing graph clustering but cluster the vertices with

respect to the truss-profiles, so they may not be connected

at all. We noticed that the subgraph induced by clusters A

is structurally sparse. Moreover, outliers are less likely to

be connected with each other than the normal vertices. The

subgraph of cluster B shows a very different picture, where the

normal vertices form a connected component with relatively

high density. This is due to the overall high core numbers in

the cluster. Note that the outliers lie in the periphery of the

subgraph and few connections exist between them. .

VII. RELATED WORK

The core and truss decompositions, proposed by [4] and

[9], is commonly used in dense subgraph discovery. One

of the works that addresses the relation between core and

truss decompositions is [6], [7]. Sariyuce et al. proposed a

network decomposition framework which addresses both core

and truss decompositions, and explored the hierarchical and

overlap relations among the subgraphs. Shin et al [19] explored

the relations between core (truss) degeneracy and the number

of triangles. Our research directly addresses the relationship

between the core and truss decompositions based on local

perspectives. We also propose the CORE-TRUSSDD algorithm

to detect the outlier nodes. Note that, in a prior work we also

explored the relationship between clique counts and the core

and truss degeneracy [20].

VIII. CONCLUSION

In this paper, we analyzed the interplay between core and

truss decompositions in real-world networks. We introduced

VI and EI plots to analyze the network structure by using the

core and truss decompositions. The VI plot investigates the

core-truss interplay from a vertex perspective, by examining

the spectrum of edges around vertices with particular core

numbers. The EI plot explores the interplay from an edge

perspective by checking the truss number of an edge and the

core numbers of the two endpoints. We applied our analysis on

real-world networks from various domains, and then validate

our findings by evaluating the random graphs generated by the

BTER model. The VI and EI plots reveal consistent pattern

in social networks and autonomous systems, and identify

some interesting behaviors in collaboration networks, citation

networks, and web networks.

Inspired by our observation in VI and EI plots, we proposed

the CORE-TRUSSDD algorithm to identify anomalies in the

networks by utilizing the core-truss interplay. We analyzed the

characteristics of the outliers identified by our algorithm, and

the results support our findings in the VI plots. We believe our

study would be handy for domain practitioners to analyze the

dense subgraph structure of networks, and provide important

insights for anomaly detection.
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