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ABSTRACT

We consider space-efficient single-pass estimation of the number

of butterflies, a fundamental bipartite graph motif, from a massive

bipartite graph stream where each edge represents a connection be-

tween entities in two different partitions. We present a space lower

bound for any streaming algorithm that can estimate the number

of butterflies accurately, as well as FLEET, a suite of algorithms

for accurately estimating the number of butterflies in the graph

stream. Estimates returned by the algorithms come with provable

guarantees on the approximation error, and experiments show good

tradeoffs between the space used and the accuracy of approxima-

tion. We also present space-efficient algorithms for estimating the

number of butterflies within a sliding window of the most recent

elements in the stream. While there is a significant body of work on

counting subgraphs such as triangles in a unipartite graph stream,

our work seems to be one of the few to tackle the case of bipartite

graph streams.
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1 INTRODUCTION

Enumeration and counting of graph substructures has emerged as

a basic tool in understanding complex networks, and has found

wide applications in social networks, spam/fraud detection, and link

recommendation, and more. Due to the scale of today’s datasets,

enumeration and counting needs to be performed on very large

graphs, with the order of billions of vertices and trillions or larger

number of graph substructures. Such large graphs are naturally

modeled as graph streams – the edges of such a graph are not
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available all at once, but are instead observed as a sequence of

updates.

In this work, we focus on bipartite graph streams. A bipar-

tite graph consists of two disjoint node sets L and R. Each edge in

the graph connects a node in L with a node in R. Bipartite graphs
are widely used in modeling relationships in the real world. For

instance, they can be used to model relationships between authors

and papers they have published, where the set of authors form one

node partition, papers form the other node partition, and an author

has an edge to each paper that she published [17]. In web search,

bipartite graphs have been used in modeling relations between

queries and URLs in query logs [27] and in matching users to ad-

vertisements in computational advertising [2, 32]. In computational

biology, bipartite graphs are used to model enzyme-reaction links

in metabolic pathways and gene-disease associations [37]. Other

examples include user-product relations, word-document affilia-

tions, and actor-movie networks. Bipartite graphs can be used to

represent hypergraphs that capture many-to-many relations among

entities, through having the hyperedges in one partition, and the

entities in another partition. Bipartite graph streams are natural in

the above examples, where new entities may arise in either parti-

tion, and new edges are observed as time progresses. The challenge

in bipartite graph stream processing is to maintain properties in a

time- and space-efficient way as more edges are observed.

While there is a rich literature on subgraph motif counting from

unipartite network streams, these methods do not take into account

the special structure present in bipartite networks. For instance,

the number of triangles (cliques of size 3), a widely studied metric

for unipartite graph streams [3, 6, 8, 13, 15, 21–23, 25, 28, 36, 45, 47–

49, 53], is not a useful metric for bipartite networks, since a bipartite

network is triangle-free. Instead, the most basic motif which models

cohesion in a bipartite network is the 2 × 2 biclique, known as a

butterfly [5, 41, 42] or a rectangle [50]. The number of butterflies

has been used in defining the clustering coefficient in a bipartite

graph [29, 40] and can be considered as playing the same role in

bipartite networks as the triangle did in unipartite networks – a

building block for community structure. Though there are some

prior works on counting butterflies in a static bipartite graph [41,

50], these have not considered bipartite graph streams.

1.1 Contributions

We present FLEET, butterFLy Estimation from a bipartitE graph

sTream – a suite of space-efficient one-pass streaming algorithms

for estimating the number of butterflies in a bipartite graph stream.

Our algorithms use fixed-size memory that is much smaller than

the size of the stream, and continuously maintain an estimate of the
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number of butterflies as edges arrive in the stream. Our algorithms

are simple to implement, backed up by theoretical guarantees, and

have good practical performance.

– Space Lower Bound.We first show a lower bound, proving that

any streaming algorithm (whether deterministic or randomized)

that can approximately maintain an estimate of the number of

butterflies with a bounded relative error in a graph on n vertices

must use a memory of size Ω(n2) on certain input streams. Note

that using Ω(n2) memory, it is possible to store the entire graph

stream. This shows that in general, it is not possible for a streaming

algorithm to maintain an estimate of the number of butterflies using

memory sub-linear in the size of the graph. However, the lower

bound applies for cases when the number of butterflies in the graph

is very small; in particular, the proof depends on distinguishing

between two cases, one where there are no butterflies, and another

where there is a single butterfly. Real-world bipartite graph streams

typically have a large number of butterflies (e.g., Figure 3), and

hence, one cannot rule out algorithms that are more space-efficient

and return an accurate estimate of the number of butterflies, thus

motivating our further work on small-memory algorithms.

– Infinite Window Streaming. We next present small-memory

algorithms for estimating the number of butterflies within an infi-
nite window consisting of all edges seen so far in the stream. The

memory used by our algorithms is no more than a given parameter

M . We first present an algorithm Fleet1 that is based on adaptive

random sampling from the edge stream so that as more edges are

seen, the sampling probability decreases so as to fit within avail-

able memory. We prove that the estimator returned by Fleet1 is

unbiased, and derive concentration bounds showing that the es-

timator is close to the actual value with a high probability, if the

memory used is large enough. We present two enhancements to

Fleet1, leading to algorithms Fleet2 and Fleet3 which provide

better memory-accuracy tradeoffs in practice.

– Sliding Window Streaming. In stream data mining, the scope

of aggregation often needs to be restricted to include edges that

have arrived within a recent window. To handle such cases, we

present extensions of Fleet to the sliding window model [7, 12, 19].

We consider two types of sliding windows. (1) For a sequence-based
window, defined as the set ofW most recent edges in the stream for

a window size parameterW , we present an algorithm FleetSSW

(2) For a time-based window, defined as stream elements whose

timestamps are greater than (c −w), where c is the current time and

w is the window size, we present an algorithm FleetTSW. Both

algorithms use a bounded memory that does not increase with the

number of edges in the window. Our algorithm for a time-based

window is flexible to receive the window size as a parameter during

the query, and does not need to know the window size in advance.

– Experimental Evaluation.We experimentally evaluate Fleet

on real-world graph streams. Results show that our algorithms

are effectively able to handle large graph streams. For instance, on

the Bag-pubmed graph with approximately 500M edges and 40T

butterflies, our algorithms are able to achieve estimates with an

error of less than 1% using a memory of 600K edges. Our methods

present different tradeoffs between memory, estimation accuracy,

and runtime, that make them applicable in real-world applications

with different requirements, and significantly outperform prior

works on subgraph counting from graph streams [3, 9, 31].

1.2 Related Works

Network motifs. Network motifs are small subgraphs that are

defined on a few nodes and edges. Unlike graph communities or

dense subgraphs, whose sizes do not have to be bounded, network

motifs are typically subgraphs with less than six nodes. A similar

concept is graphlets [39]. Network motif detection and counting

is now an indispensable tool in network analysis [30, 34]. The

distribution of motif counts in a network, as well as the number

of motifs that a node takes part in, help characterize the roles of

networks and nodes [33], an idea that has been used in numerous

applications in networking, web and social network analysis, and

computational biology [8, 18, 43, 46, 50].

Butterfly Counting. There have been relatively few works on

countingmotifs in a bipartite graph.Wang et al. [50] presented exact

algorithms for butterfly counting in static graphs that outperform

generic matrix multiplication based methods [6]. Sanei-Mehri et

al. [41] and Zhu et al. [54] present exact and randomized algorithms

for butterfly counting on static bipartite graphs. [44, 51] presents

parallel algorithms for butterfly counting on static graphs. All these

works have considered static graphs and not graph streams, like

we do here.

Motif Counting in Graphs. There are a number of algorithms

known for triangle counting for unipartite streaming graphs, in-

cluding [3, 8, 13, 15, 21–23, 28, 36, 45, 52, 53]. Recent works on

counting 4-vertex [4] and 5-vertex subgraphs [38] have focused on

exact counting and are not designed for streaming graphs.

Since a butterfly is a 4-cycle, prior works on counting 4-cycles in

any graph stream [9, 10, 14, 24, 31] can be also applied to a bipartite

graph stream, and we compare with such prior work. Note that

these algorithms do not use the additional structure in a bipartite

graph (absence of edges between vertices in the same partition), and

are thus naturally disadvantageous for bipartite streams. Bordino et

al. [10] present three-pass algorithms for counting 4-cycles, while

we focus on single-pass streaming algorithms. Buriol et al. [14]

consider 3,3-biclique counting from a stream. They assume the inci-
dence streammodel, where edges in the graph stream are presented

in a specific order such that all edges incident to a given vertex

arrive together, whereas we assume the more general model where

edges can arrive in an arbitrary order. Bera and Chakrabarti [9]

present algorithms for counting 4-cycles in a graph using two passes

through the stream. The work of Ahmed et al. [3] can be specialized

to count butterflies in a stream, and we present an experimental

comparison with [3, 9] in Section 6. Other works include Manju-

nath et al. [31] and Kane et al. [24] for subgraph counting based on

graph sketches.

Lower Bounds for SubgraphCounting. There are multiple prior

works on memory (space) lower bounds for triangle and subgraph

counting in general graphs [9, 11, 16, 53], but not for subgraph

counting in bipartite graphs. Since a bipartite graph is more re-

strictive than a general graph (certain edges are disallowed), lower

bounds for unipartite graphs do not directly apply to bipartite

graphs. To the best of our knowledge, our work presents the first

lower bounds for subgraph counting in bipartite graph streams.

2 PRELIMINARIES

We consider simple unweighted and undirected bipartite graphs,

without multiple edges between the same pair of vertices. Let G =
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Figure 1: Butterflies in a bipartite graph. Graph G contains

four butterflies.

(V ,E) be a bipartite graph with vertices V and edges E. The vertex
setV ofG is partitioned into two disjoint sets L and R. The edge set
E ⊆ L×R, so each edge e connects one vertex in set L and the other

in set R. A butterfly is subgraph on four vertices {a,b,x ,y} ⊂ V ,
where a,b ∈ L and x ,y ∈ R such that edges (a,x), (a,y), (b,x) and
(b,y) exist in the edge set E (see Figure 1).

A graph stream is a sequence of edges S = e1, e2, . . . where ei
is the i-th edge in the stream. For t > 0, let St denote the first t
edges of the stream and let Gt = (V t ,Et ) denote the graph formed

by the first t edges, i.e., Gt = {e1, e2, . . . , et }. Let ◃▹t (G) denote the
set of all butterflies in the graph Gt

and let ξ t (G) = | ◃▹t (G)| denote
the number of butterflies in Gt

. When G is clear from the context,

we use notations ◃▹t , ξ t , and when both G and t are clear from

the context, we use ◃▹, ξ . Figure 2 shows the setup for processing a

stream of edges from a bipartite network. We consider the following

settings.

Infinite Window: For any t > 0 and a stream S, the goal is to

continuously maintain (an estimate of) ξ t , the number of butterflies

in the graph Gt
, as t changes.

Sliding Window: For a window size parameterW , a sequence-
based sliding window is defined as the set ofW most recent edges.

For t ≥W , when edge et is observed, the sliding window consists

of edges et−W +1, et−W +2, . . . et . For t < W , the window consists

of the entire stream so far. The goal is to continuously maintain an

estimate of the number of butterflies in the graph defined by the

sliding window. We also consider time-based sliding window, a gen-
eralization of sequence-based window, defined as the set of edges

whose timestamps are the most recent. In a time-based window,

the window size does not correspond to a specific number of edges,

but instead to a range of timestamps.

Our randomized algorithms solely rely on randomness internal

to the algorithm, and do not assume that the input is drawn from a

specific probability distribution. The input graph stream, including

the set of edges and their order of arrivals, could be generated by

an adversary. In our space complexity analysis, we assume that a

single edge from the graph and an edge timestamp can be stored in

a constant number of words. Let [n] denote the set {1, 2, 3, . . . ,n}.

3 SPACE LOWER BOUND

We show that it is impossible for any streaming algorithm to ap-

proximate the number of butterflies to within a small relative error

using o(n2) space. This shows that one cannot expect an algorithm

that always returns an accurate estimate using fixed space. In fact,

the lower bound shows that essentially, the entire graph needs to

be stored (which is possible in Θ(n2) bits), if one desires an algo-

rithm that always returns an accurate estimate of the number of

butterflies in a bipartite graph stream. Note that our lower bound

applies to randomized as well as deterministic algorithms, and for

algorithms that return either exact or approximate answers. Note

that this lower bound is based on the space complexity of distin-

guishing between an edge stream that has zero butterflies and one

that has at least butterfly.

Theorem 3.1. For any streaming algorithm L that estimates ξ (G)
for a streaming bipartite graph G on n vertices, there exist input

graph streams on which the algorithm uses memory Ω(n2) bits.
The proof uses a reduction from a one-round communication

complexity problem, where there are two parties Alice and Bob.

Alice gets input a ∈ A and Bob gets input b ∈ B. It is required
to compute a function д(a,b) using only one-way communication

from Alice to Bob, while communicating as few bits as possible.

д may be computed approximately, and there may be a failure

probability that the approximation error is not achieved. Let the

one-round communication complexity of function д : A × B → Z
with failure probability δ be denoted by R1δ (д).

Consider function f that takes as input n sets S1, S2, . . . , Sn and

two integers i and j where each Sk , 1 ≤ k ≤ n is a subset of [n] of
size n/10 and i, j ∈ [n]. The function is defined as:

f (S1, S2, . . . , Sn , i, j) =

{
1 if j ∈ Si

0 otherwise

Inputs S1, S2, . . . , Sn are given to Alice and inputs i and j are given
to Bob. Communication is allowed only from Alice to Bob, and Bob

has to return the approximate value of the function. We use the

following result from [53].

Lemma 1 (Bar-Yossef et al. [53]). The one round communication

complexity of any algorithm for f is lower bounded as follows: for

any 0 < δ < 1/100, R1δ (f ) ≥ n2/40.
Proof of Theorem 3.1. Suppose there exists a streaming algorithm

L for estimating the number of butterflies with relative error of

1/2 with error probability no more than δ , which uses space of

s bits. We reduce the one-round distributed computation of f to

streaming butterfly counting as follows.

Given her input S1, S2, . . . , Sn , Alice constructs a part of graphG
on 4n verticeswith vertex set P∪Q∪R∪T , where P = {p1,p2, . . . ,pn },
Q = {q1,q2, . . . ,qn } and similarly R and T . She inserts the follow-
ing edges into the streaming algorithm in any order. First for each

k = 1 . . .n, edges (pk ,qk ) and (qk , rk ) are inserted. Next, for each
set Sk ,k = 1 . . .n, and for each ℓ ∈ Sk , an edge is inserted between

tk and rℓ . After Alice is done inserting all these edges into L, she
transmits the contents of the memory of L (the entire current state)

to Bob, incurring a communication cost of no more than s bits.
Upon receiving the state of L from Alice, Bob continues running

L by inserting edge (ti ,pj ) into the graph G. He then queries L

for an approximate count of the number of butterflies in G. If the
answer is non-zero, then he declares that f (S1, S2, . . . , Sn , i, j) = 1,

and if the answer is zero, then he declares the function to be 0.

Note that if j ∈ Si , then there is an edge (ti , r j ) inserted by Alice.

If we further consider edges (ti ,pj ) inserted by Bob, and edges

(pj ,qj ) and (qj , r j ) inserted by Alice, we get a single butterfly in

G. If j < Si then, it can be verified that there are no butterflies in

G. Since L provides a relative error guarantee, it must return a

non-zero estimate if the actual number of butterflies is non-zero

and an estimate of zero if the actual number of butterflies is zero.
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Figure 2: Set up for processing a graph stream.

We further note that G is a bipartite graph whose vertex set

consists of two partitions, P ∪ R and Q ∪T . It can be verified that

there are no edges connecting vertices within a single partition.

Thus, we have reduced the one-round distributed computation

of f using s bits of communication to streaming butterfly counting

using memory of s bits. Using Lemma 1, we see that s ≥ n2/40,
thus completing the lower bound proof. �

4 INFINITE WINDOW STREAMING

We present streaming algorithms for estimating the number of

butterflies over an infinite window, i.e., all edges seen so far. Our

randomized algorithms maintain an unbiased estimate of the num-

ber of butterflies using a bounded memory of M , and provide a

trade-off between memory used and the accuracy of the estimate.

4.1 Adaptive Sampling: Fleet1

We use random sampling from the stream of edges. An initial at-

tempt uses Bernoulli Sampling (Bern) with parameter p, 0 < p ≤ 1.

Each arriving edge is sampled into a reservoir with probability p.
The number of butterflies among the sampled edges is incremen-

tally maintained, and is multiplied by the appropriate normalization

factor, to estimate the number of butterflies in the stream. The dis-

advantage of Bern is that it requires setting parameter p to the

“right value”, which depends on the input itself. If p is too small,

the error in estimation can be large, and if p is too large, then the

reservoir size can be very large.

Our first algorithm, Fleet1, solves this problem by adaptively

setting p throughout the computation, so as to keep the memory

bounded byM . Initially, p is set to 1, and all edges are sampled into

the reservoir. When the size of the reservoir exceeds M , Fleet1

sub-samples by retaining each edge in the current reservoir with a

probability γ . Further edges are sampled with probability γ . When

the size of the reservoir again exceeds M , the same process is re-

peated, and further edges are sampled with probability γ 2, and
so on. The size of the reservoir never exceeds M edges, and is at

least γM , with high probability, except during the initial stages

of the stream. Fleet1 also continuously maintains the number of

butterflies among sampled edges. When an estimate is desired, the

number of butterflies among the sampled edges is returned, after

multiplying by the appropriate normalization factor.

Details are presented in Algorithm 1. Each time the reservoir is

sub-sampled, Fleet1 uses an (exact) algorithm to compute ξ (R), the
number of butterflies in the reservoir using prior methods designed

for a static graph, such as[41, 54]. Fleet1 also uses an algorithm

BFC-edge(e,E) to count the number of butterflies that contain edge

e in the graph induced by edge set E. This can be achieved using

prior work such as [41]. For the purposes of the current discussion,

Algorithm 1: Fleet1 (S,M): Adaptive sampling

Input: Edge stream S, max. reservoir size M , resampling

parameter γ (default value of γ = 0.5)

Output: Estimate of ξ t , the number of butterflies at t
1 p ← 1, R ← ∅, t ← 0, β ← 0

2 for each edge e in S do

3 t ← t + 1
4 while |R | ≥ M do

5 p ← γp
6 for each edge e ∈ R do

7 Keep e in R with prob. γ and discard with prob. 1 − γ

8 β ← p−4 × ξ (R) // number of butterflies in R

9 if coin (p) is Head then

10 R ← R ∪ {e }
11 β ← β + p−4 × BFC-edge(e, R)

12 Y t
Fleet1

← β

the reader can assume that parameter γ is set to 1/2 – the main

advantages of our algorithm, including bounded sample size and

provable accuracy still hold. A modest tradeoff between accuracy

and runtime can be obtained by setting γ to other values between

1/2 and 1, as we discuss further in Section 6.3. Lemma 2 shows that

Fleet1 maintains an unbiased estimate of the butterfly count after

observing each edge. Let Y t
Fleet1

denote the estimate of ξ t returned
by Algorithm 1 (Line 12) at time t .
Lemma 2. E[Y t

Fleet1
] = ξ t

Proof. Suppose the butterflies in ◃▹t are numbered from 1 to ξ t . Let
X t
i (1 ≤ i ≤ ξ t ) be a random variable equal to 1 if all edges of the

ith butterfly appear in R, and 0 otherwise. Let X t =
∑ξ t
i=1 X

t
i . From

Line 11 of Algorithm 1, we have Y t
Fleet1

= X t (pt )−4. When t ≤ M ,

all edges of the stream are sampled, and X t = ξ t . When t > M ,

each edge appears in R with probability pt . Note that pt itself is a
random variable equal to the sampling probability of an incoming

edge at time t . To compute E[Y t
Fleet1

], we first condition on pt and
then remove the conditioning.

Since there are four edges in a butterfly, E
[
X t
i

�� pt ] = (
pt
)
4

.

With linearity of expectation, E
[
X t

�� pt ] = ∑ξ t
i=1 E

[
X t
i

�� pt ] =
ξ t

(
pt
)
4

. Then, E
[
Y t
Fleet1

�� pt ] = E [X t (pt )−4 �� pt ] = ξ t . By con-

ditional expectation, E
[
Y t
Fleet1

]
= E

[
E
[
Y t
Fleet1

�� pt ] ] = ξ t . �

Concentration analysis of Y t
Fleet1

: We next show that if the

upper bound on the reservoir size (M) is large enough, then the

estimate Y t
Fleet1

will be concentrated around its expectation, i.e.,

have a small relative error, with a high probability. There are a few

complexities to deal with here. First, the sampling probability pt
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is itself a random variable, since it is the result a random process.

We first analyze a simpler algorithm Bern(p) that is based on fixed

sampling probability p, which we have explained earlier. After t
edges, let Z t

p denote the estimate computed by Bern(p), of ξ (Gt ),

the number of butterflies in Gt
. Lemma 3 shows a concentration

bound for Z t
p . The difficulty with analyzing Z t

p is in handling the

dependency between random variables corresponding to different

butterflies being sampled into the reservoir. Though different edges

are sampled independently by Bern(p), different butterflies are not
necessarily independent since butterflies may share edges. We ad-

dress this with the help of the Hajnal-Szemerédi theorem, building

on ideas from prior works [25, 35, 47] all of who applied this idea

in the context of triangle counting.

Lemma 3. After t edges, let ht denote the maximum number of

butterflies in Gt
that an edge can be part of. For a fixed p, and for

any ϵ ∈ (0, 1), we have Pr
[���Z t

p − ξ
t
��� ≥ ϵξ t

]
≤ 8ht · exp

(
−
ϵ 2ξ tp4

12ht

)
Proof. Consider a new graph H t = (VH t ,EH t ) constructed from

Gt
: each vertex v ∈ VH t corresponds to a butterfly in Gt

. For each

pair of butterflies u,v ∈ VH t that share at least one edge, there is

an edge in EH t . Since each edge in Gt
can be shared by at most

ht butterflies, the maximum degree of vertex u ∈ VH t is (4ht − 4).
Using the Hajnal-Szemerédi theorem [20], there exists an equitable

coloring of H t
with at most (4ht − 3) colors. Let the colors be

numbered as {1, 2, . . . , 4ht − 3}. For each butterfly i ∈ VH t , let

random variable Xi be defined as: Xi = 1 if all edges of butterfly

i are sampled by Bern at time t , and 0 otherwise. Let the set of

butterflies assigned color j be denoted by Cj . For two butterflies

a,b ∈ Cj , note that Xa and Xb are independent, since a and b do

not share edges, and all their edges are sampled independently.

Define Yj =
∑
i ∈Cj Xi . Note that Yj is a Binomial random vari-

able since it is the sum of independent 0-1 random variables. We

have E[Yj ] = |Cj | · p
4
and |Cj | > ξ t /4ht , since the coloring of

vertices in VH t is an equitable coloring. Using the Chernoff bound,

Pr

[��Yj − |Cj | · p
4

�� ≥ ϵ · |Cj | · p
4
]
≤ 2 exp

(
− ϵ

2

3
·
ξ t
4ht · p

4

)
Using the union bound,

Pr

[
|Z t
p − ξ

t | ≥ ϵξ t
]
= Pr

[���∑4ht −3
j=1 Yj · p−4 −

∑
4ht −3
j=1 |Cj |

��� ≥ ϵ ∑4ht −3
j=1 |Cj |

]
≤
∑

4ht −3
j=1 Pr

[
|Yj · p−4 − |Cj | | ≥ ϵ |Cj |)

]
≤ 8ht · exp

(
−
ϵ 2ξ t p4

12ht

)
�

We next derive a concentration result for Fleet1. Fleet1 es-

sentially returns the estimate due to Bern(pt ) where pt is itself a
random variable. While it is possible to compute the expected value

of pt , this cannot be directly plugged into the Lemma 3. Lemma 4

shows that for a large enough reservoir size, Fleet1 returns an

estimate that is concentrated around its expectation. The proof

considers multiple Bern(p) instances, one for each sampling prob-

ability, and combines with the event of Fleet1 stopping at one of

these levels.

Lemma 4. Assume γ ≤ 0.9. For any ϵ,δ ∈ (0, 1), whenM satisfies

M ≥ 6t · 4

√
12ht
ϵ 2ξ t · ln

8ht (4+δ )
δ then Pr

[��Y t
Fleet1

− ξ t
�� ≥ ϵξ t

]
≤ δ .

Proof. Note that the sampling rate of Fleet1 is γ i for i ≥ 0. We

say that Fleet1 is at level i when the sampling rate is γ i . For
i ∈ [0,+∞), define events Si and Bi as follows. Event Bi : Suppose

that we execute algorithm Bern(γ i ), and we have
���Z t
γ i − ξ

t
��� ≥ ϵξ t .

Si is the event that Fleet1 stops at level i .

Define event B:
��Y t
Fleet1

− ξ t
�� ≥ ϵξ t . We decompose the proba-

bility of event B in terms of Bi and Si .

Pr [B] =
∞∑
i=0

Pr [Bi ∧ Si ] =
ℓ∑
i=0

Pr [Bi ∧ Si ] +
∞∑

i=ℓ+1

Pr [Bi ∧ Si ]

≤

ℓ∑
i=0

Pr [Bi ] +
∞∑

i=ℓ+1

Pr [Si ]

where ℓ =
log(M/6t )

logγ . The sampling probability at level i is γ i ,

by Lemma 3 we have

∑ℓ
i=0 Pr [Bi ] =

∑ℓ
i=0 8h

t · exp
(
−
ϵ 2ξ tγ 4i

12ht

)
=∑ℓ

i=0 α
(γ −4i )

where α = 8ht · exp
(
−
ϵ 2ξ tγ 4ℓ

12ht

)
and α < 1.

When γ ≤ 0.9, γ−4 > e1/e , we have γ−4i ≥ i for any i ≥ 1.

Applying this fact, and using the bound onM we get:

∑ℓ
i=0 α
(γ −4i ) ≤

α +
∑ℓ
i=1 α

i ≤ 2α
1−α ≤

δ
2

Let Xℓ denote the number of edges in R when Fleet1 is at

level ℓ. Note that the event Fleet1 stops at level higher than ℓ is

equivalent to the event that Xℓ is greater than the reservoir sizeM .

By E[Xℓ] = t · γ ℓ and Chernoff bound, we have

∑∞
i=ℓ+1 Pr [Si ] =

Pr [Xℓ > M] ≤ Pr [Xℓ > 6 · E[Xℓ]] ≤
δ
2
. Combining the above

bounds, we arrive at Pr [B] ≤ δ . �

4.2 Improved Adaptive: Fleet2 and Fleet3

We present two algorithms Fleet2 and Fleet3which improve upon

Fleet1, providing a better memory-accuracy tradeoff. Fleet2 is

similar to Fleet1, but handles sub-sampling differently. Say Fleet1

is at “level i” when its sampling probability is γ i . In Fleet1, each

time the level changes from i to (i+1), edges are discarded according
to a random process, and the number of butterflies is recomputed

on the new reservoir from scratch (Line 8 of Algorithm 1, shown

in pink color). Due to this re-computation, butterflies that were

already detected at the higher sampling rate (level i) may no longer

have all their edges present at the lower sampling rate (level (i + 1)).
In contrast, Fleet2 does not recompute when the reservoir is sub-

sampled. Instead, the current butterfly count at level i is maintained,

and as more butterflies are detected at level i + 1, they are accu-

mulated into this estimate. It can be expected that Fleet2 obtains

a better accuracy than Fleet1, since it “catches” more butterflies

than Fleet1. It is easy to see that the estimation of Fleet2 is unbi-

ased. In addition to better accuracy, Fleet2 is also slightly faster

than Fleet1, since it avoids recomputation of butterflies at the

sub-sampling step.

Fleet3 (described inAlgorithm 2) improves accuracy over Fleet1

and Fleet2 by handling new edges differently. This idea is inspired

by Algorithm MASCOT of [28], which used the idea in the context

of counting triangles from a graph stream (the same idea is also

used in [47]). Upon receiving a new edge, the estimate is updated

by accounting for butterflies that are created by the new edge (and

existing sampled edges), even before deciding whether or not to

sample the new edge (see Line 1). In other words, Fleet3 first up-

dates the estimate and then samples. If the current edge sampling

probability is p, then the probability of detecting a butterfly involv-

ing the new edge increases from p4 (in Fleet1) to p3 (in Fleet3).

This helps increase the accuracy of butterfly counting while using

the same memory. Algorithm 2 has further details. We omit further

details and proofs, due to space constraints.
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Algorithm 2: Fleet3 (S,M): Adaptive sampling

Input: Edge stream S, max. reservoir size M , resampling

parameter γ (default value is γ = 0.5)

Output: Estimate of ξ t , the number of butterflies at t
1 p ← 1, R ← ∅, t ← 0, β ← 0

2 for each edge e in S do

3 t ← t + 1
4 β ← β + p−3 × BFC-edge(e, R)
5 while |R | ≥ M do

6 p ← γp
7 for each edge e ∈ R do

8 Keep e in R with prob. γ and discard with prob. 1 − γ

9 if coin (p) is Head then R ← R ∪ {e }
10 Y t

Fleet3
← β

Comments: Instead of Bernoulli sampling, we could also use

reservoir sampling of edges as the basis. We took the route of

Bernoulli sampling to simplify the analysis, since it leads to edges

being sampled independent of each other (given a sampling proba-

bility), unlike reservoir sampling, where the sampling of edges are

not independent events. Our initial implementations of algorithms

based on reservoir sampling without replacement, showed that

the accuracy-memory tradeoffs were similar to that of our current

algorithms.

We can also achieve estimates of per-vertex butterfly counts (the

number of butterflies that each vertex is a part of) using a similar

sampling approach of estimating per-vertex subgraph counts from

the reservoir, and maintaining additional state for each vertex. A

detailed study of local butterfly counting is a goal for future work.

5 SLIDINGWINDOW STREAMING

In this section, we consider butterfly counting in two types of sliding

window models: sequence-based and time-based. We assume the

number of edges in a window is (much) greater than the available

memory M – otherwise, the entire window can be stored within

memory and an exact algorithm can be applied.

5.1 Sequence-based Window (FleetSSW)

We first present FleetSSW for sequence-based sliding window

(Algorithm 3), which is based onmaintaining a sample of edges from

within the sliding window. In the initial stages of observation, all

edges fit in memory, and as more edges are observed, we recursively

decrease the sampling probability as in Fleet1, to ensure that the

sample fits in memory. However, once the number of edges in a

window reachesW , it will stay atW henceforth. As a result, when

the edge sampling probability p reachesM/W , the algorithm does

not decrease p any further holds it at M/W 1
. The algorithm stores

only active edges in the sample, i.e., any item (e, t ′) such that t ′ is
not within the current window is discarded.

Let Y t
sw

denote an estimate returned by Algorithm 3, of ξ tW , the

number of butterflies in the window at time t .
Lemma 5. The space of R in Algorithm 3 is no greater than M

in expectation and Pr(|R| ≥ 2M) ≤
( e
4

)M
. Y t

sw
is an unbiased

estimate of ξ tW . For parameters 0 < ϵ < 1 and 0 < δ < 1, when

M ≥ 6W · 4

√
12ht
ϵ 2ξ tW

· ln
8ht (4+δ )

δ , then Pr

[���Y t
sw
− ξ tW

��� ≥ ϵξ tW

]
≤ δ .

1
For simplicity of exposition, we assumeM/W is a power of γ .

Algorithm 3: FleetSSW (S,M ,W ): Seq-based SW

Input: Edge stream S, max. reservoir size M , window sizeW (≫ M )
Output: Estimate of ξ tW , the number of butterflies in window at t

1 p ← 1, R ← ∅, t ← 0, β ← 0

2 for each edge e in S do

3 t ← t + 1
4 if p > (M/W ) then Run Fleet1 (S, M ) and update p, β, R
5 else

6 p ← (M/W )
7 if coin (p) is Head then

8 R ← R ∪ {e, t }, and β ← β +p−4 ×BFC-edge(e, R)

/* Delete expired edges and update estimate */

9 if (e′, t ′) ∈ R s.t. t ′ ≤ (t −W ) then
10 β ← β − p−4 × BFC-edge(e′, R), and R ← R \ (e′, t ′)

11 Y t
sw
← β

Proof. We sketch the proof ideas and omit details, due to space

constraints. For the space complexity, note that when p > M/W ,

the algorithm runs Fleet1 and its space is strictly bounded by M .

Otherwise, p = M/W and the number of edges in the sample is a

binomial random variable with parametersW andM/W , and the

space bounds follow using Chernoff bounds.

At any given time, each edge currently in the window is sampled

into R with probability p, and E
[
Y t
sw

]
= ξ tW ·p

4
.When p > (M/W ),

we apply results from Fleet1 for expectation (Lemma 2) and con-

centration (Lemma 4) to show the corresponding properties of Y t
sw
.

When p = (M/W ), we rely on an analysis similar to Algo-

rithm Bern in Lemma 3 and derive the concentration result that

Pr

[���Y t
sw
− ξ tW

��� ≥ ϵξ tW

]
≤ 8ht · exp

(
−
ϵ 2ξ tW
12ht ·

(
M
W

)
4

)
≤ δ . �

5.2 Time-based Sliding Window (FleetTSW)

We next consider the case of a time-based sliding window, where

each element has an associated timestamp, and the window at time

t consists of all elements with timestamps greater than (t −W ),
whereW is a specified window size. Handling a time-based sliding

window is more challenging than a sequence-based window since

the number of elements within a time-based window can grow and

shrink with time. The sequence-based window can be seen as a

special case of time-based window such that at each time, exactly

one edge arrives in the stream.

FleetTSW (Algorithm 4), our algorithm for time-based sliding

window, can estimate the number of butterflies when the window

size W is provided at query time. We assume an upper bound

nmax number of edges within a window. Let T = ⌈1 + logγ
M

nmax
⌉.

FleetTSW is based on maintaining not only a single sample, as in

FleetSSW or Fleet1, butT reservoirs Ri , i = 0, 1, 2, . . ., at different

sampling rates. Every edge is sampled into R0. For i > 0, each edge

that was sampled into Ri−1 is sampled into Ri with probability γ .
Each reservoir has a capacity of M ′ = M/T edges, and contains

the most recent edges sampled into the reservoir. Each Ri is stored

as a first-in-first-out queue, so that if a new edge enters when the

queue is full, the edge with the earliest timestamp is deleted.

Lemma 6. Y t
tw

is an unbiased estimate of ξ tW . If

M ∈ Ω

(
logγ

M
nmax

4

√
n4

max
ht

ϵ 2ξ tW
ln

ht
δ

)
, so Pr

[
|Y t
tw
− ξ tW | ≥ ϵξ tW

]
≤ δ .
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Algorithm 4: FleetTSW (S,M , nmax ): Time-based SW

Input: Edge stream S, reservoir size M , nmax (≫ M ) (the
maximum number of elements within a window)

Output: Estimate of ξ (Gt
W )

1 T ← ⌈1 + logγ
M

nmax
⌉

// dℓ is the time of most recent discarded edge in Rℓ
2 ∀i ≤ T , Ri ← ∅, di ← 0

3 for each edge e in S at time t do
4 ℓ ← 0

5 do

6 Rℓ ← Rℓ ∪ {(e, t )}
7 if |Rℓ | >

M
T then

8 Rℓ ← Rℓ \ {(e∗, t ∗)} s.t. t ∗ = min{t ′ | (e′, t ′) ∈ Rℓ }

9 dℓ ← t ∗

10 ℓ ← ℓ + 1

11 while coin (γ ) is Head

/* Upon a query window size W at time c */

12 ℓ∗ ← arдminℓ∈[T ] {dℓ | dℓ ≤ (c −W )}
13 A ← {(e, t ′) ∈ Rℓ∗ } s.t. t

′ > (c −W ) // sample of window

14 Y t
tw
← γ −4ℓ∗ × ξ (A)

Proof. At query time t , when presented with a window sizeW , let

Gt
W denote the graph consisting of all edges that have timestamps

in [t −W + 1, t]. For level ℓ ∈ {0, 1, 2, . . .}, let Gt
W (ℓ) be defined

inductively as follows.Gt
W (0) = G

t
W . For i ≥ 0,Gt

W (i+1) is derived

from Gt
W (i) by choosing each edge in Gt

W (i) with probability γ .
We note that in Algorithm 4, Ri contains the M/T most recent

elements from Gt
W (i). Further, when a query arrives at time t , the

algorithm uses Rℓ∗ such that ℓ∗ is the smallest value, whereGt
W (ℓ∗)

is completely contained in Rℓ∗ .

LetZ t
W (i) denote the estimate of ξ (Gt

W ) derived from Ri . Similar

to the proof of Lemma 4, we define: event Si is the event that

the algorithm chooses Ri to answer the sliding window query,

and Bi is the event that the estimate Z t
W (i) has a relative error

that is greater than ϵ . The probability that the algorithm fails to

return an estimate that has a relative error within ϵ is given by

Pr [B] =
∑∞
i=0 Pr [Si ∧ Bi ]. Using an argument similar to the proof

of Lemma 4, we arrive at the result. �

6 EXPERIMENTAL EVALUATION

We experimentally evaluate the infinite window and sliding win-

dow algorithms on real-world temporal bipartite networks with

hundreds of millions of edges from a variety of domains, such as

social, web, and rating networks.

Networks and experimental setup:We used five real-world

temporal bipartite networks from the publicly available KONECT

repository [26], summarized in Table 1.
2 Movie-lens is the rat-

ings by users for movies. Edit-frwiki is a bipartite network of

editors and pages of the French Wikipedia where each edge repre-

sents an edit. Edit-enwiki is the English version of Edit-frwiki.
Yahoo-song is a ratings by users for songs. Bag-pubmed is a word-

document bipartite network. Note that Bag-pubmed is not a tem-

poral network, and we generated a stream by randomly permut-

ing the edge set of Bag-pubmed. Edit-frwiki, Edit-enwiki, and
Bag-pubmed had multiple edges between the same node pairs, and

2
http://konect.uni-koblenz.de/

Graphs |E| |V| (Left) |V| (Right) ξ Butterfly density

Movie-lens 10 000 054 69 878 10 677 1.1T 1.1 × 10−16

Edit-frwiki 22 090 703 288 275 3 992 426 601.2B 2.5 × 10−18

Yahoo-song 256 804 235 1 000 990 624 961 101.4T 2.3 × 10−20

Edit-enwiki 122 075 170 3 819 691 21 416 395 2T 9.1 × 10−21

Bag-pubmed 483 450 157 8 200 000 141 043 40.8T 7.4 × 10−22

Table 1: Properties of the bipartite graphs. |E | is the number

of edges, ξ the total number of butterflies, and the butterfly

density is the ratio ξ/|E |4.

we only considered the first interaction. Edges are read from the

stream in the order of timestamps. Figure 3 shows the number of

butterflies as a function of stream size.

All streaming algorithms were implemented in C++ and com-

piled with g++ compiler using -O3 as the optimization level. The

source code is publicly available at [1]. We run the experiments on

a machine equipped with a 2.0 GHz 16-Core Intel E5 2650 processor

and 128GB of memory.

6.1 Accuracy

If the true value of the butterfly count is x > 0, then the relative

error of an estimate x̂ is defined as |x − x̂ |/x and is usually shown

as percent error. We also used MAPE (Mean Average Percentage

Error) to measure the accuracy over the entire stream, defined as

the average of the relative error, taken over the entire stream.

Figure 4 shows the accuracy on the entire stream vs the reservoir

size. Larger reservoirs yield better accuracies, as expected. Fleet3

can keep the estimation error around 1% for all networks by storing

only 600K edges in the reservoir. This corresponds to 6%, 2.7%,

0.49%, 0.23%, and 0.12% of the total stream sizes for Movie-lens,
Edit-frwiki, Edit-enwiki, Yahoo-song, and Bag-pubmed, respec-
tively. When the reservoir size is 300K, Fleet3 yields 3% error for

Edit-enwiki and Bag-pubmed and less than 1% for other networks.

As expected Fleet2 has better accuracy than Fleet1, and Fleet3

has the best accuracy.

Figure 5 shows the relative error at different points in the stream,

for a fixed reservoir size. As the stream size increases, the error

of Fleet1 and Fleet2 increase slightly. This can be attributed to

the fact that the edge sampling probability p is proportional to 1/t ,
where t is the number of edges, and from Lemma 3, the probability

of a given relative error decreases with p4ξ t . Unless ξ t increases
as the fourth power of t , the probability of a given relative error

increases with the stream size.

Butterfly Density: We note the errors of Fleet1 and Fleet2

for a given reservoir size are roughly correlated with the butterfly

density (ξ t /t4 where t is the number of edges). One reason is as

follows. Following Lemma 3, the probability of a high relative error

decreases with p4ξ t . Setting p ≈ M/t whereM is the reservoir size,

this is M4
times the butterfly density

ξ t

t 4 , showing that the error

probability decreases quickly as the butterfly density increases.

When the networks are ordered according to increasing butterfly

density, we get the order Bag-pubmed, Edit-enwiki, Yahoo-song,
Edit-frwiki, and Movie-lens. We note that for the same reservoir

size, this is exactly the increasing order of accuracy (decreasing

order or error) for algorithms Fleet1 and Fleet2 (Figure 5). The

trend is not so clear for algorithm Fleet3, since its accuracy depends

heavily on the temporal order of the edges within a butterfly.
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Figure 3: Number of butterflies as a function of stream size.
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Figure 4: Accuracy of Fleet1, Fleet2, and Fleet3 for γ = 0.5 versus reservoir size. Bottom x-axis shows the reservoir size and

top x-axis shows the sample rate, defined as the ratio of the reservoir size to the stream size.
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Figure 5: Accuracy of Fleet1, Fleet2, and Fleet3 at different points in the stream, reservoir size is 300K and γ = 0.9.
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Figure 6: Throughput of Fleet1, Fleet2, and Fleet3 algorithms as a function of reservoir size where γ = 0.6.
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Figure 7: Accuracy and runtime of Fleet1, Fleet2, and Fleet3 as a function of γ whereM = 600K .

6.2 Runtime and Throughput

The better accuracy of Fleet3 comes at the cost of increased run-

time. From Figure 6, we see Fleet3 has the lowest throughput

(number of edges processed per second), while Fleet1 and Fleet2

have similar throughputs. The reason is there is one per-edge but-

terfly computation for each arriving edge in Fleet3, where as there

is one such computation only for each sampled edge in Fleet1 and

Fleet2. The throughput decreases as the reservoir size increases,

due to the increased cost of per-edge butterfly counting on the

reservoir. Fleet3 is able to achieve quite a high throughput, e.g.

6.2 × 105 edges per second on graph Bag-pubmed with reservoir

size 150K, making it suitable for practical scenarios. Fleet2 always
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Graphs Fleet1 Fleet2 Fleet3 GPS [3] BC [9]

Movie-lens 1.03 0.72 0.69 89.32 103.23

Edit-frwiki 4.37 1.7 1.68 63.92 102.36

Yahoo-song 13.97 5.62 0.78 43.1 104.48

Edit-enwiki 19.43 9.94 2.95 46.65 85.38

Bag-pubmed 103.74 91.59 5.65 14.22 113.77

Table 2: MAPE (Mean Absolute Percent Error) of different

algorithms for γ = 0.8 andM = 150K

has a slightly higher throughput than Fleet1. Overall, Fleet3 has

the best accuracy with a good throughput, while Fleet2 trades a

lower accuracy for a higher throughput.

6.3 Impact of γ on runtime and accuracy

Figures 7a and 7b show the accuracy as a function of γ . As γ in-

creases, the average size of the reservoir increases, while the fre-

quency of sub-sampling also increases. The accuracies of Fleet1

and Fleet2 improve slightly as γ increases from 0.5 to 0.9 e.g. for

graph Yahoo-song. In contrast, from Figures 7c and 7d, the runtime

increases for all estimators as γ increases. A value of γ of about 0.7

seems to be a good “middle ground” since it achieves nearly the

best throughput as well as accuracy.

6.4 Comparison with prior work

In this section, we present a comparison between our methods and

prior works, including [3, 9, 24, 31].

Table 2 presents a comparison with methods: Graph Priority

Sampling (GPS)[3] and the work of Bera and Chakrabarti (BC) (Al-

gorithm 1 from Section 3.1 of [9]) for a reservoir size of 150K (we

found similar results for other reservoir sizes, ranging from 75K to

600K ). GPS is a subgraph counting algorithm based on a weighted

sample of edges, which we specialized for the case of butterfly es-

timation. We observe that Fleet3 significantly outperforms GPS

on all networks, and Fleet1 and Fleet2 outperform GPS on all

networks except Bag-pubmed. Since GPS stores additional informa-

tion for each edge (weight and rank – see [3] for details), we stored

75K edges in the reservoir for GPS to keep its memory equal to our

algorithms. The results were quite similar even if we gave twice

the memory to GPS. If we used a sample of 150K edges in GPS, its

error ranged from 7.78% (Bag-pubmed) to 90% (Movie-lens) still
much worse than our algorithms, especially Fleet3.

We compared with BCwhile holdingmemory equal, even though

BC is a two-pass streaming algorithm, which cannot be modified

to work in a single pass, and works under a more powerful compu-

tational model than our algorithms. With a reservoir of size 150K ,
we could run 75K basic estimators of BC, each of which main-

tained a sample of two edges. On all streams, all of our algorithms

outperformed BC by significant margins.

We implemented the algorithm of Manjunath et al. [31], which

estimates the number of cycles in a stream using sketches based

on complex random variables. To the best of our knowledge, we

are the first to implement this algorithm, and even the authors of

[31] have not provided an implementation. The accuracy of [31] is

very poor – the error of the estimator is more than 100% for both

graph streams Yahoo-song and Bag-pubmed, even with a memory

of 600K estimators. In addition, we found their algorithm slow and

impractical. The reason is that for each arriving edge in a stream,
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Figure 8: Relative error vs. number of edges received for

FleetSSW. Window size = 5 × 106 edges, γ = 0.9.

the algorithm needs to update the values of many complex valued

sketches, where the number of sketches is as large as the reservoir

size. The throughput of [31] on both graphs is only 5.9 edges per

second, ≈ 21K edges in one hour, meaning that it is about 10
5

times slower than algorithm Fleet3 (see throughput of Fleet3

in Figures 6c and 6e). The algorithms of [24] are not practical for

handling large graph streams, since they follows a similar structure

(this has not been implemented either, to the best of our knowledge).

6.5 Sliding Window

Figure 8 shows the relative error of FleetSSW for window size

W = 5M edges, when the reservoir size is varied from 1% to 5% of

W . The accuracy improves as the reservoir size increases; when

M is 5% of the window size, the relative error is always under 5%.

The number of butterflies within a window ranges from 5 × 1010

to 10
11

for Movie-lens and 1 × 1010 to 6 × 1010 for Yahoo-song.
We also experimented with FleetTSW for time-based windows.

We used 30 queries, and a window size is randomly generated at

query time. When the reservoir size M is 10% of the stream size,

the average relative error over the queries is 2.55% for movie, 5.52%

for Edit-frwiki and 6.32% for Edit-enwiki. This result shows
FleetTSW can achieve good accuracy using memory much smaller

than the whole stream.

7 CONCLUSION

We presented a lower bound as well as one-pass streaming algo-

rithms for estimating the number of butterflies from a bipartite

graph stream. While our lower bound rules out space-efficient al-

gorithms that are accurate on all graph streams, it leaves open the

possibility of space-efficient algorithms for graph streams where

the number of butterflies is large, such as in every real-world graph

stream that we tried. Our algorithms Fleet1, Fleet2, and Fleet3 are

based on adaptive random sampling from the graph stream, achieve

high accuracy on real-world streams, and are backed by rigorous

theoretical guarantees. We also presented algorithms FleetSSW

and FleetTSW for sequence-based and time-based sliding windows

respectively. This work is one of the first to explore streaming motif

counting on bipartite graphs, and leads to many follow-up ques-

tions. (1) Extensions to general motif counting on bipartite graph

streams (2) Can we combine the benefits of improved accuracy as

in Fleet3 with the faster runtime of Fleet2? (3) Algorithms for

multi-pass and external memory models.
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