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Abstract-Networks are commonly used to model the traffic 
patterns, social interactions, or web pages. The nodes in a 
network do not possess the same characteristics: some nodes 
are naturally more connected and some nodes can be more 
important. Closeness centrality (cq is a global metric that 
quantifies how important is a given node in the network. 
When the network is dynamic and keeps changing, the relative 
importance of the nodes also changes. The best known algorithm 
to compute the CC scores makes it impractical to recompute them 
from scratch after each modification. In this paper, we propose 
STREAMER, a distributed memory framework for incrementally 
maintaining the closeness centrality scores of a network upon 
changes. It leverages pipe lined and replicated parallelism and 
takes NUMA effects into account. It speeds up the maintenance 
of the CC of a real graph with 916K vertices and 4.3M edges by 
a factor of 497 using a 64 nodes cluster. 

I. INTRODUCTION 

How central a node is in a network? Which nodes are more 
important during an entity dissemination? Centrality metrics 
have been used to answer such questions. They have been 
successfully used to carry analysis for various purposes such as 
power grid contingency analysis [10], quantifying importance 
in social networks [15], analysis of covert networks [12], 
decision/action networks [4], and even for finding the best 
store locations in cities [17]. As the networks became large, 
efficiency became a crucial concern while analyzing these 
networks. The algorithm with the best asymptotic complexity 
to compute the closeness and betweenness metrics [2] is 
believed to be asymptotically optimal [11]. And the research 
on fast centrality computation have focused on approximation 
algorithms [3], [6], [16] and high performance computing 
techniques [14], [19]. Today, the networks to be analyzed 
can be quite large, and we are always in a quest for faster 
techniques which help us to perform centrality-based analysis. 

Many of today's networks are dynamic. And for such net­
works, maintaining the exact centrality scores is a challenging 
problem which has been studied in the literature [7], [13], 
[18]. The problem can also arise for applications involving 
static networks such as the power grid contingency analysis 
and robustness evaluation of a network. The findings of such 
analyses and evaluations can be very useful to be prepared and 
take proactive measures if there is a natural risk or a possible 

978-1-4799-0898-1/13/$31.00 ©2013 IEEE 

adversarial attack that can yield undesirable changes on the 
network topology in the future. Similarly, in some applications, 
one might be interested in trying to find the minimal topology 
modifications on a network to set the centrality scores in 
a controlled manner. (Applications include speeding-up or 
containing the entity dissemination, and making the network 
immune to adversarial attacks). 

Offline CC computation can be expensive for large-scale 
networks. Yet, one could hope that the incremental graph mod­
ifications can be handled in an inexpensive way. Unfortunately, 
as Fig. 1 shows, the effect of a local topology modification 
can be global. In a previous study, we proposed a sequential 
incremental closeness centrality algorithm which is orders of 
magnitude faster than the best offline algorithm [18]. Still, the 
algorithm was not fast enough to be used in practice. In this 
paper, we present STREAMER, a framework to efficiently par­
allelize the incremental CC computation on high-performance 
clusters. 
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Fig.!. A toy network with eight nodes, three consecutive edge (ah, 
f h, and ab, respectively) insertions/deletions, and CC scores. 

STREAMER employs DataCutter [1], our in-house data­
flow programming framework for distributed memory systems. 
In DataCutter, the computations are carried by independent 
computing elements, called filters, that have different respon­
sibilities and operate on data passing through them. There 
are three main advantages of this scheme: first, it exposes an 
abstract representation of the application which is decoupled 
from its practical implementation. Second, the coarse-grain 
data-flow programming model allows replicated parallelism 

by instantiating a given filter multiple times so that the 
work can be distributed among the instances to improve the 



parallelism of the application and the systems perfonnance. 
And third, the execution is pipe lined, allowing multiple filters 
to compute simultaneously on different iterations of the work. 
This pipe lined parallelism is very useful to achieve overlap­
ping of communication and computation. 

The best available algorithm for the offline centrality 
computation is pleasingly parallel (and scalable if enough 
memory is available) since it involves n independent execu­
tions of the single-source shortest path (SSSP) algorithm [2]. 
In a naive distributed framework for the offline case, one can 
distribute the SSSPs to the nodes and gather their results. 
Here the computation is static, i.e. , when the graph changes, 
the previous results are ignored and the same n SSSPs are 
re-executed. On the other hand, in the online approach, the 
updates can arrive at any time even while the centrality scores 
for a previous update are still being computed. Furthennore, 
the scores which need to be recomputed (the SSSPs that need 
to be executed) change W.r.t. the update. Finding these SSSPs 
and distributing them to the nodes is not a straightforward 
task. To be able to do that, the incremental algorithms 
maintain complex infonnation such as the biconnected 
component decomposition of the current graph [18]. Hence, 
after each edge insertion/deletion, this infonnation needs to be 
updated. There are several (synchronous and asynchronous) 
blocks in the online approach. And it is not trivial to obtain 
an efficient parallelization of the incremental algorithm. 
As our experiments will show, the data-flow programming 
model and pipelined parallelism are very useful to achieve a 
significant overlap among these computation/communication 
blocks and yield a scalable solution for the incremental 
centrality computation. 

Our contributions can be summarized as follows: 

1) We propose the first distributed-memory framework 
STREAMER for the incremental centrality computa­
tion problem which employs a pipelined parallelism 
to achieve computation-computation and computation­
communication overlap. 

2) The worker nodes we used in the experiments have 8 
cores. In addition to the distributed-memory paralleliza­
tion, we also leverage the shared-memory parallelization 
and take NUMA effects into account. 

3) The framework appears to scale linearly: when 63 

worker nodes (8 cores/node) are used, for the networks 
amazon060l and web-Google, STREAMER obtains 
456 and 497 speedups, respectively, compared to a single 
worker node-single thread execution. 

The paper is organized as follows: Section II introduces 
the notation, fonnally defines the closeness centrality metric, 
and describes the incremental approach in [18]. Section III 
describes the proposed distributed framework for incremental 
centrality computations in detail. The experimental analysis is 
given in Section IV, and Section V concludes the paper. 

II. INCREMENTAL CLOSENESS CENTRALITY 

Let G = (V, E) be a network modeled as a simple 
undirected graph with n = IVI vertices and m = lEI edges 

where each node is represented by a vertex in V, and a node­
node interaction is represented by an edge in E. Let r e (v) 
be the set of vertices which are connected to v. 

A graph G' = (V ' ,  E' ) is a subgraph of G if V'  <;;; V and 
E' <;;; E. A path is a sequence of vertices such that there exists 
an edge between consecutive vertices. Two vertices u, v E V 
are connected if there is a path from u to v. If all vertex 
pairs are connected we say that G is connected. If G is not 
connected, then it is disconnected and each maximal connected 
subgraph of G is a connected component, or a component, 
of G. We use de ( u, v) to denote the length of the shortest 
path between two vertices u, v in a graph G. If u = v then 
de( u, v) = O. And if u and v are not connected de( u, v) = 00. 

Given a graph G = (V, E) , a vertex v E V is called an 
articulation vertex if the graph G - v has more connected 
components than G. G is biconnected if it is connected and it 
does not contain an articulation vertex. A maximal biconnected 
subgraph of G is a biconnected component. 

A. Closeness centrality 

The farness of a vertex u in a graph G is defined as 
far[u] = L: vEV de(u,v). And the closeness centrality 

dc(u,v)#co 
of u is defined as ee[u] = fa;[u]' If u cannot reach any vertex 
in the graph, then ee[u] = O. 

For a graph G = (V, E) with n vertices and m edges, the 
complexity of the best cc algorithm is O(n(m + n)) (Al­
gorithm 1). For each vertex s E V, it executes a Single­
Source Shortest Paths (SSSP), i.e. ,  initiates a breadth-first 
search (BFS) from s and computes the distances to the 
connected vertices. And, as the last step, it computes ee[s] . 

Since a BFS takes O( m + n) time, and n SSSPs are required 
in total, the complexity follows. 

Algorithm 1: Offline centrality computation 

Data: G = (V, E) 
Output: ee[.] 

1 for each s E V do 
�SSSP(G, s) with centrality computation 
Q +-- empty queue 
d[v] +-- 00, '<Iv E V \ {s} 
Q.push(s), drs] +-- 0 
far[s] +-- 0 
while Q is not empty do 

v+-- Q.popO 
for all w E fG(v) do 

if d[w] = 00 then 

d[w] +-- d[v] + 1 
far[s] +-- far[s] + d[w] I 
Q.push(w) 

ee[s] = fa;[s] 
return ee[.] 

B. Incremental closeness centrality 

Algorithm 1 is an offline algorithm: it computes the CC 
scores from scratch. But today's networks are dynamic 
and their topologies are changing through time. Centrality 
computation is an expensive task, and especially for large 
scale networks, an offline algorithm cannot cope with the 



changing network topology. Hence, especially for large-scale, 
dynamic networks, online algorithms which do not perform 
the computation from scratch but only update the required 
scores in an incremental fashion are required. In a previous 
study, we used a set of techniques such as level-based work 

filtering and special-vertex utilization to reduce the centrality 
computation time for dynamic networks [18]. 

e. Level-based work filtering 

The level-based filtering aims to reduce the number of 
SSSPs in Algorithm 1. Let G = (V, E) be the current graph 
and uv be an edge to be inserted. Let G' = (V, E U {uv }) be 
the updated graph. The centrality definition implies that for 
a vertex S E V, if dG(s, t) = dG,(s, t) for all t E V then 
ce[s] = ce'[s] . The following theorem is used to filter the 
SSSPs of such vertices. 

Theorem 2.1 (Sanyiice et al. [18]): Let G = (V, E) be a 
graph and u and v be two vertices in V S.t. uv tf. E. Let G' = 

(V, E U {uv}). Then ee[s] = ee'[s] if and only if IdG(s, u) -
dG(s, v ) 1 ::; l. 

Many interesting real-life networks are scale free. The 
diameters of a scale-free network is small, and when the graph 
is modified with minor updates, it tends to stay small. These 
networks also obey the power-law degree distribution. The 
level-based work filter is particularly efficient on these kind 
of networks. Figure 2 (top) shows the three cases while an 
edge uv E E is being added to G: dG(s,u) = dG(s,v), 
IdG(s,u) - dG(s,v)1 = 1, and IdG(s,u) - dG(s,v)1 > l. 
Due to Theorem 2.1, an SSSP is required in Algorithm 1 only 
for the last case, since for the first two cases, the closeness 
centrality of s does not change. As Figure 2 (bottom) shows, 
the probability of the last case is less than 20% for three social 
networks used in the experiments. Hence, more than 80% of 
the SSSPs are avoided by using level-based filtering. 
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Fig. 2. Three possible cases when inserting uv: for each vertex s. one of the 
following is true: (I) dG(s, u) = dG(s, v). (2) IdG(s, u) - dG(s, v)1 = 1. 
or (3) IdG(s,u) - dG(s,v)1 > 1 (top). The bars show the distribution of 
random variable X = IdG(u,w) - dG(u,w)1 into three cases while an 
edge uv is being added to G (bottom). For each network. the probabilities 
are computed by using 1,000 random edges from E. For each edge uv, we 
constructed the graph G = (V, E \ {uv}) by removing uv from the final 
graph and computed IdG(s, u) - dG(s, v)1 for all s E V. 

Although Theorem 2.l yields to a filter only in case of edge 
insertions, the same idea can easily be used for edge deletions. 
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Fig. 3. A graph G (left). its biconnected component decomposition 
II (ntiddle). and the updated II' after the edge bd is inserted (right). The 
articulation vertices before and after the edge insertion are {b, c, d} and 
{b, d}, respectively. After the addition. the second component contains the 
new edge, i.e .. cid = 2. This component is extracted first. and the algorithm 
performs updates only for its vertices {b, c, d}. It also initiates a fixing phase 
to make the CC scores correct for the rest of the vertices. 

When an edge uv is inserted/deleted, to employ the filter, we 
first compute the distances from u and v to all other vertices. 
Detailed explanation can be found in [18]. 

D. Special-vertex utilization 

The work filter can be assisted by employing and maintain­
ing a biconnected component decomposition (BCD) of G. A 
BCD is a partitioning II of the edge set E where II (e) is the 
component of each edge e E E. A toy graph and its BCDs 
before and after an edge insertion are given in Fig. 3. 

Let uv be the edge inserted to G = (V, E) and the final 
graph be G' = (V, E' = E U {uv}). Let far and far' be the 
famess scores of all the vertices in G and G' . If the intersection 
{II(uw) : w E rG(u)} n {II(vw) : w E rG(v)} is not empty, 
there must be only one element in it (otherwise II is not a valid 
BCD), cid, which is the id of the biconnected component of G' 
containing uv. In this case, updating the BCD is simple: II'(e) 
is set to II( e) for all e E E and II' (uv) is set to cid. If the 
intersection is empty (see the addition of bd in Fig. 3(b», we 
construct II' from scratch and set cid = II' (uv) (e.g., cid = 2 
in Fig. 3(c». A BCD can be computed in linear, O(m + n) 
time [9]. Hence, the cost of BCD maintenance is negligible 
compared to the cost of updating closeness centrality. 

Let G�id = (Vcid, E�id) be the biconnected component of 
G' containing uv. Let Acid � Vcid be the set of articulation 
vertices of G' in G�id' Given II', it is easy to find the 
articulation vertices since u E V is an articulation vertex 
if and only if it is at least in two components in the BCD: 
I{II'(uw) : uw E E'}I > l. 

The incremental algorithm executes SSSPs only for 
the vertices in G�id' The contributions of the vertices 
in V \ Vcid are integrated to the SSSPs through their 
representatives rep : V -+ VCid U {null}. For a vertex 
in Vcid, the representative is itself. And for a vertex 
v E V \ Vcid, the representative is either an articulation 
vertex in Acid or null if v and the vertices OfVcid are 
disconnected. Also, for all vertices x E V \ Vcid, we have 
far'[x] = far[x] + far'[rep(x)] - far[rep(x)] . Therefore, 
there is no need to execute SSSPs from these vertices. 
Detailed explanation and proofs are omitted for brevity and 
can be found in [18]. 

In addition to articulation vertices, we exploit the identical 

vertices which have the same/a similar neighborhood structure 



to further reduce the number of SSSPs. In a graph G, two 
vertices u and v are type-I-identical if and only if r G (u) = 

r G( v). In addition, two vertices u and v are type-II-identical 

if and only if {u} U rG(u) = {v} U rc(v). Let u,v E V be 
two identical vertices. One can easily see that for any vertex 
wE V \ {u,v}, dc(u,w) = dc(v,w). Therefore, if I <;;; V 
is a set of (type-lor type-II) identical vertices, then the CC 
scores of all the vertices in I are equal. 

We maintain the sets of identical vertices and while updating 
the CC scores of the vertices in V, we execute an SSSP 
for a representative vertex from each identical-vertex set. We 
then use the computed score as the CC score of the other 
vertices in the same set. The filtering is straightforward and 
the modifications on the algorithm are minor. When an edge uv 
is added/removed to/from G, to maintain the identical vertex 
sets, we first subtract u and v from their sets and insert them 
to new ones. Candidates for being identical vertices are found 
using a hash function and the overall cost of maintaining the 
data structure is O( n + m ) [18]. 

III. STREAMER 

STREAMER follows the component-based programming 
paradigm which has been used to describe and implement 
complex applications by way of components - distinct tasks 
with well-defined interfaces. By describing these components 
and the explicit data connections between them, the applica­
tions are decomposed along natural task boundaries according 
to the application domain. Therefore, the component-based ap­
plication design is an intuitive process with explicit demarca­
tion of task responsibilities. Furthermore, the communication 
patterns are also explicit; each component includes its input 
data requirements and outputs in its description. 

STREAMER is written in DataCutter, our in-house 
component-based middleware tool which supports filter-stream 
programming, an instance of component-based programming. 
The filter-stream programming model [1] (a specific 
implementation of the dataflow programming model [5]) 
implements the computations as a set of components, referred 
as filters, that exchange data through logical streams. A 
stream denotes a uni-directional data flow from some filters 
(Le., the producers) to others (i.e. , the consumers). Data flows 
along these streams in untyped databuffers so as to minimize 
various system overheads. A layout is a filter ontology 
which describes the set of application tasks, streams, and the 
connections required for the computation. 

Filter-stream programming enables some runtime benefits, 
which come at no additional cost to the developer. Appli­
cations composed of a number of individual tasks can be 
executed on parallel and distributed computing resources and 
gain extra performance over those run on strictly sequential 
machines. This is achieved by specifying a placement which 
is an instance of a layout with a mapping of the filters onto 
physical processors. A filter can be replicable, if it is stateless; 
for instance, if a filter's output for a given databuffer does 
not depend on the ones it processed previously, it is stateless 

and replicable. A replicated filter can be placed on multiple 
processors to increase the throughput of the system. 

Additionally, provided the interfaces exposed by a task to 
the rest of the application match, different implementations of 
tasks, possibly on different processor architectures can co-exist 
in the same application deployment, allowing developers to 
take full advantage of modern, heterogeneous supercomputers. 
Figure 4 shows an example filter-stream layout and placement. 
In this work, we used both distributed- and shared-memory 
architectures. However, thanks to filter-stream programming 
model, many-core systems such as GPUs and accelerators can 
also be used easily and efficiently if desired [8]. 

I Placement I 

Fig. 4. A toy filter-stream application layout and its placement. 

A. Pipe lined parallelism 

One of the DataCutter's strengths is that it enables pipelined 
parallelism, where multiple stages of the pipeline (such as A 
and B in the layout in Fig. 4) can be executed simultaneously, 
and replicated parallelism can be used at the same time if some 
computation is stateless (such as filter C in the same figure). 

While computing the CC scores, the main portion of the 
computation comes from performing SSSPs for the vertices 
whose scores need to be updated. If there are many updates 
(we use the term "update" to refer to the SSSP operation 
which updates the CC score of a vertex), that part of the 
computation should occupy most of the machine. A typical 
synchronous decomposition of the application makes the 
work filtering of a Streaming Event (handling a single edge 
change) wait for the completion of all the work incurred by a 
previous Streaming Event. Since the worker nodes will wait 
for the work filtering to be completed, there can be a large 
waste of resources. We argue that the pipelined parallelism 
should be used to overlap the process of filtering the work 
and computing the updates on the graph. 

We propose to use the four-filter layout shown in Fig. 5. 
The first filter is the InstanceGenerator which first sends the 
initial graph to all the other filters. It then sends the Streaming 
Events as 4-tuples (t, oper, u, v) to indicate that edge uv has 
been either added or removed (specified by oper) at a given 
time t. (In the following, we only explain the system for edge 
insertion, but it is essentially the same for an edge removal.) In 
a real world application, this filter would be listening on the 



Fig. 5. Layout of STREAMER. 

network for topology modifications; but in our experiments, 
all the necessary information is read from a file. 

StreamingMaster is responsible for the work filtering after 
each network modification. Upon inserting uv at time t, it 
first computes the shortest distances from u and v to all other 
vertices at time t - 1. Then, it adds the edge uv into its local 
copy of the graph and updates the identical vertex sets as 
described in Section II-D. It partitions the edges of the graph 
to its biconnected components by using the algorithm in [9] 
and finds the component containing uv. For each vertex 
s E V, it decides whether its CC score needs to be recomputed 
by checking the following conditions: (1) d( s, u) and d( s, v) 
differ by at least 2 units at time t - 1, (2) s is adjacent to an 
edge which is also in uv's biconnected component, (3) s is 
the representative of its identical vertex set. StreamingMaster 

then informs the Aggregator about the number of updates 
it will receive for time t. Finally, it sends the list of SSSP 
requests to the ComputeCC filter, i.e., the corresponding 
source vertex ids whose CC scores need to be updated. 

ComputeCC performs the real work and computes the new 
CC scores after each graph modification. It waits for work 
from StreamingMaster, and when it receives a CC update re­
quest under the form of a 2-tuple (t, s) (update time and source 
vertex id), ComputeCC advances its local graph representation 
to time t by using the appropriate updates from InstanceGen­

erator. If there is a change on the local graph, the biconnected 
component of uv is extracted, and a concise information of the 
graph structure and the set of articulation vertices are updated 
(as described in [18]). Finally, the exact CC score ee[s] at 
time t is computed and sent to the Aggregator as a 3-tuple 
(t, s, ee ls] ). ComputeCC can be replicated to fill up the whole 
distributed memory machine without any problem: as long as a 
replica reads the update requests in the order of non-decreasing 
time units, it is able compute the correct CC scores. 

The Aggregator filter gets the graph at a time t from 
InstanceGenerator. Then, it obtains the number of updates 
for that time from StreamingMaster. It computes the identical 
vertex sets as well as the BCD. It gets the updated CC scores 
from ComputeCC. Due to the pipelined parallelism used in 
the system and the replicated parallelism of ComputeCC, it 
is possible that updates from a later time can be received; 
STREAMER stores them in a backlog for future processing. 
When a (t, s, ee[s] )  tuple is processed, the CC score of s is 
updated. If s is the representative of an identical vertex set, 
the CC scores of all the vertices in the same set are updated 
as well. If s is an articulation point, then the CC scores of 
the vertices which are represented by s (and are not in the 
biconnected component of uv) are updated as well, by using 

Fig. 6. Placement of STREAMER using 2 worker nodes with 2 quad-core 
processors. (The node 2 is hidden). The remaining filters are on node O. 

the difference in the CC score of s between time t and t - 1. 

Since Aggregator needs to know the CC scores at time t - 1 

to compute the centrality scores at time t, the system must be 
bootstrapped: the system computes explicitly all the centrality 
scores of the vertices for time t = o. 

B. Exploiting the shared memory architecture 

The main portion of the execution time is spent by the 
ComputeCC filter. Therefore, it is important to replicate this 
filter as much as possible. Each replica of the filter will end 
up maintaining its own graph structure and computing its 
own BCD. Modern clusters are hierarchical and composed of 
distributed memory nodes where each node contains multiple 
processors featuring multiple cores that share the same mem­
ory space. For instance, the nodes used in our experiments are 
equipped with two processors, each having 4 cores. 

It is a waste of computational power to recompute the data 
structure on each core. But it is also a waste of memory. 
Indeed, the cores of a processor typically share a common 
last level of cache and using the same memory space for all 
the cores in a processor might improve the cache utilization. 
We propose to split the ComputeCC filter in two separate 
filters which is transparent to the rest of the system thanks 
to DataCutter being component-based. The Preparator filter 
constructs the decomposed graph for each Streaming Event it 
is responsible for. The Executor filter performs the real work 
on the decomposed graph. In DataCutter, the filters running 
on the same physical node act run in separate pthreads within 
the same MPI process making sharing the memory as easy 
as communicating pointers. The release of the memory asso­
ciated with the decomposed graph is handled by atomically 
decreasing a counter by the Executor. 

The decoupling of the graph management and the CC 
score computation allows to either creating a single graph 
representation on each distributed memory node or having a 
copy of the graph on each NUMA domain of the architecture. 
This is shown in Fig. 6. 

IV. EXPERIMENTS 

STREAMER runs on the Owens cluster in the Department of 
Biomedical Informatics at The Ohio State University. For the 
experiments, we used all the 64 computational nodes, each 



TABLE I 
GRAPH PROPERTIES. # UPDATES IS THE NUMBER OF UPDATES INDUCED 

BY THE 50 ADDED EDGES. THE RUNTIMES ARE OB TAINED BY USING THE 

WHOLE CLUSTER TO PROCESS THE UPDATES. 

Name IVI lEI # updates time(s) 

web-NotreDame 325,729 1,090,008 399,420 8.16 
amazon060l 403,394 2,443,308 1,548,288 140.19 
web-Google 916,428 4,321,958 2,527,088 226.20 
soc-pokec 1,632,804 30,622,464 4,924,759 6,366.14 

with dual Intel Xeon E5520 Quad-core CPUs (with 2-way 
Simultaneous Multithreading, and 8MB of L3 cache per pro­
cessor), 48 GB of main memory. The nodes are interconnected 
with 20 Gbps InfiniBand. The algorithms were run on CentOS 
6, and compiled with GCC 4.5.2 using the -03 optimization 
flag. DataCutter uses an InfiniBand-aware MPI to leverage the 
high performance interconnect: here we used MVAPICH 1.1. 

For testing purposes, we picked 4 large social network 
graphs from the SNAP dataset to perform the test at scale. 
The properties of the graphs are summarized in Table I. For 
simulating the addition of the edges, we removed 50 edges 
from the graphs and added them back one by one. The 
streamed edges were selected randomly and uniformly. For 
comparability purposes, all the runs performed on the same 
graph use the same set of edges. The number of updates 
induced by that set of edges when applying filtering using 
identical vertices, biconnected component decomposition, and 
level filtering is given in Table I. In the experiments, the data 
comes from a file, and the Streaming Events are pushed to the 
system as quickly as possible so as to stress the system. 

All the results presented in this section are extracted from 
a single run of STREAMER with proper parameters. The 
regularity in the plots indicates there would be a small variance 
on the runtimes, which induces a reasonable confidence in 
the significance of the quoted numbers. In the experiments, 
StreamingMaster and Aggregator run on the same node, apart 
from all the computational filters. Therefore, we report the 
number of worker nodes, but an extra node is always used. 

To give an idea of the actual amount of computation, in the 
last column of Table I, we report the time STREAMER spends 
to update the CC scores upon 50 edge insertions by using all 
63 worker nodes. We present the parallel time and not the 
sequential time for two reasons: (I) Our framework is never 
really sequential, even using a single ComputeCC filter would 
not actually be sequential. (2) The sequential runtime on the 
biggest tested graph (soc-pokec) is prohibitive (estimated 
at about a month). As all the execution times given in this 
section, the times in Table I do not contain the initialization 
time. That is the time measurement starts once STREAMER is 
idle, waiting to receive Streaming Events. 

A. Peiformance results 

Figure 7 shows the performance and scalability of the 
system in different configurations. The performance is 
expressed in number of updates per second. The framework 
obtains up to 1 1,000 updates/sec on arnazon0601 and 
web-Google, 49,000 updates/sec on web-NotreDarne, 

and more than 750 updates/sec on the largest tested 

TABLE II 
THE PERFORMANCE OF STREAMER WITH 31 WORKER NODES AND 

DIFFERENT NODE-LEVEL CONFIGURATIONS NORMALIZED TO 1 THREAD 

CASE (PERFORMANCE ON soc-pokec IS NORMALIZED TO 8 THREADS, 1 
GRAPH/THREAD). THE LAS T COLUMN IS THE ADVANTAGE OF SHARED 

MEMORY AWARENESS (RATIO OF COLUMNS 5 AND 3). 

Name 4 threads 8 threads, 1 graph per Shared Mem. 
thread node NUMA awareness 

web-NotreDame 3.69 6.46 7.13 6.99 1.08 
amazon0601 3.26 6.75 6.81 7.45 1.10 
web-Google 3.69 7.77 7.55 8.06 1.03 
soc-pokec 1.00 0.92 1.01 1.01 

graph soc-pokec. It appears to scale linearly on the graphs 
arnazon0601 and web-Google, soc-pokec. For the first 
two graphs, it reaches a speedup of 456 and 497, respectively, 
with 63 nodes and 8 threads/node compared to the single 
node-single thread configuration. (The incremental centrality 
computation on soc-pokec with a single node was too long 
to run the experiment, but the system is clearly scaling well 
on this graph.) The last graph, web-NotreDarne, does not 
exhibit a linear scaling and obtains a speedup of only 3 16. 

Let us first evaluate the performance obtained under dif­
ferent node-level configurations. Table II presents the relative 
performance of the system using 31 worker nodes while using 
1, 4, or 8 threads per node. When compared with the single 
thread configuration, using 4 threads (the second column) is 
more than 3 times faster, while using 8 threads (columns 3-5) 
per node usually gives 6.5 speedup or more. Overall, having 
multiple cores is fairly well exploited. Properly taking the 
shared-memory aspect of the architecture into account (column 
5) brings a performance improvement between 1% to 10% (the 
last column). In one instance (web-Google with a graph for 
each NUMA domain), we observed that the normalized perfor­
mance is more than the number of cores. This can be explained 
by the difference in the amount of work due to the distribution 
of the updates from different Streaming Events to the threads. 

B. Execution-log analysis 

Here we discuss the impact of pipe lined parallelism and 
the sub-linear speedup achieved on web-Not reD arne. In 
Figure 8, we present the execution logs for that graph obtained 
while using 3, 15, and 63 worker nodes. Each log plot shows 
three data series: the times at which StreamingMaster starts 
to process the Streaming Events, the total number of updates 
sent by StreamingMaster, and the number of updates processed 
by the Executors collectively. The three different logs show 
what happens when the ratio of update produced and update 
consumed per second changes. 

The first execution-log plot with 3 worker nodes (Fig. 8(a)) 
shows the amount of the updates emitted and processed as two 
perfectly parallel almost straight lines. This indicates that the 
runtime of the application is dominated by processing the up­
dates. As the figure shows, the times at which the master starts 
processing the Streaming Events are not evenly distributed. 
As mentioned before, StreamingMaster starts filtering for the 
next Streaming Event as soon as it sends all the updates for the 
current one. In other words, the amount of updates emitted for 
a given Streaming Event can be read from the execution log as 
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Fig, 7, Scalability: the performance is expressed in the number of updates per second. Different worker-node configurations are shown. "8 threads, 
graph/thread" means that 8 CompUleCC filters are used per node, "8 threads, I graph" means that I Preparator and 8 /<'xecutor filters are used per node, "8 
threads, 1 graph/NUMA" means that 2 Preparators per node (one per NUMA domain) and 8 Execlltors are used. 

the difference of the y-coordinates of two consecutive "update 
emitted" points (the first line), In the first plot, we can see 
that 6 out of 50 Streaming Events (the ticks at the end of each 
partial tick-lines) incurred significantly much more updates 
than the others, While these events are being processed, the 
two lines stay straight and parallel, because in DataCutter, 
writing to a downstream filter is a buffered operation, Once 
the buffer is full, the operation becomes blocking, 

The second execution log with 15 worker nodes (Fig. S(b)) 
shows a different picture. Here, the log is about 4 times shorter 
and the lines are not perfectly parallel, The number of updates 
emitted shows three plateaus for more than a second around 
times 0, 5, and 16 seconds, These plateaus exist because many 
consecutive Streaming Events do not generate a significant 
amount of updates; therefore, the master spends all its time 
by filtering the work for these Streaming Events. 

The second plateau around time 5 seconds of the execution 
log with 15 worker nodes lasts 1.2 secs, and less than 100 
updates are sent during that interval, However, as the plot 
shows, the worker nodes do not run out of work and process 
more than 25, 000 updates during the plateau, This is possible 
because the computation in STREAMER is pipelined, If the 
system were synchronous the worker nodes would spend 
most of that plateau waiting which yields a longer execution 
time and worse performance. In addition to the three large 

plateaus, cases with a few consecutive Streaming Events that 
lead to barely no updates are slightly visible around times 3 

and 9. These two smaller cases are hidden by the pipelined 
parallelism, The third plateau is much longer than the second 
one (20 Streaming Events, 2,1 secs) and the worker nodes 
eventually run out of work halfway through the plateau, As 
can be seen in Fig. 7(b), the performance does not show 
linear scaling at 15 worker nodes; But it is still good, thanks 
to the pipelined parallelism, 

When 63 worker nodes are used, the execution log 
(Fig, S(c)) presents another picture, With the increase on the 
workers' processing power, StreamingMaster is now the main 
bottleneck of the computation, Two additional, considerably 
large plateaus appeared, and StreamingMaster starts to spend 
more than half of its time with the work filtering, However, 
during these times, the workers keep processing the updates, 
but at varied rates, due to temporary work starvation, The 
work filtering and the actual work are being processed mostly 
simultaneously showing that pipelined parallelism is very 
effective in this situation, Without the pipelined parallelism, 
the computation time would certainly be 2 secs longer, and 
25% worse performance would be achieved, 

C. Summary of the experimental results 

The experiments we conducted showed three things, 
STREAMER can scale up and efficiently utilize our entire 
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Fig. 8. Execution logs for web-NotreDame on different number of nodes. 
Each plot shows the total number of updates sent by StreamingMaster and 
processed by the Executors, respectively (the two lines), and the times at 
which StreamingMaster starts to process Streaming Events (the set of ticks). 

experimental cluster. By taking the hierarchical composition 
of the architecture into account (64 nodes, 2 processors per 
node, 4 cores per processor) and not considering it as a 
regular distributed machine (a 512 processor MPI cluster), 
we obtained 10% additional improvement. Furthermore, the 
pipelined parallelism proved to be extremely necessary while 
using a large amount of nodes in a concurrent fashion. 

V. CONCLUSION 

Maintaining the correctness of a graph analysis is impor­
tant in today's dynamic networks. Computing the closeness 
centrality scores from scratch after each graph modification is 

prohibitive, and even sequential incremental algorithms are too 
expensive for networks of practical relevance. In this paper, we 
proposed STREAMER, a distributed memory framework which 
guarantees the correctness of the CC scores, exploits replicated 
and pipelined parallelism, and takes the hierarchical architec­
ture of modern clusters into account. Using STREAMER on a 
64 nodes, 8 cores/node cluster, we reached a speedup of 497. 

STREAMER scales well. However, despite we exposed 
pipelined parallelism, the system eventually reaches a point 
where the SSSPs initiated from each source are no longer 
the bottleneck. In the future, we will remedy this problem by 
making the StreamingMaster and Aggregator faster. In partic­
ular, the StreamingMaster can use replicated parallelism: each 
Streaming Event can be filtered independently. We observed 
that the Aggregator cost is dominated by the biconnnected 
component decomposition which we plan to parallelize. 
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