
STREAMER: a Distributed Framework for
Incremental Closeness Centrality Computation

Ahmet Erdem Sanyiice1,2, Erik Saule1, Kamer Kaya1, Omit v. (atalyiirek1,3

Depts. 1 Biomedical Informatics, 2Computer Science and Engineering, 3Electrical and Computer Engineering
The Ohio State University

Email: sariyuce.l@osu.edu.{esaule.kamer.umit}@bmi.osu.edu

Abstract-Networks are commonly used to model the traffic
patterns, social interactions, or web pages. The nodes in a
network do not possess the same characteristics: some nodes
are naturally more connected and some nodes can be more
important. Closeness centrality (cq is a global metric that
quantifies how important is a given node in the network.
When the network is dynamic and keeps changing, the relative
importance of the nodes also changes. The best known algorithm
to compute the CC scores makes it impractical to recompute them
from scratch after each modification. In this paper, we propose
STREAMER, a distributed memory framework for incrementally
maintaining the closeness centrality scores of a network upon
changes. It leverages pipe lined and replicated parallelism and
takes NUMA effects into account. It speeds up the maintenance
of the CC of a real graph with 916K vertices and 4.3M edges by
a factor of 497 using a 64 nodes cluster.

I. INTRODUCTION

How central a node is in a network? Which nodes are more
important during an entity dissemination? Centrality metrics
have been used to answer such questions. They have been
successfully used to carry analysis for various purposes such as
power grid contingency analysis [10], quantifying importance
in social networks [15], analysis of covert networks [12],
decision/action networks [4], and even for finding the best
store locations in cities [17]. As the networks became large,
efficiency became a crucial concern while analyzing these
networks. The algorithm with the best asymptotic complexity
to compute the closeness and betweenness metrics [2] is
believed to be asymptotically optimal [11]. And the research
on fast centrality computation have focused on approximation
algorithms [3], [6], [16] and high performance computing
techniques [14], [19]. Today, the networks to be analyzed
can be quite large, and we are always in a quest for faster
techniques which help us to perform centrality-based analysis.

Many of today's networks are dynamic. And for such net­
works, maintaining the exact centrality scores is a challenging
problem which has been studied in the literature [7], [13],
[18]. The problem can also arise for applications involving
static networks such as the power grid contingency analysis
and robustness evaluation of a network. The findings of such
analyses and evaluations can be very useful to be prepared and
take proactive measures if there is a natural risk or a possible

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

adversarial attack that can yield undesirable changes on the
network topology in the future. Similarly, in some applications,
one might be interested in trying to find the minimal topology
modifications on a network to set the centrality scores in
a controlled manner. (Applications include speeding-up or
containing the entity dissemination, and making the network
immune to adversarial attacks).

Offline CC computation can be expensive for large-scale
networks. Yet, one could hope that the incremental graph mod­
ifications can be handled in an inexpensive way. Unfortunately,
as Fig. 1 shows, the effect of a local topology modification
can be global. In a previous study, we proposed a sequential
incremental closeness centrality algorithm which is orders of
magnitude faster than the best offline algorithm [18]. Still, the
algorithm was not fast enough to be used in practice. In this
paper, we present STREAMER, a framework to efficiently par­
allelize the incremental CC computation on high-performance
clusters.

���� a c a c a c a c
�d-+d""'d-+d-+

e f e f e f e f

g h g h g h g h

Fig.!. A toy network with eight nodes, three consecutive edge (ah,
f h, and ab, respectively) insertions/deletions, and CC scores.

STREAMER employs DataCutter [1], our in-house data­
flow programming framework for distributed memory systems.
In DataCutter, the computations are carried by independent
computing elements, called filters, that have different respon­
sibilities and operate on data passing through them. There
are three main advantages of this scheme: first, it exposes an
abstract representation of the application which is decoupled
from its practical implementation. Second, the coarse-grain
data-flow programming model allows replicated parallelism

by instantiating a given filter multiple times so that the
work can be distributed among the instances to improve the

parallelism of the application and the systems perfonnance.
And third, the execution is pipe lined, allowing multiple filters
to compute simultaneously on different iterations of the work.
This pipe lined parallelism is very useful to achieve overlap­
ping of communication and computation.

The best available algorithm for the offline centrality
computation is pleasingly parallel (and scalable if enough
memory is available) since it involves n independent execu­
tions of the single-source shortest path (SSSP) algorithm [2].
In a naive distributed framework for the offline case, one can
distribute the SSSPs to the nodes and gather their results.
Here the computation is static, i.e. , when the graph changes,
the previous results are ignored and the same n SSSPs are
re-executed. On the other hand, in the online approach, the
updates can arrive at any time even while the centrality scores
for a previous update are still being computed. Furthennore,
the scores which need to be recomputed (the SSSPs that need
to be executed) change W.r.t. the update. Finding these SSSPs
and distributing them to the nodes is not a straightforward
task. To be able to do that, the incremental algorithms
maintain complex infonnation such as the biconnected
component decomposition of the current graph [18]. Hence,
after each edge insertion/deletion, this infonnation needs to be
updated. There are several (synchronous and asynchronous)
blocks in the online approach. And it is not trivial to obtain
an efficient parallelization of the incremental algorithm.
As our experiments will show, the data-flow programming
model and pipelined parallelism are very useful to achieve a
significant overlap among these computation/communication
blocks and yield a scalable solution for the incremental
centrality computation.

Our contributions can be summarized as follows:

1) We propose the first distributed-memory framework
STREAMER for the incremental centrality computa­
tion problem which employs a pipelined parallelism
to achieve computation-computation and computation­
communication overlap.

2) The worker nodes we used in the experiments have 8
cores. In addition to the distributed-memory paralleliza­
tion, we also leverage the shared-memory parallelization
and take NUMA effects into account.

3) The framework appears to scale linearly: when 63

worker nodes (8 cores/node) are used, for the networks
amazon060l and web-Google, STREAMER obtains
456 and 497 speedups, respectively, compared to a single
worker node-single thread execution.

The paper is organized as follows: Section II introduces
the notation, fonnally defines the closeness centrality metric,
and describes the incremental approach in [18]. Section III
describes the proposed distributed framework for incremental
centrality computations in detail. The experimental analysis is
given in Section IV, and Section V concludes the paper.

II. INCREMENTAL CLOSENESS CENTRALITY

Let G = (V, E) be a network modeled as a simple
undirected graph with n = IVI vertices and m = lEI edges

where each node is represented by a vertex in V, and a node­
node interaction is represented by an edge in E. Let r e (v)
be the set of vertices which are connected to v.

A graph G' = (V ' , E') is a subgraph of G if V' <;;; V and
E' <;;; E. A path is a sequence of vertices such that there exists
an edge between consecutive vertices. Two vertices u, v E V
are connected if there is a path from u to v. If all vertex
pairs are connected we say that G is connected. If G is not
connected, then it is disconnected and each maximal connected
subgraph of G is a connected component, or a component,
of G. We use de (u, v) to denote the length of the shortest
path between two vertices u, v in a graph G. If u = v then
de(u, v) = O. And if u and v are not connected de(u, v) = 00.

Given a graph G = (V, E) , a vertex v E V is called an
articulation vertex if the graph G - v has more connected
components than G. G is biconnected if it is connected and it
does not contain an articulation vertex. A maximal biconnected
subgraph of G is a biconnected component.

A. Closeness centrality

The farness of a vertex u in a graph G is defined as
far[u] = L: vEV de(u,v). And the closeness centrality

dc(u,v)#co
of u is defined as ee[u] = fa;[u]' If u cannot reach any vertex
in the graph, then ee[u] = O.

For a graph G = (V, E) with n vertices and m edges, the
complexity of the best cc algorithm is O(n(m + n)) (Al­
gorithm 1). For each vertex s E V, it executes a Single­
Source Shortest Paths (SSSP), i.e. , initiates a breadth-first
search (BFS) from s and computes the distances to the
connected vertices. And, as the last step, it computes ee[s] .

Since a BFS takes O(m + n) time, and n SSSPs are required
in total, the complexity follows.

Algorithm 1: Offline centrality computation

Data: G = (V, E)
Output: ee[.]

1 for each s E V do
�SSSP(G, s) with centrality computation
Q +-- empty queue
d[v] +-- 00, '<Iv E V \ {s}
Q.push(s), drs] +-- 0
far[s] +-- 0
while Q is not empty do

v+-- Q.popO
for all w E fG(v) do

if d[w] = 00 then

d[w] +-- d[v] + 1
far[s] +-- far[s] + d[w] I
Q.push(w)

ee[s] = fa;[s]
return ee[.]

B. Incremental closeness centrality

Algorithm 1 is an offline algorithm: it computes the CC
scores from scratch. But today's networks are dynamic
and their topologies are changing through time. Centrality
computation is an expensive task, and especially for large
scale networks, an offline algorithm cannot cope with the

changing network topology. Hence, especially for large-scale,
dynamic networks, online algorithms which do not perform
the computation from scratch but only update the required
scores in an incremental fashion are required. In a previous
study, we used a set of techniques such as level-based work

filtering and special-vertex utilization to reduce the centrality
computation time for dynamic networks [18].

e. Level-based work filtering

The level-based filtering aims to reduce the number of
SSSPs in Algorithm 1. Let G = (V, E) be the current graph
and uv be an edge to be inserted. Let G' = (V, E U {uv }) be
the updated graph. The centrality definition implies that for
a vertex S E V, if dG(s, t) = dG,(s, t) for all t E V then
ce[s] = ce'[s] . The following theorem is used to filter the
SSSPs of such vertices.

Theorem 2.1 (Sanyiice et al. [18]): Let G = (V, E) be a
graph and u and v be two vertices in V S.t. uv tf. E. Let G' =

(V, E U {uv}). Then ee[s] = ee'[s] if and only if IdG(s, u) -
dG(s, v) 1 ::; l.

Many interesting real-life networks are scale free. The
diameters of a scale-free network is small, and when the graph
is modified with minor updates, it tends to stay small. These
networks also obey the power-law degree distribution. The
level-based work filter is particularly efficient on these kind
of networks. Figure 2 (top) shows the three cases while an
edge uv E E is being added to G: dG(s,u) = dG(s,v),
IdG(s,u) - dG(s,v)1 = 1, and IdG(s,u) - dG(s,v)1 > l.
Due to Theorem 2.1, an SSSP is required in Algorithm 1 only
for the last case, since for the first two cases, the closeness
centrality of s does not change. As Figure 2 (bottom) shows,
the probability of the last case is less than 20% for three social
networks used in the experiments. Hence, more than 80% of
the SSSPs are avoided by using level-based filtering.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o--�---- s o-�----- s o--�---- s
1-- 1--- U 1--- U
2 ------- 2 -------. y 2 ----- �-

3--- u ._. y 3--- 3--- \
4-- 4- 4-- W Y

Case 1 Case 2 Case 3

[]Pr(X=O) [JPr(X= 1) DPr(X> 1)
,--

r--
l"- I

n=
r--

b-r-- l
amazon0601 web-Google web-Notre Dame

Fig. 2. Three possible cases when inserting uv: for each vertex s. one of the
following is true: (I) dG(s, u) = dG(s, v). (2) IdG(s, u) - dG(s, v)1 = 1.
or (3) IdG(s,u) - dG(s,v)1 > 1 (top). The bars show the distribution of
random variable X = IdG(u,w) - dG(u,w)1 into three cases while an
edge uv is being added to G (bottom). For each network. the probabilities
are computed by using 1,000 random edges from E. For each edge uv, we
constructed the graph G = (V, E \ {uv}) by removing uv from the final
graph and computed IdG(s, u) - dG(s, v)1 for all s E V.

Although Theorem 2.l yields to a filter only in case of edge
insertions, the same idea can easily be used for edge deletions.

0®�
��
�@

(b) II (c) II'

Fig. 3. A graph G (left). its biconnected component decomposition
II (ntiddle). and the updated II' after the edge bd is inserted (right). The
articulation vertices before and after the edge insertion are {b, c, d} and
{b, d}, respectively. After the addition. the second component contains the
new edge, i.e .. cid = 2. This component is extracted first. and the algorithm
performs updates only for its vertices {b, c, d}. It also initiates a fixing phase
to make the CC scores correct for the rest of the vertices.

When an edge uv is inserted/deleted, to employ the filter, we
first compute the distances from u and v to all other vertices.
Detailed explanation can be found in [18].

D. Special-vertex utilization

The work filter can be assisted by employing and maintain­
ing a biconnected component decomposition (BCD) of G. A
BCD is a partitioning II of the edge set E where II (e) is the
component of each edge e E E. A toy graph and its BCDs
before and after an edge insertion are given in Fig. 3.

Let uv be the edge inserted to G = (V, E) and the final
graph be G' = (V, E' = E U {uv}). Let far and far' be the
famess scores of all the vertices in G and G' . If the intersection
{II(uw) : w E rG(u)} n {II(vw) : w E rG(v)} is not empty,
there must be only one element in it (otherwise II is not a valid
BCD), cid, which is the id of the biconnected component of G'
containing uv. In this case, updating the BCD is simple: II'(e)
is set to II(e) for all e E E and II' (uv) is set to cid. If the
intersection is empty (see the addition of bd in Fig. 3(b», we
construct II' from scratch and set cid = II' (uv) (e.g., cid = 2
in Fig. 3(c». A BCD can be computed in linear, O(m + n)
time [9]. Hence, the cost of BCD maintenance is negligible
compared to the cost of updating closeness centrality.

Let G�id = (Vcid, E�id) be the biconnected component of
G' containing uv. Let Acid � Vcid be the set of articulation
vertices of G' in G�id' Given II', it is easy to find the
articulation vertices since u E V is an articulation vertex
if and only if it is at least in two components in the BCD:
I{II'(uw) : uw E E'}I > l.

The incremental algorithm executes SSSPs only for
the vertices in G�id' The contributions of the vertices
in V \ Vcid are integrated to the SSSPs through their
representatives rep : V -+ VCid U {null}. For a vertex
in Vcid, the representative is itself. And for a vertex
v E V \ Vcid, the representative is either an articulation
vertex in Acid or null if v and the vertices OfVcid are
disconnected. Also, for all vertices x E V \ Vcid, we have
far'[x] = far[x] + far'[rep(x)] - far[rep(x)] . Therefore,
there is no need to execute SSSPs from these vertices.
Detailed explanation and proofs are omitted for brevity and
can be found in [18].

In addition to articulation vertices, we exploit the identical

vertices which have the same/a similar neighborhood structure

to further reduce the number of SSSPs. In a graph G, two
vertices u and v are type-I-identical if and only if r G (u) =

r G(v). In addition, two vertices u and v are type-II-identical

if and only if {u} U rG(u) = {v} U rc(v). Let u,v E V be
two identical vertices. One can easily see that for any vertex
wE V \ {u,v}, dc(u,w) = dc(v,w). Therefore, if I <;;; V
is a set of (type-lor type-II) identical vertices, then the CC
scores of all the vertices in I are equal.

We maintain the sets of identical vertices and while updating
the CC scores of the vertices in V, we execute an SSSP
for a representative vertex from each identical-vertex set. We
then use the computed score as the CC score of the other
vertices in the same set. The filtering is straightforward and
the modifications on the algorithm are minor. When an edge uv
is added/removed to/from G, to maintain the identical vertex
sets, we first subtract u and v from their sets and insert them
to new ones. Candidates for being identical vertices are found
using a hash function and the overall cost of maintaining the
data structure is O(n + m) [18].

III. STREAMER

STREAMER follows the component-based programming
paradigm which has been used to describe and implement
complex applications by way of components - distinct tasks
with well-defined interfaces. By describing these components
and the explicit data connections between them, the applica­
tions are decomposed along natural task boundaries according
to the application domain. Therefore, the component-based ap­
plication design is an intuitive process with explicit demarca­
tion of task responsibilities. Furthermore, the communication
patterns are also explicit; each component includes its input
data requirements and outputs in its description.

STREAMER is written in DataCutter, our in-house
component-based middleware tool which supports filter-stream
programming, an instance of component-based programming.
The filter-stream programming model [1] (a specific
implementation of the dataflow programming model [5])
implements the computations as a set of components, referred
as filters, that exchange data through logical streams. A
stream denotes a uni-directional data flow from some filters
(Le., the producers) to others (i.e. , the consumers). Data flows
along these streams in untyped databuffers so as to minimize
various system overheads. A layout is a filter ontology
which describes the set of application tasks, streams, and the
connections required for the computation.

Filter-stream programming enables some runtime benefits,
which come at no additional cost to the developer. Appli­
cations composed of a number of individual tasks can be
executed on parallel and distributed computing resources and
gain extra performance over those run on strictly sequential
machines. This is achieved by specifying a placement which
is an instance of a layout with a mapping of the filters onto
physical processors. A filter can be replicable, if it is stateless;
for instance, if a filter's output for a given databuffer does
not depend on the ones it processed previously, it is stateless

and replicable. A replicated filter can be placed on multiple
processors to increase the throughput of the system.

Additionally, provided the interfaces exposed by a task to
the rest of the application match, different implementations of
tasks, possibly on different processor architectures can co-exist
in the same application deployment, allowing developers to
take full advantage of modern, heterogeneous supercomputers.
Figure 4 shows an example filter-stream layout and placement.
In this work, we used both distributed- and shared-memory
architectures. However, thanks to filter-stream programming
model, many-core systems such as GPUs and accelerators can
also be used easily and efficiently if desired [8].

I Placement I

Fig. 4. A toy filter-stream application layout and its placement.

A. Pipe lined parallelism

One of the DataCutter's strengths is that it enables pipelined
parallelism, where multiple stages of the pipeline (such as A
and B in the layout in Fig. 4) can be executed simultaneously,
and replicated parallelism can be used at the same time if some
computation is stateless (such as filter C in the same figure).

While computing the CC scores, the main portion of the
computation comes from performing SSSPs for the vertices
whose scores need to be updated. If there are many updates
(we use the term "update" to refer to the SSSP operation
which updates the CC score of a vertex), that part of the
computation should occupy most of the machine. A typical
synchronous decomposition of the application makes the
work filtering of a Streaming Event (handling a single edge
change) wait for the completion of all the work incurred by a
previous Streaming Event. Since the worker nodes will wait
for the work filtering to be completed, there can be a large
waste of resources. We argue that the pipelined parallelism
should be used to overlap the process of filtering the work
and computing the updates on the graph.

We propose to use the four-filter layout shown in Fig. 5.
The first filter is the InstanceGenerator which first sends the
initial graph to all the other filters. It then sends the Streaming
Events as 4-tuples (t, oper, u, v) to indicate that edge uv has
been either added or removed (specified by oper) at a given
time t. (In the following, we only explain the system for edge
insertion, but it is essentially the same for an edge removal.) In
a real world application, this filter would be listening on the

Fig. 5. Layout of STREAMER.

network for topology modifications; but in our experiments,
all the necessary information is read from a file.

StreamingMaster is responsible for the work filtering after
each network modification. Upon inserting uv at time t, it
first computes the shortest distances from u and v to all other
vertices at time t - 1. Then, it adds the edge uv into its local
copy of the graph and updates the identical vertex sets as
described in Section II-D. It partitions the edges of the graph
to its biconnected components by using the algorithm in [9]
and finds the component containing uv. For each vertex
s E V, it decides whether its CC score needs to be recomputed
by checking the following conditions: (1) d(s, u) and d(s, v)
differ by at least 2 units at time t - 1, (2) s is adjacent to an
edge which is also in uv's biconnected component, (3) s is
the representative of its identical vertex set. StreamingMaster

then informs the Aggregator about the number of updates
it will receive for time t. Finally, it sends the list of SSSP
requests to the ComputeCC filter, i.e., the corresponding
source vertex ids whose CC scores need to be updated.

ComputeCC performs the real work and computes the new
CC scores after each graph modification. It waits for work
from StreamingMaster, and when it receives a CC update re­
quest under the form of a 2-tuple (t, s) (update time and source
vertex id), ComputeCC advances its local graph representation
to time t by using the appropriate updates from InstanceGen­

erator. If there is a change on the local graph, the biconnected
component of uv is extracted, and a concise information of the
graph structure and the set of articulation vertices are updated
(as described in [18]). Finally, the exact CC score ee[s] at
time t is computed and sent to the Aggregator as a 3-tuple
(t, s, ee ls]). ComputeCC can be replicated to fill up the whole
distributed memory machine without any problem: as long as a
replica reads the update requests in the order of non-decreasing
time units, it is able compute the correct CC scores.

The Aggregator filter gets the graph at a time t from
InstanceGenerator. Then, it obtains the number of updates
for that time from StreamingMaster. It computes the identical
vertex sets as well as the BCD. It gets the updated CC scores
from ComputeCC. Due to the pipelined parallelism used in
the system and the replicated parallelism of ComputeCC, it
is possible that updates from a later time can be received;
STREAMER stores them in a backlog for future processing.
When a (t, s, ee[s]) tuple is processed, the CC score of s is
updated. If s is the representative of an identical vertex set,
the CC scores of all the vertices in the same set are updated
as well. If s is an articulation point, then the CC scores of
the vertices which are represented by s (and are not in the
biconnected component of uv) are updated as well, by using

Fig. 6. Placement of STREAMER using 2 worker nodes with 2 quad-core
processors. (The node 2 is hidden). The remaining filters are on node O.

the difference in the CC score of s between time t and t - 1.

Since Aggregator needs to know the CC scores at time t - 1

to compute the centrality scores at time t, the system must be
bootstrapped: the system computes explicitly all the centrality
scores of the vertices for time t = o.

B. Exploiting the shared memory architecture

The main portion of the execution time is spent by the
ComputeCC filter. Therefore, it is important to replicate this
filter as much as possible. Each replica of the filter will end
up maintaining its own graph structure and computing its
own BCD. Modern clusters are hierarchical and composed of
distributed memory nodes where each node contains multiple
processors featuring multiple cores that share the same mem­
ory space. For instance, the nodes used in our experiments are
equipped with two processors, each having 4 cores.

It is a waste of computational power to recompute the data
structure on each core. But it is also a waste of memory.
Indeed, the cores of a processor typically share a common
last level of cache and using the same memory space for all
the cores in a processor might improve the cache utilization.
We propose to split the ComputeCC filter in two separate
filters which is transparent to the rest of the system thanks
to DataCutter being component-based. The Preparator filter
constructs the decomposed graph for each Streaming Event it
is responsible for. The Executor filter performs the real work
on the decomposed graph. In DataCutter, the filters running
on the same physical node act run in separate pthreads within
the same MPI process making sharing the memory as easy
as communicating pointers. The release of the memory asso­
ciated with the decomposed graph is handled by atomically
decreasing a counter by the Executor.

The decoupling of the graph management and the CC
score computation allows to either creating a single graph
representation on each distributed memory node or having a
copy of the graph on each NUMA domain of the architecture.
This is shown in Fig. 6.

IV. EXPERIMENTS

STREAMER runs on the Owens cluster in the Department of
Biomedical Informatics at The Ohio State University. For the
experiments, we used all the 64 computational nodes, each

TABLE I
GRAPH PROPERTIES. # UPDATES IS THE NUMBER OF UPDATES INDUCED

BY THE 50 ADDED EDGES. THE RUNTIMES ARE OB TAINED BY USING THE

WHOLE CLUSTER TO PROCESS THE UPDATES.

Name IVI lEI # updates time(s)

web-NotreDame 325,729 1,090,008 399,420 8.16
amazon060l 403,394 2,443,308 1,548,288 140.19
web-Google 916,428 4,321,958 2,527,088 226.20
soc-pokec 1,632,804 30,622,464 4,924,759 6,366.14

with dual Intel Xeon E5520 Quad-core CPUs (with 2-way
Simultaneous Multithreading, and 8MB of L3 cache per pro­
cessor), 48 GB of main memory. The nodes are interconnected
with 20 Gbps InfiniBand. The algorithms were run on CentOS
6, and compiled with GCC 4.5.2 using the -03 optimization
flag. DataCutter uses an InfiniBand-aware MPI to leverage the
high performance interconnect: here we used MVAPICH 1.1.

For testing purposes, we picked 4 large social network
graphs from the SNAP dataset to perform the test at scale.
The properties of the graphs are summarized in Table I. For
simulating the addition of the edges, we removed 50 edges
from the graphs and added them back one by one. The
streamed edges were selected randomly and uniformly. For
comparability purposes, all the runs performed on the same
graph use the same set of edges. The number of updates
induced by that set of edges when applying filtering using
identical vertices, biconnected component decomposition, and
level filtering is given in Table I. In the experiments, the data
comes from a file, and the Streaming Events are pushed to the
system as quickly as possible so as to stress the system.

All the results presented in this section are extracted from
a single run of STREAMER with proper parameters. The
regularity in the plots indicates there would be a small variance
on the runtimes, which induces a reasonable confidence in
the significance of the quoted numbers. In the experiments,
StreamingMaster and Aggregator run on the same node, apart
from all the computational filters. Therefore, we report the
number of worker nodes, but an extra node is always used.

To give an idea of the actual amount of computation, in the
last column of Table I, we report the time STREAMER spends
to update the CC scores upon 50 edge insertions by using all
63 worker nodes. We present the parallel time and not the
sequential time for two reasons: (I) Our framework is never
really sequential, even using a single ComputeCC filter would
not actually be sequential. (2) The sequential runtime on the
biggest tested graph (soc-pokec) is prohibitive (estimated
at about a month). As all the execution times given in this
section, the times in Table I do not contain the initialization
time. That is the time measurement starts once STREAMER is
idle, waiting to receive Streaming Events.

A. Peiformance results

Figure 7 shows the performance and scalability of the
system in different configurations. The performance is
expressed in number of updates per second. The framework
obtains up to 1 1,000 updates/sec on arnazon0601 and
web-Google, 49,000 updates/sec on web-NotreDarne,

and more than 750 updates/sec on the largest tested

TABLE II
THE PERFORMANCE OF STREAMER WITH 31 WORKER NODES AND

DIFFERENT NODE-LEVEL CONFIGURATIONS NORMALIZED TO 1 THREAD

CASE (PERFORMANCE ON soc-pokec IS NORMALIZED TO 8 THREADS, 1
GRAPH/THREAD). THE LAS T COLUMN IS THE ADVANTAGE OF SHARED

MEMORY AWARENESS (RATIO OF COLUMNS 5 AND 3).

Name 4 threads 8 threads, 1 graph per Shared Mem.
thread node NUMA awareness

web-NotreDame 3.69 6.46 7.13 6.99 1.08
amazon0601 3.26 6.75 6.81 7.45 1.10
web-Google 3.69 7.77 7.55 8.06 1.03
soc-pokec 1.00 0.92 1.01 1.01

graph soc-pokec. It appears to scale linearly on the graphs
arnazon0601 and web-Google, soc-pokec. For the first
two graphs, it reaches a speedup of 456 and 497, respectively,
with 63 nodes and 8 threads/node compared to the single
node-single thread configuration. (The incremental centrality
computation on soc-pokec with a single node was too long
to run the experiment, but the system is clearly scaling well
on this graph.) The last graph, web-NotreDarne, does not
exhibit a linear scaling and obtains a speedup of only 3 16.

Let us first evaluate the performance obtained under dif­
ferent node-level configurations. Table II presents the relative
performance of the system using 31 worker nodes while using
1, 4, or 8 threads per node. When compared with the single
thread configuration, using 4 threads (the second column) is
more than 3 times faster, while using 8 threads (columns 3-5)
per node usually gives 6.5 speedup or more. Overall, having
multiple cores is fairly well exploited. Properly taking the
shared-memory aspect of the architecture into account (column
5) brings a performance improvement between 1% to 10% (the
last column). In one instance (web-Google with a graph for
each NUMA domain), we observed that the normalized perfor­
mance is more than the number of cores. This can be explained
by the difference in the amount of work due to the distribution
of the updates from different Streaming Events to the threads.

B. Execution-log analysis

Here we discuss the impact of pipe lined parallelism and
the sub-linear speedup achieved on web-Not reD arne. In
Figure 8, we present the execution logs for that graph obtained
while using 3, 15, and 63 worker nodes. Each log plot shows
three data series: the times at which StreamingMaster starts
to process the Streaming Events, the total number of updates
sent by StreamingMaster, and the number of updates processed
by the Executors collectively. The three different logs show
what happens when the ratio of update produced and update
consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 8(a))
shows the amount of the updates emitted and processed as two
perfectly parallel almost straight lines. This indicates that the
runtime of the application is dominated by processing the up­
dates. As the figure shows, the times at which the master starts
processing the Streaming Events are not evenly distributed.
As mentioned before, StreamingMaster starts filtering for the
next Streaming Event as soon as it sends all the updates for the
current one. In other words, the amount of updates emitted for
a given Streaming Event can be read from the execution log as

"'
*

12,000 ,---�::-c:--,..--,----;-,-;:-cc:-:-�--�--,------,
--+- 8 threads, 1 graph/NUMA

10,000

8,000

6,000

----»E---- 8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph

--. - 1 thread

:§- 4,000

2,000
•

o ��' �-�-- -�-�-.� ----�--�-�--�--�
o 10 20 30 40

Working nodes

(a) amazon0601

50 60

12,000 r--�--�--r--�--�--,----,
--+- 8 threads, 1 graph/NUMA

10,000

8,000

6,000

4,000

2,000

----�---- 8 threads, 1 graph
8 threads, 1 graph/thread
4 threads, 1 graph

--. - 1 thread

" .•
•

o _'-=-"'O=-L-_-�-·�-� __ � __ �_� __ �---'
o 10 20 30 40

Working nodes

(c) web-Google

50 60

"0
c
0

�
<;; a.
"'
* "0 a. =>

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

--+- 8 threads, 1 graph/NUMA
----»E---- 8 threads, 1 graph

8 threads, 1 graph/thread
4 threads, 1 graph

--. - 1 thread

IT
---.--

o ' I T: _____ ---- .
-

o 10 20 30 40
Working nodes

(b) web-NotreDame

50 60

800 r--�--�--�--�--�--'----'
--+- 8 threads, 1 graph/NUMA

700

-g 600
8
:J: 500
�
� 400 1ii R => 300

200

�---- 8 threads, 1 graph
8 threads, 1 graph/thread)' ./

100 L-_� __ � __ � __ � __ � __ '------.J
o 10 20 30 40 50 60

Working nodes

(d) soc-pokec

Fig, 7, Scalability: the performance is expressed in the number of updates per second. Different worker-node configurations are shown. "8 threads,
graph/thread" means that 8 CompUleCC filters are used per node, "8 threads, I graph" means that I Preparator and 8 /<'xecutor filters are used per node, "8
threads, 1 graph/NUMA" means that 2 Preparators per node (one per NUMA domain) and 8 Execlltors are used.

the difference of the y-coordinates of two consecutive "update
emitted" points (the first line), In the first plot, we can see
that 6 out of 50 Streaming Events (the ticks at the end of each
partial tick-lines) incurred significantly much more updates
than the others, While these events are being processed, the
two lines stay straight and parallel, because in DataCutter,
writing to a downstream filter is a buffered operation, Once
the buffer is full, the operation becomes blocking,

The second execution log with 15 worker nodes (Fig. S(b))
shows a different picture. Here, the log is about 4 times shorter
and the lines are not perfectly parallel, The number of updates
emitted shows three plateaus for more than a second around
times 0, 5, and 16 seconds, These plateaus exist because many
consecutive Streaming Events do not generate a significant
amount of updates; therefore, the master spends all its time
by filtering the work for these Streaming Events.

The second plateau around time 5 seconds of the execution
log with 15 worker nodes lasts 1.2 secs, and less than 100
updates are sent during that interval, However, as the plot
shows, the worker nodes do not run out of work and process
more than 25, 000 updates during the plateau, This is possible
because the computation in STREAMER is pipelined, If the
system were synchronous the worker nodes would spend
most of that plateau waiting which yields a longer execution
time and worse performance. In addition to the three large

plateaus, cases with a few consecutive Streaming Events that
lead to barely no updates are slightly visible around times 3

and 9. These two smaller cases are hidden by the pipelined
parallelism, The third plateau is much longer than the second
one (20 Streaming Events, 2,1 secs) and the worker nodes
eventually run out of work halfway through the plateau, As
can be seen in Fig. 7(b), the performance does not show
linear scaling at 15 worker nodes; But it is still good, thanks
to the pipelined parallelism,

When 63 worker nodes are used, the execution log
(Fig, S(c)) presents another picture, With the increase on the
workers' processing power, StreamingMaster is now the main
bottleneck of the computation, Two additional, considerably
large plateaus appeared, and StreamingMaster starts to spend
more than half of its time with the work filtering, However,
during these times, the workers keep processing the updates,
but at varied rates, due to temporary work starvation, The
work filtering and the actual work are being processed mostly
simultaneously showing that pipelined parallelism is very
effective in this situation, Without the pipelined parallelism,
the computation time would certainly be 2 secs longer, and
25% worse performance would be achieved,

C. Summary of the experimental results

The experiments we conducted showed three things,
STREAMER can scale up and efficiently utilize our entire

.&

400,000 ,------,----,----,--,----,-----,---,----crr-=
-- Update emitted

350,000 -- Update processed
300,000

250,000

+ SE start

� 200,000 Co =>

.&

150,000

100,000

50,000

O�-��-�-�-�-��-�-�
o 10 20 30 40 50 60 70 80 90

Walltime (in seconds)
(a) 3 worker nodes

400,000 ,------,------,------,---;o----=r--y-'"
350,000

300,000

250,000

-- Update emitted

� 200,000 Co =>

.&

150,000

100,000

50,000

5 10
Walltime (in seconds)

(b) 15 worker nodes

15 20

400,000 ,----,--,--,--,--,--ul-,-Tr�Tl
350,000

300,000

250,000

-R 200,000
=>

150,000

100,000

50,000

o ����-�-�-�-�-�-�
o 2 3 4 5

Walltime (in seconds)
(c) 63 worker nodes

6 8

50

40
� c:
!!i 30 UJ

'" c:
E

20 '" i!! if)
10

o

50

40
� c: Q)

30 ,!j
'" c:
E

20 '"
�

10

o

50

40

Vl

� c: Q)
30 ,!j

'" c:
E

20 '" i!! if)
10

o

Fig. 8. Execution logs for web-NotreDame on different number of nodes.
Each plot shows the total number of updates sent by StreamingMaster and
processed by the Executors, respectively (the two lines), and the times at
which StreamingMaster starts to process Streaming Events (the set of ticks).

experimental cluster. By taking the hierarchical composition
of the architecture into account (64 nodes, 2 processors per
node, 4 cores per processor) and not considering it as a
regular distributed machine (a 512 processor MPI cluster),
we obtained 10% additional improvement. Furthermore, the
pipelined parallelism proved to be extremely necessary while
using a large amount of nodes in a concurrent fashion.

V. CONCLUSION

Maintaining the correctness of a graph analysis is impor­
tant in today's dynamic networks. Computing the closeness
centrality scores from scratch after each graph modification is

prohibitive, and even sequential incremental algorithms are too
expensive for networks of practical relevance. In this paper, we
proposed STREAMER, a distributed memory framework which
guarantees the correctness of the CC scores, exploits replicated
and pipelined parallelism, and takes the hierarchical architec­
ture of modern clusters into account. Using STREAMER on a
64 nodes, 8 cores/node cluster, we reached a speedup of 497.

STREAMER scales well. However, despite we exposed
pipelined parallelism, the system eventually reaches a point
where the SSSPs initiated from each source are no longer
the bottleneck. In the future, we will remedy this problem by
making the StreamingMaster and Aggregator faster. In partic­
ular, the StreamingMaster can use replicated parallelism: each
Streaming Event can be filtered independently. We observed
that the Aggregator cost is dominated by the biconnnected
component decomposition which we plan to parallelize.

ACKNOWLEDGMENTS

This work was supported in parts by the DOE grant DE-FC02-
06ER2775 and by the NSF grants CNS-0643969, OCI-0904809, and
OCI-0904802.

REFERENCES

[I] M. D. Beynon, T. Kur9, O. Y. <;:atalyiirek, C. Chang, A. Sussman, and
J. Saltz. Distributed processing of very large datasets with DataCutter.
Parallel Computing, 27(11):1457-1478, Oct. 2001.

[2] U. Brandes. A faster algorithm for betweenness centrality . .!ournal of

Mathematical Sociology. 25(2):163-177, 2001.
[3] S. Y. Chan. 1. X. Y. Leung, and P. Lib. Fast centrality approximation in

modular networks. In Proc. of CIKM-CNIKM, 2009.
[4] O. Sim�ek and A. G. Barto. Skill characterization based on betweenness.

In Proc. of NIPS, 2008.
[5] J. B. Dennis. Data flow supercomputers. Computer, 13(11):48-56, 1980.
[6] D. Eppstein and J. Wang. Fast approximation of centrality. In Proc. of

SODA, 2001.
[7] O. Green, R. McColl, and D. A. Bader. A fast algorithm for streaming

betweenness centrality. In Proc. of SocialCom, 2012.
[8] T. D. R. Hartley, E. Saule, and U. Y. Catalyurek. Improving perfomlance

of adaptive component-based dataflow middleware. Parallel Computing,

38(6-7):289-309,2012.
[9] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph

manipulation. Communications of the ACM, 16(6):372-378, June 1973.
[10] S. Jin, Z. Huang, Y. Chen, D. G. Chavarria-Miranda, J. Feo, and P. C.

Wong. A novel application of parallel betweenness centrality to power
grid contingency analysis. In Proc. of IPDPS, 2010.

[11] S. Kintali. Betweenness centrality Algorithms and lower bounds.
CoRR, abs/0809.1906, 2008.

[12] Y. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.
[13] M.-J. Lee, J. Lee, 1. Y. Park, R. H. Choi, and c.-w. Chung. QUBE:

a Quick algorithm for Updating BEtweenness centrality. In Proc. of
WWW, 2012.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarria­
Miranda. A faster parallel algorithm and efficient multithreaded imple­
mentations for evaluating betweenness centrality on massive datasets. In
Proc. of IPDPS, 2009.

[15] E. L. Merrer and G. Tredan. Centralities: Capturing the fuzzy notion of
importance in social graphs. In Proc. of SNS, 2009.

[16] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness centrality
for large-scale social networks. In Proc. of FAW, 2008.

[17] S. Porta, Y. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
Y. Iacoviello, and R. Messora. Street centrality and densities of retail
and services in Bologna, Italy. Environment and Planning B: Planning
and Design, 36(3):450-465, 2009.

[18] A. E. Sanyiice, K. Kaya, E. Saule, and Omit Y. <;:atalyiirek. Incremental
algorithms for network management and analysis based on closeness
centrality. CoRR, abs/ l 303.0422, 2013.

[19] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs. BMC

Bioinformatics, 12:149,2011.

