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Abstract

Graph coloring is a combinatorial optimization problem
that classically appears in distributed computing to identify
the sets of tasks that can be safely performed in parallel.
Despite many existing efficient sequential algorithms being
known for this NP-Complete problem, distributed variants
are challenging. Building on an existing distributed-memory
graph coloring framework, we investigate two techniques in
this paper. First, we investigate the application of two differ-
ent vertex-visit orderings, namely Largest First and Smallest
Last, in a distributed context and show that they can help
to significantly decrease the number of colors, on small- to
medium-scale parallel architectures. Second, we investigate
the use of a distributed post-processing operation, called
recoloring, which further drastically improves the number of
colors while not increasing the runtime more than twofold
on large graphs. We also investigate the use of multicore
architectures for distributed graph coloring algorithms.

1. Introduction

Graph coloring is a combinatorial problem which consists
of partitioning a graph in a minimum number of independent
sets. This problem has numerous applications, the most
common one in parallel computing is to represent the tasks
of a computation as the vertices of a graph. An edge connects
two vertices if these two vertices cannot be computed simul-
taneously. Finding a coloring of this graph allows to partition
the tasks into sets that can be safely computed in parallel.
Minimizing the number of colors decreases the number of
synchronization points in the computation and increases
the efficiency of the parallel platform. Other applications
of graph coloring appear in automatic differentiation [1],
printed circuit testing [2], frequency assignment [3], register
allocation [4], parallel numerical computation [5] and opti-
mization [6] areas.

There exist different variants of the graph coloring prob-
lem. The most classical one is sometimes referred to as
the distance-1 coloring problem where two adjacent vertices
must have different colors. Some applications require that
vertices separated by k edges to have different colors. This

problem is the distance-k coloring problem. In this paper,
we are only interested in distance-1 coloring. However, we
believe that all the techniques and results presented in this
document can be extended to the other variants of the graph
coloring problem.

The distance-1 coloring problem is formally defined as
follows. Let G = (V,E) be a graph with |V | vertices and
|E| edges. The set of neighbours of a vertex v is adj(v);
its cardinality, also called the degree of v, is δv . The degree
of the vertex having the most neighbor is ∆ = maxv δv A
coloring C : V → N is a function that maps each vertex of
the graph to a color (represented by an integer), such that
two adjacent vertices have different colors, i.e. ∀(u, v) ∈
E,C(u) 6= C(v). Without loss of generality, the number of
colors used is maxu∈V C(u). The optimization problem at
hand is to find a coloring with as few colors as possible. The
problem of finding the minimal number of colors γ a graph
can be colored with (also called the chromatic number of the
graph) is known to be NP-Complete for arbitrary graphs [7].
Therefore, the problem at hand is NP-Hard. Recently, it has
been shown that, for all ε > 0, it is NP-Hard to approximate
the graph coloring problem within |V |1−ε [8].

In this work, we are tackling the distributed memory graph
coloring that appears in large scientific parallel applications.
In such applications, the computational model (hence the
graph) is already distributed onto the nodes of the parallel
machine. If the graph is too large to fit in the memory of
a single computer, we have no choice but to color it in
distributed memory. However, if the graph is sufficiently
small, with a naive approach, one can aggregate it on a
single node and color it there. A better approach would be
taking advantage of the partitioning of the graph, and color
the interior vertices (vertices for which all their neighbors
are local) in parallel and then color the remaining, boundary
vertices (vertices that have at least one non-local neighbor),
sequentially, by aggregating the graph induced by them
on a single processor. However, as shown in [9], one can
do significantly better by using a real distributed memory
coloring algorithm.

Here, we further aim to improve the distributed-memory
coloring algorithm presented in [9] in multiple directions.
First, we will investigate different vertex-visit ordering
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strategies, namely Largest First (LF) and Smallest Last (SL)
techniques for improving the number of colors. It is intuitive
that distributed-memory coloring algorithms increase the
number of colors used compared to the sequential greedy
algorithm. Therefore, we would like to investigate how
increasing the number of processors involved in coloring
affects the number of colors. Hence, we will evaluate the
algorithms at large scales. Last, but not least, we will
investigate the application of recoloring in the distributed-
memory setting, to further reduce the number of colors.

The remaining of the document is organized as follows.
Section 2 presents the different coloring algorithms existing
for sequential and parallel architectures. Section 3 recalls
the previous distributed-memory coloring algorithm which
is the reference algorithm we use. Section 4 discusses the
techniques used to improve coloring in distributed-memory
architecture. The proposed techniques are experimentally
assessed on real-world graphs and on random graphs in
Section 5. Final remarks and ideas to improve further are
given in Section 6.

2. Related Work

Graph coloring is one of the well studied problems in
the literature [1], [10], [11], [12]. Literature is abundant
with many different techniques, such as the one that utilizes
greedy coloring [13], [12], cliques [14] and Zykov trees [11].

Despite the pessimistic theoretical results and the exis-
tence of more complicated algorithms, for many graphs that
arise in practice, solutions that are provably optimal or near
optimal can be obtained using a simple greedy algorithm [6].
In this algorithm, the vertices of the graph are visited in some
order and the smallest permissible color at each iteration
is assigned to the vertex. Pseudo code of this technique is
presented in Algorithm 1. Choosing the smallest permissible
color is known as the First Fit strategy.

This simple algorithm has two nice properties. First, for
any vertex visit ordering, it produces a coloring with at most
1+∆ colors. Second, for some vertex-visit orderings it will
produce an optimal coloring [15]. Many heuristics for order-
ing the vertices have been proposed in the literature [15],
[1]. Commonly known vertex orderings are Largest First
(LF), Smallest Last (SL), Saturation Degree, and Incidence
Degree orderings. We refer the reader to [1] for a succinct
summary of these ordering techniques. The LF ordering,
introduced by Welsh and Powell [16], visits the vertices
in non-increasing degree order. SL approaches the ordering
from backwards by selecting a vertex with the minimum
degree to be ordered last and removing it from the graph for
the rest of the ordering phase. Then the next vertex with the
minimum degree from the remaining graph is selected to be
ordered second-to-last. This procedure is repeated until all
vertices are ordered. In other words, the graph is dynamically
updated to select a vertex, hence SL produces orderings that

are quite different than LF. To the best of our knowledge,
the only distributed-memory work that investigated similar
ideas to ordering the vertices is [17]. It is a theoretical work
where a randomized coloring algorithm is used and ties are
broken by choosing the vertex having smaller degree to be
recolored. In our work, we will experimentally investigate
both the LF and SL orderings in the context of distributed
memory parallel coloring.

Algorithm 1: Sequential greedy coloring.
Data: G = (V,E)
for each v ∈ V do

for each w ∈ adj (v) do
forbiddenColors[color[w]] ← v

color[v]← min{i > 0 : forbiddenColors[i] 6= v}

Culberson [15] introduces a coloring algorithm, Iterated
Greedy (IG), where starting with an initial greedy coloring,
vertices are iteratively recolored based on the coloring of the
previous iteration. Culberson also shows that in recoloring,
if the vertices belonging to the same color class (i.e., the
vertices of the same color) in previous coloring are colored
consecutively, then the number of colors will either decrease
or stay the same. Several different heuristics are presented to
obtain new permutations of color classes. These heuristics
are based on the colors of the vertices, color distribution
of the vertices, degree of the vertices and mix of them.
Culberson suggests that a hybrid approach, that is, changing
the permutation heuristic at each recoloring iteration is
more effective than applying the same heuristic at each
round. The first work evaluating the effects of recoloring
scheme on parallel graph coloring is [18]. In this work,
Gebremedhin and Manne use the IG heuristic for graph
coloring on shared-memory computers. Apart from them,
Goldberg et al. suggest to use recoloring in edge-coloring
of multigraphs [19].

Many parallel algorithms for graph coloring [5], [20], [21]
are based on finding a maximal (by inclusion) independent
set of vertices [22]. A set of vertices are independent if
there is no edge between any two vertices, and this set
is maximal if no other vertex can be added to this set
while keeping it an independent set. An independent set of
vertices can be colored in parallel by a small modification of
Luby’s algorithm [22]. In Luby’s algorithm, each vertex is
assigned a random number at the beginning. Then for each
vertex, the algorithm checks if the random number of this
vertex is larger than the random number of its neighbors.
If so, this vertex and its neighbors are removed from the
graph and the vertex is added to independent set. The same
operation is applied recursively until the graph is empty. If
the vertex with the largest random number with respect to
its neighbors is assigned a smallest permissible color at this



instant, instead of being removed, then we get a parallel
graph coloring.

3. Distributed-Memory Coloring

Bozdag et al. [9] introduce a distributed-memory parallel
graph coloring framework. To the best of our knowledge,
their work is the only distributed-memory coloring algorithm
that shows a parallel speedup, hence our work is based on
their algorithm, which we present here briefly.

The graph is assumed to be originally distributed onto
the distributed memory. Each vertex is owned by a single
processor. Each processor only knows the edges that connect
any vertex it owns. That is to say, if both extremities
of an edge are owned by a single processor then only
this processor knows about that edge. If an edge connects
vertices owned by two different processors, then that edge
is only known by these two processors. In the algorithm,
each processor is responsible for coloring the vertices it
owns. Vertices that are connected to a vertex owned by
another processor are said to be boundary vertices. If all
the neighboring vertices of a vertex are owned by the same
processor, this vertex is said to be an internal vertex.

The coloring is constructed in multiple rounds. In each
round, all the uncolored vertices are tentatively colored
using the greedy coloring algorithm. Then each processor
independently detects conflicts. When a conflict occurs, one
of the vertex will keep its color while the other one is marked
for recoloring in the next round. The tie is broken based on a
random total ordering generated beforehand. The algorithm
iterates until there is no more conflicts.

In order to reduce the number of conflicts at each round,
the coloring of the vertices is performed in supersteps. In
each superstep, each processor colors a given number of its
own vertices. Then, it exchanges the colors of the boundary
vertices colored in that superstep, if any, with its neighbor
processors. If a processor waits for its neighbors to finish
their superstep before starting the next one, the process is
said to be synchronous and it ensures that two vertices can
only be in a conflict if they are colored in the same superstep.
Otherwise, it is said to be asynchronous. The size of the
superstep becomes important since a smaller size increases
the number of messages exchanged on the network while a
larger size is likely to increase the number of conflicts.

There are five main parameters affecting the behavior of
the framework. These are superstep size, synchronous or
asynchronous execution of supersteps, coloring order of the
internal and boundary vertices, color selection strategy, and
broadcast or customized communication. Several combina-
tions of those were experimentally investigated to determine
the best parameters for reducing the number of colors
and the runtime. The study shows that there is no single
combination that outperforms the others in both metrics (the
number of colors and the runtime). In general, customized

communication improves the metrics over broadcast, the best
runtime is achieved by coloring internal vertices first using
asynchronous communication, whereas the best number of
colors is achieved by coloring boundary vertices first.

4. Improving Number of Colors

In this work, we will investigate two methods to decrease
the number of colors.

4.1. Vertex-Visit Ordering

As described in Section 2, the performance of the greedy
algorithm depends on the order in which vertices are visited.
The orderings considered in the parallel graph coloring algo-
rithm presented in [9] only take into account the partitioning
of the graph and not the properties of the graph itself.
Three orderings were investigated in their work, coloring
internal vertices first, boundary vertices first and coloring the
vertices in the order they are stored in the memory (which
was called unordered in [9], here we will call it Natural
ordering). For boundary or internal first ordering, ordering
of the vertices in these subclasses have not been specified,
and in the implementation, natural ordering was used. The
Natural ordering does not introduce any extra computation
and is therefore, trivially, computed in O(|V |). Internal first
and boundary first orderings require classification of internal
and boundary vertices, which requires O(|E|) computation.

In this work we investigates two more successful ordering
heuristics, namely Largest First (LF) and Smallest Last (SL)
techniques, as described in Section 2. The LF ordering can
be computed using bucket sort or a counting sort since the
maximum degree is less than the number of vertices in the
graph, leading to a O(|V |) algorithm [16]. The SL ordering
requires a data structure that allows to efficiently keep track
of how many unordered neighbors a vertex has in order to
find efficiently the one with the least number of unordered
neighbors. A bucket and a fibonacci heap allow to implement
the SL ordering with a complexity of O(|E| log |V |) [14].

In this work, we have designed a customized bucket data
structure to implement SL in O(|E|). The key point is that
when a vertex is selected for ordering, the degree of all its
adjacent vertices needs to be decreased by one. If one can
keep this update operation proportional to the degree of that
vertex, the SL ordering can be done in O(|E|). Updating
the neighbors will result in decreasing their degrees by one.
By using an auxiliary pointer array to the elements, we can
access each element (vertex) in the bucket in constant time.
Deletion from bucket i, can be done in O(1) and insertion
to bucket i−1 can be done in O(1). The pop-min operation
must be implemented by using a state variable that indicates
that the x first buckets are empty. The cost of increasing
x is charged on pop-min only when it reaches a value it
never reached before. Indeed, the other increases of x can



be charged on different anterior calls to update since each
of them decrease at most x by one. Despite a single call
to pop-min requires O(∆) operations in the worst case, all
the calls to this function requires only O(|V |) operations.
Hence the SL ordering can be implemented in O(|E|).

Notice that the graph is distributed in the memory of the
processors. Therefore, building an ordering of the whole
graph and enforcing to color the graph in the same order a
sequential algorithm would do require numerous communi-
cations and sequentializes the coloring process. Therefore, in
distributed memory, we opt that each processor computes an
ordering of the graph based on the knowledge it possesses,
i.e. edges connected to a vertex it owns. Each processor
independently obtains an ordering of its own vertices based
on local information. Therefore, there is no guarantee that
the coloring computed on a single processor and on multiple
processors will be the same.

4.2. Recoloring

As mentioned in Section 2, Culberson [15] investigated
the use of iterative recoloring for improving the number of
colors in a sequential algorithm. Here, we extend this work
to distributed-memory graph coloring.

The recoloring idea naturally fits distributed-memory
graph coloring. Assume that we have an initial coloring,
so a set of vertices with the same color are independent,
and hence can be safely colored in parallel without any
communication. Our recoloring algorithm (RC) proceeds in
as many steps as there was color in the initial coloring. In the
recoloring process, all the vertices in the same color class
(i.e., having the same color in the previous coloring round)
are colored at the same step. Then the processors exchange
the color information with their neighboring processors at
the end of the step. Note that even if a processor does
not have any vertices with that color, it waits for other
processors to finish coloring at that step. This procedure
ensures that no conflict is created by the end of recoloring.
Provided an initial coloring, recoloring in sequential and
in distributed memory lead to the same solution, making
recoloring scalable in terms of number of colors. However,
the procedure is fairly synchronous since a processor can not
start the i-th step before its neighbors finished their (i− 1)-
th step. Moreover, there is no guarantee that two processors
will have a similar number of vertices in each color, thus
potentially leading to a load imbalance.

To mitigate some potential load imbalance due to syn-
chronous execution of RC, we also propose a second recolor-
ing approach, named asynchronous recoloring (aRC). In this
algorithm, after a first parallel coloring step, each processor
independently computes their vertex-visit orderings using
the initial coloring, and do a second parallel coloring with
this new vertex-visit ordering using the algorithm recalled in
Section 3. Notice that, conflicts are possible at the end of this

Name |V | |E| ∆ NAT LF SL seq time
auto 448K 3.3M 37 13 12 10 0.1103s
bmw3 2 227K 5.5M 335 48 48 37 0.0836s
hood 220K 4.8M 76 40 39 34 0.0752s
ldoor 952K 20.7M 76 42 42 34 0.3307s
msdoor 415K 9.3M 76 42 42 35 0.1458s
pwtk 217K 5.6M 179 48 42 33 0.0820s

Table 1. Properties of real-world graphs

Name |V | |E| ∆ NAT LF SL
ER 16,777,216 134,217,624 42 12 10 10
Good 16,777,216 134,181,065 1,278 28 15 14
Bad 16,777,216 133,658,199 38,143 146 89 88

Table 2. Properties of synthetic graphs

process, therefore this second parallel coloring step proceeds
in conflict resolution rounds as in the original algorithm. We
expect that this approach will not be as good as synchronous
recoloring in terms of number of colors, but it might be
beneficial for trading the quality for speed.

In the recoloring process, all the vertices that belong
to the same color class must be colored in a consecutive
manner. However, one can choose any permutation of the
color classes and this choice affects the number of colors
significantly. Therefore different permutations of the color
classes should be considered for sequential and parallel re-
coloring. We considered three permutations of color classes:
Reverse order (RV) of colors [15], Non-Increasing number
of vertices (NI), where the color classes are ordered in
the non-increasing order of their vertex counts, and Non-
Decreasing number of vertices (ND), which is similarly
derived. We investigate these color permutations together
with vertex-visit ordering in the context of distributed-
memory parallel graph coloring.

5. Experiments

5.1. Preliminaries

All the algorithms are implemented in Zoltan [23], an
MPI-based C library for parallel partitioning, load balanc-
ing, coloring and data management services for distributed-
memory systems. In the experiments the graphs are parti-
tioned onto the parallel platform either using ParMETIS [24]
version 3.1.1 or with a simple block partitioning.

All the algorithms were tested on an in-house cluster
which consists of 64 computing nodes. Each node has 2 Intel
Xeon E5520 (quad-core clocked at 2.27GHz) processors,
48GB memory, and 500 GB of local hard disk. The nodes
are interconnected through 20Gbps DDR oversubscribed
InfiniBand. They run CentOS with the Linux kernel 2.6.18.
The C code is compiled with GCC 4.1.2 using the -O2
optimization flag. MVAPICH2 in version 1.6 is used to
leverage efficiently the InfiniBand interconnect.

We run the experiments on number of processors which
are a power of two from 1 to 512 processors. Notice
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Figure 1. Sequential study on the real graphs

that each physical machine has 8 cores. When allocating
processors on the cluster, we first use processors on different
nodes to highlight distributed memory issue. Therefore,
when 64 processors are used, each processor (core) is on
a different machine. Using 128 processors allocates 2 cores
per machine and an allocation of 512 processors uses the 8
cores of the 64 machines.

The experiments are run on six real-world application
graphs and three randomly generated graphs. The real-
world graphs come from various application areas including
linear car analysis, finite element, structural engineering and
automotive industry [25], [26]. They have been obtained
from the University of Florida Sparse Matrix Collection1

and the Parasol project. The list of the graphs and their
main properties are summarized in Table 1. The number of
colors obtained with a sequential run of the three vertex-
visit ordering are also listed in the table. Finally, the time to
compute the Natural coloring in sequential is given. Notice
that the largest real world graph takes less than half a second
to color sequentially using a Natural ordering, making the
distributing coloring of all the graphs very challenging.
These graphs are partitioned with ParMETIS.

The randomly generated graphs are RMAT graphs, which
have been introduced by Chakrabarti et al. [27]. The main
idea of RMAT is to recursively subdivide the adjacency
matrix in 4 equal parts and to distribute the edges to these
parts with a given probabilities, which might differ for
each part. This procedure allows the generation of differ-
ent classes of random graphs. We generated three graphs,
namely RMAT-ER, RMAT-Good and RMAT-Bad with the
degree distributions in the parts of (0.25, 0.25, 0.25, 0.25),
(0.45, 0.15, 0.15, 0.25) and (0.55, 0.15, 0.15, 0.15), respec-
tively. These three graphs are generated to create different
challenges to distributed-memory coloring algorithms. The
first graph, RMAT-ER, belongs to the class of Erdős-Rényi
random graphs which are known to be hard to partition.
Hence, almost all vertices are likely to be on the bound-
ary, especially when the number of processors increases.

1. http://www.cise.ufl.edu/research/sparse/matrices/

The other two belong to the class of scale-free graphs
with power-law distribution and small-world characteristics.
These graphs are known to be hard to partition, and they eas-
ily create very unbalanced workloads if a vertex partitioning
scheme is used. Their properties are summarized in Table 2.
These graphs are partitioned using a block partitioning.

For all the experiments we will present both the number
of colors obtained and the runtime of the method when
the number of processors varies. The real-world graphs
all show the same trends and their results are aggregated
in the following manner. Each value (number of colors
and runtime) is first normalized with respect to the value
obtained by the Natural ordering of the same graph on one
processor. Then the normalized value for different graphs
are aggregated using a geometric mean. The three randomly
generated graphs are presented independently.

Before studying the impact of our methods in a
distributed-memory setting, we present first their impact
in a sequential setting on the real-world graphs. Figure 1
presents the impact on the number of colors of vertex-visit
ordering and multiple iterations of recoloring. Each chart
presents a different vertex-visit ordering and each curve
presents a different color permutation in recoloring, e.g.,
NAT+RC-NI gives Natural ordering with recoloring with the
Non-Increasing number of vertex order of the color classes.
Notice that the charts start with 0 iteration which shows the
quality of the vertex-visit ordering only.

First, one can see that the LF vertex ordering leads to
lower number of colors than the Natural ordering with
0.96 normalized number of colors without recoloring. SL
is obviously a much better ordering with a normalized
number of colors of 0.78. Second, when recoloring, the three
tested permutations of the color classes lead to a decrease
of the number of colors. The NI permutation yields the
smallest improvement, while the ND permutation obtains
the smallest number of colors by reaching a normalized
number of colors less than 0.8 after 20 iterations for the
three orderings. Finally, the minimum number of colors is
achieved by coupling the SL vertex ordering with the ND
color permutation, called SL+RC-ND. The reason for the
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Figure 2. Comparison of ordering on the real graphs

improvement of the ND permutation over the other two relies
on the selection of color classes. A permutation is successful
if it can removes as many color classes as possible. This
color permutation selects first the color classes with fewer
vertices, so that the classes with more vertices (which are
unlikely to disappear) can merge with them. The NI ordering
is likely to lead to a solution very similar to the original First
Fit solution, since lower colors are likely to be used more
often. The same reason makes the RV better than NI since
“reverse” is a reasonable approximation of ND.

5.2. Vertex-Visit Ordering

In the distributed-memory case, [9] concludes that col-
oring the boundary vertices first then internal ones while
using a synchronous communication pattern (denoted FBS)
leads to the best number of colors. Also coloring the inter-
nal vertices first while using asynchronous communication
pattern leads to the best runtime (denoted FIA). Natural
ordering was also presented and named FUS. Similarly, we
name our new variants using the Largest First, and Smallest

Last vertex-visit ordering with synchronous communication
pattern as FLS and FSS, respectively. All these charts present
results obtained with a superstep size of 500.

Figure 2 presents the obtained normalized number of col-
ors and normalized runtime of the algorithm using different
vertex-visit orders on the real graphs. FUS, FBS and FIA
almost always obtain a normalized number of colors greater
than 1. FIA gets notably bad normalized number of colors
by reaching to 1.15 on 32 processors. FLS maintains a
normalized number of color below 1 when used on less
than 8 processors. FSS, thanks to the Smallest Last ordering,
obtains much better colors than the other methods on less
than 16 processors by achieving a normalized number of
colors of less than 1 on 16 processors. When the number
of processors increases, the advantages of the SL and LF
orderings disappear. Indeed, these two ordering generates a
lot of conflicts which reduce the impact of the ordering on
the number of colors. The same effect can be seen for the
asynchronous communication pattern of FIA which clearly
gives worse number of colors than all the synchronous
orderings. On 512 processors, the choice of the vertex-visit
order does not yield much difference in number of colors.

The runtime of the methods on the real-world graphs,
linearly decrease up to 16 processors and keep on decreasing
up to 64 processors, but then almost linearly increase up
to 512 processors. Note that FSS is the slowest one due
to the ordering computation at the beginning but with the
increasing number of processor, ordering becomes virtually
free and reaches a speedup of 9.37 on 16 processors. As
shown in [9] perfect speedup is almost never obtained
on fast graph algorithms. After 64 processors, more than
a core per machine is used. This reduces the memory
bandwidth per processor and increases the access to the
MPI subsystem. The runtime of all the vertex-visit ordering
variants significantly increase. Here the efficiency of the
asynchronous communication pattern of FIA is evident: FIA
gets lower runtime than the synchronous methods from 64
processors to 512 processors.

Notice that these results are at a much larger scale than
the one presented in [9]. It was claimed that the greedy
coloring algorithm scales well, and our results confirm that
fact up to 64 processors. On more than 64 processors, our
experiments shows that the runtime degrades linearly in the
number of processors. One of the reasons is that the machine
we are using have multi-core processors and the algorithms
use no knowledge of the processor hierarchy. Frequent and
small communication stresses both the memory subsystem
and the MPI subsystem. The other reason is the increasing
number of boundary vertices. As the number of processors
increases, the number of boundary vertices also increases
because of the partitioning. It leads to more conflicts and
the runtime degrades.

The impact of the vertex-visit order is presented on the
randomly generated graphs RMAT-ER, RMAT-Good and
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RMAT-ER

RMAT-Bad in Figures 3, 4 and 5 respectively. The results of
FLS and FIA are omitted from these charts for clarity, but
the performance of FLS is very similar to the performance
of FSS and the performance of FIA is very similar to the
performance of FBS. All the methods scale in the same way
on all RMAT graphs up to 64 processors. RMAT-ER and
RMAT-Good continue to scale up to 128 processors whereas
RMAT-Bad shows an increase after 64 processors. All of the
RMAT graphs have increasing runtimes after 128 processors.
Just like the real-world graphs, the reason for the increases
after 64 processors is the multi-core processor hierarchy and
increasing number of boundary vertices.

5.3. Recoloring

Section 5.1 showed that the SL+RC-ND combination
outperformed all other vertex-visit ordering and color class
permutations presented in the sequential case. We will then
focus on comparing the distributed synchronous recoloring
(RC) and the asynchronous one (aRC) using the non recol-
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Figure 4. Comparison of ordering and recoloring on
RMAT-Good

ored Smallest Last ordering (FSS) as a point of reference.
Figure 6 presents the performance of recoloring on the

real-world graphs. As expected, the synchronous recoloring
decreases the normalized number of colors significantly
allowing to keep the normalized number of colors below
the one obtained using the sequential Largest First even on
512 processors, bringing a 25% improvement in the number
of colors to FSS. However the synchronous recoloring takes
more time than the FSS coloring, reaching a normalized
runtime of 8.53 while FSS has a normalized runtime of
1.46 on 512 processors. Asynchronous recoloring provides
a middle ground by allowing to obtain a better coloring
than FSS was able to achieve. Moreover, the asynchronous
recoloring is not much different than a regular run of the
distributed coloring algorithm and yields the same runtime
cost as a second run of the algorithm.

The impact of recoloring is presented on the randomly
generated graphs in Figures 3, 4 and 5. First, asynchronous
recoloring shows a runtime profile similar to the experiments
on the real-world graphs. In terms of number of colors, the
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Figure 5. Comparison of ordering and recoloring on
RMAT-Bad

performance of FSS was mainly given by the number of
conflicts it generated. The vertex-visit order computed by
the asynchronous recoloring does not avoid the majority of
these conflicts and the improvement in number of colors
compared to FSS is less than 10%.

Synchronous recoloring shows a different picture. While
FSS obtained bad number of colors because of a high
number of conflicts on RMAT-Good and RMAT-Bad, the
synchronous recoloring does not yield any conflict. There-
fore, it obtains a much better number of colors, close to
the sequential Largest First and Smallest Last orderings and
up to 40% improvement in number of colors compared
to FUS and FBS and up to 50% improvement compared
to FSS. In terms of runtime, the absence of conflict and
the size of the graphs make the synchronous recoloring
procedure very scalable in these cases inducing a very low
overhead compared to the original coloring when the number
of processors is high.

Provided the gain shown by the recoloring procedure,
one might be interested in reproducing the sequential im-
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Figure 6. Comparison of recoloring on real-world
graphs with Smallest Last ordering

provement on the number of colors obtained by running the
recoloring procedure multiple times. The study of the impact
of multiple iterations of recoloring in a distributed-memory
setting is presented in Figure 7 on the real-world graphs.
While a single iteration of recoloring can limit drastically
the overhead in terms of number of colors induced by the
conflict that appears, subsequent iterations still significantly
improve the number of colors. On 512 processors, running
10 iterations of the recoloring procedure allows to reach a
normalized number of colors close to the one obtained with
the sequential Smallest Last vertex-visit order.

5.4. Processor allocation policy

The results of Figure 2 show that the runtime of the
algorithms dramatically decrease when more than one pro-
cessor per machine is used. To study this effect we ran
FSS using 4 different processor allocation policies. They
allocate respectively, 1, 2, 4 and 8 processors per node of
the cluster in a round robin fashion. Which means that when
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Figure 8. Impact of the processor allocation policy on
real-world graphs in distributed memory

allocating 32 processors, the first one uses one processor
from 32 nodes. The second one uses 2 processors from 16
nodes. The last one uses 8 processors from 4 nodes. When
allocating 256 processors, the first three policies allocate 4
processors from 64 nodes while the last policy allocates 8
processors from 32 nodes.

Figure 8 presents the results of this experiments. It shows
that up to 8 processors allocated, the best configuration uses
only one node. The performance of allocating the processors
by 8 degrades and becomes the worst one when allocating
32 processors or more. Allocating processors one by one
obtains the best performance between 16 and 64 processors.
On more than 64 processors, the different processor alloca-
tion policies start producing the same allocation and obtain
the same results.

The two most common explanations for these types of
behavior are memory contention and network contention.

Memory contention would explain why using fewer nodes
on the 32 processors case obtains the worst runtime. But
allocating only one node when using 8 processors should
not lead to the best results. If it was network contention, one
would expect that the first allocation policy which generates
the most network traffic to obtain the worst results. There
might be a bandwidth problem on one node.

Another explanation would be that when 8 processes ac-
cess the MPI subsystem on one node, there is contention on
the subsystem itself and the performance decreases. When
8 processes access the MPI and network subsystem, some
of them can not access the subsystem and got unscheduled
by the system. Most likely an hybrid implementation of
the algorithm would more intelligently access the MPI and
network subsystem. It would lessen the impact of that
contention and improve the performance.

6. Conclusion

In this paper we investigated two different, but compatible,
ways of improving the number of colors in distributed-
memory graph coloring algorithms. We showed that using
a vertex-visit ordering that takes into account the properties
of the graph instead of the properties of the partition can
yield major improvements when the size of the boundary
is small, e.g., when the number of processors is small or
when the graph is regular. We also investigated recoloring
by leveraging the independent sets of vertices exposed by an
existing solution to color large number of vertices indepen-
dently with little synchronization or with little conflicts. We
showed that graphs that induce a larger number of conflicts
benefit heavily from synchronous recoloring in terms of the
number of colors. The runtime overhead being small in such
cases, multiple iterations of recoloring can be used to obtain
even fewer colors. When the overhead of the synchronous
recoloring is too high, asynchronous recoloring can be used
to obtain a solution faster but of lesser quality.

Multiple other improvements should be investigated. The
tested vertex-visit orderings currently take into account
either the properties of the partition or the properties of
the graph. Investigating vertex-visit orderings that take both
information into account could lead to better number of
colors and runtime in a large number of use cases. Recol-
oring proved to be a scalable concept for the number of
colors when number of processors increases, thanks to the
equivalence to a sequential procedure. However it currently
suffers from a lack of communication and computation
overlapping that impacts its scalability in terms of runtime.
Then, one can investigate combination of a naive but faster
first coloring algorithm together with a scalable recoloring
procedure to obtain both a good runtime and number of
colors, even when the number of processors increases.
Finally, MPI is currently used to perform communication,
leading to multiple MPI processes per physical machine.



An hybrid implementation where MPI is used for distributed
memory inter-node communication and OpenMP is used for
shared memory intra-node communication, should improve
the load balance and communication by limiting the number
of parts the partitioner generates.
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