
Hardware/Software Vectorization for Closeness Centrality on Multi-/Many-Core

Architectures

Ahmet Erdem Sarıyüce1,2, Erik Saule4, Kamer Kaya1, Ümit V. Çatalyürek1,3

Depts. 1Biomedical Informatics, 2Computer Science and Engineering, 3Electrical and Computer Engineering

The Ohio State University

Email:{aerdem,kamer,umit}@bmi.osu.edu
4 Dept. Computer Science, University of North Carolina at Charlotte

Email: esaule@uncc.edu

Abstract—Centrality metrics have shown to be highly corre-
lated with the importance and loads of the nodes in a network.
Given the scale of today’s social networks, it is essential
to use efficient algorithms and high performance computing
techniques for their fast computation. In this work, we exploit
hardware and software vectorization in combination with fine-
grain parallelization to compute the closeness centrality values.
The proposed vectorization approach enables us to do concur-
rent breadth-first search operations and significantly increases
the performance. We provide a comparison of different vector-
ization schemes and experimentally evaluate our contributions
with respect to the existing parallel CPU-based solutions on
cutting-edge hardware. Our implementations achieve to be
11 times faster than the state-of-the-art implementation for a
graph with 234 million edges. The proposed techniques are ben-
eficial to show how the vectorization can be efficiently utilized
to execute other graph kernels that require multiple traversals
over a large-scale network on cutting-edge architectures.

Keywords-Centrality, closeness centrality, vectorization,
breadth-first search, Intel Xeon Phi.

I. INTRODUCTION

Many important graph analysis concepts, such as reach-

ability and node influence [8], [11], [15], [18], [24], have

a common fundamental building block: centrality compu-

tation. Closeness centrality (CC) is one of the widely-

used centrality metrics. In spite of the existence of many

application areas for CC, its efficiency remains a problem

for today’s large-scale social networks.

Given a graph with n vertices and m edges, the time

complexity of the best sequential algorithm for CC on

unweighted networks is O(nm). Weighted networks require

more work with the complexity being O(nm + n2 logn).
This complexity requirement makes the problem hard even

for medium-scale networks. Existing studies focus on speed-

ing up the centrality computation by algorithmic techniques

such as graph compression [2], [20], by leveraging parallel

processing techniques based on distributed- and shared-

memory systems [9], [12], [14], GPUs [10], [19], [24], [17],

or by a combination of these techniques [21].

Although many of the existing approaches leverage paral-

lel processing, one of the most common parallelism available

in almost all of today’s recent processors, namely instruction

parallelism via vectorization, is often overlooked due to na-

ture of the graph kernel computations. Graph computations

are notorious for having irregular memory access pattern,

and hence, for many kernels that require a single graph

traversal, vectorization is usually not very effective. It can

still be used, for a small benefit, at the expense of some

preprocessing that involves partitioning, ordering and/or

use of alternative data structures. We conjecture that with

continuous improvement of the vectorization capabilities of

all recent CPUs, including undoubtedly the most common

CPU architecture x86, algorithms that do not take advantage

of this feature will not be able to fully utilize the CPU’s

computing power. Hence, in this study we investigate if

vectorization can be leveraged for graph kernels that require

multiple traversals; in particular, we use closeness centrality

as our test case.

We propose algorithms that compute closeness centrality

on different architectures using hardware and software vec-

torization. By leveraging vectorization, we perform multiple

breadth-first search (BFS) computations at the same time,

and hence, reduce the number of graph reads. Instead of

using a primitive data type per vertex to store the BFS-

related information, we use a single bit that yields automatic

support for concurrent BFSs via bitwise operations. We will

use the term hardware vectorization to describe the case

where the number of BFSs is less than or equal to the vector

register size of the architecture. Using vector operations

enables O(1) updates for visit and neighbor data structures

that are often used in BFS implementations to track and

construct the current and the next frontier. One can continue

to increase the number of BFSs beyond the register size and

use multiple registers per vertex. Even though operations on

those would require the successive use of hardware vector

instructions, it could be still beneficial since it reduces the

number of graph reads at the expense of using multiple

vectors. We will call this approach software vectorization.

In order to take full advantage of vectorization, we first

propose a sparse-matrix-vector multiplication (SpMV)-based

formulation of closeness centrality, and from there, we move

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.156

1386

to a sparse-matrix-matrix multiplication (SpMM)-based for-

mulation. We present details of the manually vectorized

implementation for x86 architectures, as well as a high-level

C++ implementation that is suitable for automatic vectoriza-

tion which is available in modern compilers. We evaluate

the proposed algorithms on modern x86 architectures, in

particular on a multi-core Intel Xeon CPU and on a many-

core Intel Xeon Phi coprocessor. Results of the experiments

on seven real-world networks show that using 8, 192 simulta-

neous BFSs with vectorization can achieve an improvement

factor of 1.7 to 11.8 over the state-of-the-art techniques

on CPU. Our comparison for manual and compiler-based

vectorization shows that manual vectorization is only slightly

better. Hence, if the code is written in a generic and smart

way, the compiler does its job and optimizes relatively well.

The rest of the paper is organized as follows: Section II

presents the notation we used in the paper, summarizes the

existing parallel algorithms relative to closeness centrality

and explains the recent come-back of SIMD architectures.

The proposed techniques are formalized and described in

Section III. Performance evaluation and comparison of the

proposed solutions with the state-of-the-art are given in

Section IV. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Let G = (V,E) be a network modeled as a simple graph

with n = |V | vertices and m = |E| edges where each node

is represented by a vertex in V , and a node-node interaction

is represented by an edge in E. Let ΓG(v) be the set of

vertices which are interacting with v.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and

E′ ⊆ E. A path is a sequence of vertices such that there

exists an edge between each consecutive vertex pair. Two

vertices u, v ∈ V are connected if there is a path between u

and v. If all vertex pairs in G are connected we say that G is

connected. Otherwise, it is disconnected and each maximal

connected subgraph of G is a connected component, or a

component, of G. We use dstG(u, v) to denote the length

of the shortest path between two vertices u, v in a graph G.

If u = v then dstG(u, v) = 0. If u and v are disconnected,

then dstG(u, v) =∞.

A. Closeness centrality

Given a graph G, the closeness centrality of u can be

defined as

cc[u] =
∑

v∈V

dstG(u,v) �=∞

1

dstG(u, v)
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.

An alternative formulation exists in the literature where

summation is in the denominator and the centrality of u

is equal to the reciprocal of the total distance from u to

all other vertices. The proposed techniques would work

for both, but for the sake of simplicity, we use the one

above. Nevertheless, both require the shortest path distances

between all the vertex pairs.

For a sparse unweighted graph G = (V,E) the complexity

of CC computation is O(n(m+n)) [5]. The pseudo-code is

given in Algorithm 1. For each vertex s ∈ V , the algorithm

initiates a breadth-first search (BFS) from s, computes the

distances to the other vertices, and accumulates to cc[s]. If

the graph is undirected, it could be accumulated to cc[w]
instead since dstG(s, w) = dstG(w, s). Since a BFS takes

O(m + n) time, and n BFSs are required in total, the

complexity follows.

Algorithm 1: CC: Basic centrality computation

Data: G = (V,E)
Output: cc[.]

1 cc[v]← 0, ∀v ∈ V
2 for each s ∈ V do
3 Q← empty queue
4 Q.push(s)
5 dst[s]← 0
6 cc[s]← 0
7 dst[v]←∞, ∀v ∈ V \ {s}
8 while Q is not empty do
9 v ← Q.pop()

10 for all w ∈ ΓG(v) do
11 if dst[w] =∞ then
12 Q.push(w)
13 dst[w]← dst[v] + 1
14 cc[w]← cc[w] + 1

dst[w]

15 return cc[.]

B. Related work

In the literature, there are two ways to parallelize cen-

trality computations: coarse- and fine-grain. In coarse-grain

parallelism, multiple BFSs are partitioned among the proces-

sors/threads such that a shortest-path graph is constructed

by a single processor/thread (as in Algorithm 1). On the

other hand, fine-grain parallelism executes a single BFS

concurrently by multiple processors/threads. The memory

requirement of fine-grain parallelism is less than that of

coarse-grain parallelism. Therefore, fine-grain parallelism is

more suitable for devices with restricted memory, such as

GPUs.

Some examples of centrality computation using fine-grain

parallelism include [10], [19], [24]; Shi and Zhang [24]

developed a software package for parallel betweenness

centrality computation on GPUs to be used in biological

network analysis. Jia et al. [10] experimented various paral-

lelism techniques on GPUs for betweenness and closeness

centrality computation. Recently, Sarıyüce et al. [19] used a

modified graph storage scheme to obtain better speedups

compared to existing solutions. All these works employ

a pure fine-grain parallelism and level-synchronized BFSs.

That is, while traversing the graph, the algorithms initiate a

1387

GPU kernel for each level � to visit the vertices/edges on that

level and find the vertices on level �+1. One interesting work

which combines fine-grained and coarse-grained parallelism

is [16]. In their work, the authors optimize the betweenness

centrality computation on Cray XMT computers. To the best

of our knowledge, there is no prior work on computing

centrality using hardware and/or software vectorization.

In an earlier work, we had presented an early evaluation of

the scalability of several variants of BFS algorithm on Intel

Xeon Phi coprocessor using a pre-production card in which

we had presented a re-engineered shared queue data structure

for many-core architectures [22]. In another study, we had

also investigated the performance of SpMV on Intel Xeon

Phi coprocessor architecture, and show that memory latency,

not memory bandwidth, creates a bottleneck for SpMV on

Intel Xeon Phi [23].

C. SIMD-based architecture

Single instruction, multiple data (SIMD) is an important

class of parallel computing paradigms in Flynn’s taxonomy.

It relies on leveraging the data parallelism where there are

simultaneous computations on multiple data points with a

single process at any moment. Modern CPU designs make

use of SIMD paradigm, especially for multimedia use.

The first era of modern SIMD machines were repre-

sented by massively parallel-processing-style supercomput-

ers. There were many limited-functionality processors that

would work in parallel in those machines. When multiple

instruction, multiple data (MIMD) systems that are based

on commodity processors became more prevalent, interest

in SIMD has declined. The current era of SIMD processors

has emerged out of the desktop-computer market rather than

the supercomputer market. As desktop processors started

to support real-time gaming and multimedia processing,

requirement for processing power has increased and vendors

resurrected the SIMD processors to meet the demand. Intel’s

MMX extensions to the x86 architecture was the first widely-

deployed desktop SIMD. Then, Intel introduced the all-

new SSE system in 1999 which uses new 128 bit registers

for vectorial operations. Since then, there has been many

extensions to the SSE system, such as SSE2, SSE3, SSSE3,

and SSE4. In 2008, Intel announced the AVX system and

introduced 256 bit registers and recently, 512 bit registers

are incorporated in the new Xeon Phi series, which use the

many integrated core (MIC) architecture. A proper usage of

these vectorial operations is as important as a proper usage

of the multiple cores of a processor since they can improve

32-bit computation by a factor of 8 in AVX and by a factor

of 16 in MIC.

III. A VECTOR-FRIENDLY APPROACH TO CLOSENESS

CENTRALITY

A. Regularity in Linear Algebra: From SpMV to SpMM

Having irregular memory access and computation that

prevent a proper vectorization is a common problem of

sparse kernels. The most emblematic sparse computation

is certainly the multiplication of a sparse matrix by a

dense vector (SpMV). In SpMV, the problem of improving

vector-register (also called SIMD register) utilization and

regularizing the memory access pattern was deeply studied

and methods such as register blocking [7], [25] or by

using different matrix storage formats [4], [13] have been

proposed.

Yet the most efficient method to regularize the memory

access pattern is to multiply a sparse matrix by multiple

vectors. When the multiple vectors are organized as a dense

matrix, the problem becomes the multiplication of a sparse

matrix by a dense matrix (SpMM). While each non-zero

of the sparse matrix causes the multiplication of a single

element of the vector in SpMV, it causes the multiplications

of as many consecutive elements of the dense matrix as its

number of columns in SpMM.

Adapting that idea in closeness centrality essentially boils

down to computing multiple sources at the same time, simul-

taneously. But contrarily to SpMV, where the vector is dense

hence each non-zero induces exactly one multiplication, in

BFS, not all the non-zeros will induce operations. In other

words, a vertex in BFS may or may not be traversed de-

pending which level is currently being processed. Therefore,

the traditional queue-based implementation of BFS does not

seem to be easily extendable to support multiple BFSs in a

vector-friendly manner.

B. An SpMV-based formulation of Closeness Centrality

The main idea is to revert to a more basic definition of

level synchronous BFS traversal. Vertex v is at level � if

and only if one of the neighbors of v is at level � − 1 and

v is not at any level �′ < �. This formulation is commonly

used in parallel BFS implementations on GPU [10], [17],

[24] and also in shared memory [1] and distributed memory

settings [6].

The algorithm is better represented using binary variables:

Let x�
i be the binary variable that is true if vertex i is a part

of the frontier at level �. The neighbors of level � is a vector

y�+1 computed by

y�+1
k = ORj∈Γ(k)x

�
j .

That is y�+1 is the result of the multiplication of the

adjacency matrix of the graph by x� in the (OR,AND) semi-

ring. The next level is then computed with

x�+1
i = y�+1

i &¬(OR�′≤�x
�′

i).

1388

Using these variables, one can update the closeness central-

ity value of a vertex i by adding
x�
i

�
for each level �.

Implementing BFS using such an SpMV-based algorithm

changes its asymptotic complexity. The traditional queue-

based BFS algorithm has a complexity of O(m + n). On

the other hand, the complexity of the SpMV-based algorithm

depends on how the adjacency matrix is stored. If a column-

wise storage is used it is easy to traverse column j when

the value of x�
j is true. This again leads to an O(m + n)

BFS implementation which is not essentially different from

the queue-based implementation of a single BFS: they both

follow a top-down approach. When x�
j is true, the updates

on the y�+1 vector are scattered in memory, which would

be problematic when executed in parallel.

By storing the adjacency matrix row-wise, different values

of x� are gathered to compute a single element of y�+1. This

produces a bottom-up BFS implementation which has more

natural write access patterns. However, it becomes impossi-

ble to only traverse the relevant non-zeros of the matrix and

the complexity of the algorithm becomes O(|E| × d) where

d is the diameter of the graph. This is the implementation we

favor and we believe that the asymptotically worse complex-

ity is not a huge bottleneck for an efficient computation since

it has been noted many times before that social networks

have small world properties. So, their diameters are usually

low.

C. An SpMM-based formulation of Closeness Centrality

It is easy to derive an algorithm from the formulation

given above for closeness centrality that processes multiple

sources at once (see Algorithm 2). The algorithm processes

the BFS sources by batches of b. For each level �, it builds

a binary matrix x� where x�
i,s%b

indicates if vertex i is at

distance � of source vertex s for the (s%b)th BFS being

executed. The first part of the algorithm is Init which

computes x0.

After Init, the algorithm performs a loop that iterates

over the levels of the BFSs. The second part is SpMM

which builds the matrix y�+1 by multiplying the adjacency

matrix with x�. After each SpMM, the algorithm enters

its Update phase where x�+1 is computed and then the

closeness centrality values are updated using the information

of level �+ 1.

When b is set to the size of the vector register of the

machine used, a row of the x and y matrices exactly fits

in a vector-register, and all the operations become vector-

wide OR, AND and NOT and bit-count operations. Figure 1

presents an implementation of this algorithm using AVX

instructions (b = 256). We use similar codes to leverage 32-

bit integer types, SSE registers and MIC’s 512-bit registers

in the experiments. The code uses three arrays to store

the internal state of the algorithm: current stores x� for

the current level �, neighbor stores y�+1 and visited

Algorithm 2: CC-SPMM: SpMM-based centrality com-
putation

Data: G = (V,E), b
Output: cc[.]
�Init

1 cc[v]← 0, ∀v ∈ V
2 �← 0
3 partition V into k batches Π = {V1, V2, . . . , Vk} of size b
4 for each batch of vertices Vp ∈ Π do

5 x0s,s ← 1 if s ∈ Vp, 0 otherwise

6 while
∑

i

∑
s
x�
i,s > 0 do

�SpMM

7 y�+1
i,s = ORj∈Γ(i)x

�
j,s, ∀s ∈ Vp, ∀i ∈ V

�Update

8 x�+1
i,s = y�+1

i,s &¬(OR�′≤�x
�′

i,s), ∀s ∈ Vp, ∀i ∈ V
9 �← �+ 1

10 for all v ∈ V do

11 cc[v]← cc[v] +
∑

s x�
v,s

�

12 return cc[.]

stores ORl′≤�x
�′ . The function bitCount_256(.) calls the

appropriate bit-counting instructions.

A potential drawback of the SpMM variant of the close-

ness centrality algorithm is that each traversal of the graph

now accesses a wider memory range than the one used in

an SpMV approach. This can harm the cache locality of the

algorithm. To see the impact on cache-hit ratio, we wrote a

simulator to emulate the cache behavior during the SpMM

operation. The simulator assumes that the computation is

sequential; the cache is fully associative; it uses cache-lines

of 64 bytes; only the x vector (current array in the code)

is stored in the cache; and the cache is completely flushed

between iterations.

Figure 2 presents the cache-hit ratios with a cache size of

512K (the size of Intel Xeon Phi’s L2 cache) for different

number of BFSs and for the seven graphs we will later use

in the experimental evaluation. The cache hit-ratio degrades

by about 20% to 30% when the number of concurrent BFSs

goes from 32 to 512. This certainly introduces a significant

overhead, but we believe it should be widely compensated

by reducing the number of iterations of the outer loop by a

factor of 16.

D. Software vectorization

The hardware vectorization of the SpMM kernel presented

above limits the number of concurrent BFS sources to the

size of the vector registers available on the architecture.

However, there is no reason to limit the method to the size

of a single register. One could use two registers instead of

one and perform twice more sources at once. The penalty

on the cache locality will certainly increase, but probably

not by a factor of two.

Since we want to try various number of simultaneous

BFSs, the implementation effort for manual vectorization

1389

void cc_cpu_256_spmm (int* xadj, int* adj, int n, float* cc)
{
 int b = 256;
 size_t size_alloc = n * b / 8;
 char* neighbor = (char*)_mm_malloc(size_alloc, 32);
 char* current = (char*)_mm_malloc(size_alloc, 32);
 char* visited = (char*)_mm_malloc(size_alloc, 32);
 for (int s = 0; s < n; s += b) {
 //Init
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 __m256i neigh = _mm256_setzero_si256();
 int il[8] = {0, 0, 0, 0, 0, 0, 0, 0};
 if (i >= s && i < s + b)
 il[(i-s)>>5] = 1 << ((i-s) & Ox1F);
 __m256i cu = _mm256_set_epi32(il[7], il[6], il[5], il[4],
 il[3], il[2], il[1], il[0]);
 _mm256_store_si256 ((__m256i *)(neighbor + 32 * i), neigh);
 _mm256_store_si256 ((__m256i *)(current + 32 * i), cu);
 _mm256_store_si256 ((__m256i *)(visited + 32 * i), cu);
 }
 int cont = 1;
 int level = 0;
 while (cont != 0) {
 cont = 0;
 level++;
 //SpMM
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 __m256 vali = _mm256_setzero_ps();
 for (int j = xadj[i]; j<xadj[i+1]; ++j) {
 int v = adj[j];
 __m256 state_v = _mm256_load_ps((float*)(current + 32 * v));
 vali = _mm256_or_ps (vali, state_v);
 }
 _mm256_store_ps ((float*)(neighbor + 32 * i), vali);
 }
 //Update
 float flevel = 1.0f / (float) level;
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 __m256 nei = _mm256_load_ps ((float *)(neighbor + 32 * i));
 __m256 vis = _mm256_load_ps ((float *)(visited + 32 * i));
 __m256 cu = _mm256_andnot_ps (vis, nei);
 vis = _mm256_or_ps (nei, vis);
 int bcnt = bitCount_256(cu);
 if (bcnt > 0) {
 cc[i] += bcnt * flevel;
 cont = 1;
 }
 _mm256_store_ps ((float *)(visited + 32 * i), vis);
 _mm256_store_ps ((float *)(current + 32 * i), cu);
 }
 }
 }
 _mm_free(neighbor);
 _mm_free(current);
 _mm_free(visited);
}

Figure 1. Hardware vectorization using AVX for the SpMM-based
formulation of closeness centrality.

of each version becomes prohibitive. Therefore, we devel-

oped a unique code that allows to change the number of

sources concurrently traversed. Figure 3 presents this code

which has been carefully written to allow the compiler to

leverage vector instructions where possible. The key of this

code is to specify the number of simultaneous traversals

as a C++ template parameter instead of using a function

parameter. This forces the compiler to generate a differ-

ent object code for each value of the template parameter

vector_size (expressed in number of 32-bit words).

Therefore, it allows the compiler on a CPU architecture to

utilize the SSE instructions if vector_size is 4 or to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500 550

C
ac

he
 h

it
ra

tio

b

Amazon
Gowalla
Google
NotreDame
WikiTalk
Orkut
LiveJournal

Figure 2. Simulated cache-hit ratio of the SpMM variant on a 512K
cache (e.g., Intel Xeon Phi’s L2 cache).

utilize the AVX instructions if it is more than 8. The right

template parameter is selected in a wrapper function (not

shown here).

Instead of using explicit registers, this compiler vectorized

code expresses the state of the x vector as an array of 32-bit

integers. The compiler is hinted at unrolling these accesses

to prevent a loop and expose their vectorial nature. Though,

the C++ language does not directly allow that vectorization

to take place because the various pointers of the function

might point to overlapped memory. The __restrict__

language extension is used to instruct the compiler that none

of the arrays will ever overlap, allowing the compiler to

generate the vector instructions when it believes that they

are appropriate.

IV. EXPERIMENTS

The experiments are carried out on a system, equipped

with two Intel Sandybridge-EP CPUs clocked at 2.00Ghz

and 256GB of memory split across two NUMA domains.

Each CPU has eight cores (16 cores in total) and Hy-

perThreading is enabled. Each core has its own 32kB L1

cache and 256kB L2 cache. The 8 cores on a CPU share a

20MB L3 cache. The CPUs support Streaming SIMD Ex-

tensions (SSE) instruction set which originally added eight

new 128-bit registers and Advanced Vector Extension (AVX)

which provides an enhanced 256-bit instruction set with

wider vectors, newer syntax, and functionality.

The system also has an Intel Xeon Phi coprocessor with 8

memory controllers and 61 cores clocked at 1.05GHz. There

is a 32kB L1 data cache, a 32kB L1 instruction cache, and a

512kB L2 cache associated with each core. The bandwidth

of each core is 8.4GB/s per where the cores’ memory

interface are 32-bit wide with two channels. Although the

cores are expected to provide 512.4GB/s, the bandwidth

between the memory controllers and cores is limited by the

1390

template<int vector_size>
void cc_cpu_spmm_soft_vec_t (int* __restrict__ xadj,
 int* __restrict__ adj,
 int n, float* __restrict__ cc)
{
 int b = vector_size * 32;
 size_t size_alloc = n;
 size_alloc *= b / 8;
 int n_align = b / 8;
 char* __restrict__ neighbor = (char*)_mm_malloc(size_alloc, n_align);
 char* __restrict__ current = (char*)_mm_malloc(size_alloc, n_align);
 char* __restrict__ visited = (char*)_mm_malloc(size_alloc, n_align);
 for (int s = 0; s < n; s += b) {
 //Init
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 int cu[vector_size];
#pragma unroll
 for (int j = 0; j < vector_size; j++)
 cu[j] = 0;
 if (i >= s && i < s + b)
 cu[(i-s)>>5] = 1 << ((i-s)&0x1F);
#pragma unroll
 for (int k=0; k< vector_size; ++k)
 ((int*)current)[i*vector_size+k] = cu[k];
#pragma unroll
 for (int k=0; k< vector_size; ++k)
 ((int*)visited)[i*vector_size+k] = cu[k];
 }
 int cont = 1;
 int level = 0;
 while (cont != 0) {
 cont = 0;
 ++level;
 //SpMM
#pragma omp parallel for schedule (dynamic,CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 int vali[vector_size];
#pragma unroll
 for (int k = 0; k < vector_size; ++k)
 vali[k] = 0;
 for (int j = xadj[i]; j < xadj[i+1]; ++j) {
 int v = adj[j];
#pragma unroll
 for (int k = 0; k < vector_size; k++)
 vali[k] = vali[k] | ((int*)current)[v*vector_size+k];
 }
#pragma unroll
 for (int k = 0; k < vector_size; ++k)
 ((int*)neighbor)[i*vector_size+k] = vali[k];
 }
 //Update
 float flevel = 1.0f / (float)level;
#pragma omp parallel for schedule (dynamic,CC_CHUNK)
 for (int i = 0; i < n; ++i) {
 int cu[vector_size];
#pragma unroll
 for (int k = 0; k < vector_size; k++)
 cu[k] = ((int*)neighbor)[i*vector_size+k]
 & ~((int*)visited)[i*vector_size+k];
#pragma unroll
 for (int k = 0; k < vector_size; k++)
 ((int*)visited)[i*vector_size+k] = cu[k]
 | ((int*)visited)[i*vector_size+k];
 int bcount = 0;
#pragma unroll
 for (int k = 0; k < vector_size; k++)
 bcount += BitCount32(cu[k]);
 if (bcount > 0) {
 cc[i] += bcount * flevel;
 cont = 1;
 }
#pragma unroll
 for (int k = 0; k < vector_size; ++k)
 ((int*)current)[i*vector_size+k] = cu[k];
 }
 }
 }
 _mm_free(neighbor);
 _mm_free(current);
 _mm_free(visited);
}

Figure 3. Compiler vectorization for the SpMM-based formulation of
closeness centrality.

Table I
PROPERTIES OF THE LARGEST CONNECTED COMPONENTS OF THE

GRAPHS USED IN THE EXPERIMENTS. DIAMETER IS THE LENGTH OF

THE LONGEST PATH IN THE GRAPH.

Avg. Max.
Graph |V | |E| |adj(v)| |adj(v)| Diam.

Amazon 403K 4,886K 12.1 2,752 19
Gowalla 196K 1,900K 9.6 14,730 12
Google 855K 8,582K 10.0 6,332 18
NotreDame 325K 2,180K 6.6 10,721 27
WikiTalk 2,388K 9,313K 3.8 100,029 10
Orkut 3,072K 234,370K 76.2 33,313 9
LiveJournal 4,843K 85,691K 17.6 20,333 15

ring network in between which theoretically supports at most

220GB/s.

The true potential of Xeon Phi lies in its vector processing

unit. There are 32×512-bit vector registers on each of Intel

Xeon Phi’s cores, which can be used for integers or floating

point number (in double or single precision). They can be

used either as a vector of 8×64-bit values or as a vector

of 16×32-bit values, respectively. Many instructions, such

as addition or division, and mathematical operations can be

performed in vector processing unit. It allows to perform

8 basic operations, such as addition or multiplication, per

cycle in double precision (16 in single precision). A fused

multiply add unit allows to double that rate for application

that can leverage it.

On the software side, our system runs a 64-bit Debian with

Linux 2.6.39-bpo.2-amd64. All the codes are compiled with

icc version 13.1.3 with the -O3 optimization flag. We have

carefully implemented all the algorithms using C++. To have

a base-line comparison, we implemented OpenMP versions

of the CPU-based closeness centrality codes. Algorithm 1

consecutively uses the vertices with distance k to find the

vertices with distance k + 1. Hence, it visits the vertices

in a top-down manner. A BFS can also be performed in

a bottom-up manner, i.e., after all distance-k vertices are

found, the vertices with unknown distances are processed to

see if they have a neighbor at level k. The top-down variant

is expected to be much cheaper for small k values. However,

it can be more expensive for the lower levels where there are

much less unprocessed vertices remaining. For the baselines

without vectorization, we follow the idea of Beamer et al. [3]

and use a hybrid (top-down/bottom-up) BFS. That is while

processing the nodes at a BFS level, we simply compare

the number of edges need to be processed in the frontier

to the number of edges adjacent to unvisited vertices in

order to choose the cheaper variant. Other than direction

optimization (DO) [3], no particular optimization have been

applied to the OpenMP-based parallel CPU codes except the

ones performed by the compiler.

To evaluate the algorithms, we used seven graphs from

1391

��

���

���

���

���

���

	
��� ������ ���� ������
� �������� ����� ���� �����

��
!"

#

$"%&#'((&��
$"%&#'((&)
'&��
$"%&#'((&��*&##!
$"%&#'((&)
'&��*
$"%&#'((&��+&	,-
$"%&#'((&)
'&��+
"./&#'((&���
"./&#'((&)
'&���

Figure 4. Manual vs. compiler-based hardware vectorization: the manually
vectorized codes with hardware intrinsics such as SSE and AVX are only
slightly better than the compiler-vectorized ones.

the SNAP dataset1. Directed graphs were made undirected

and the largest connected component was extracted. The list

of graphs and the properties of the largest components that

are used in our experiments can be found in Table I.

A. Manual vs. compiler-based hardware vectorization

As a first experiment, we compare manual and compiler-

based hardware vectorization options to achieve better cen-

trality performance. For manual vectorization, we imple-

mented 32-bit, 128-bit SSE, 256-bit AVX (see Figure 1),

and 512-bit Intel Xeon Phi versions with various intrinsics

supported by the hardware for a concurrent execution of

32, 128, 256 and 512 BFSs, respectively. For compiler-

based vectorization, we used the code given in Figure 3 and

let the compiler optimize it with -O3 flag. Figure 4 gives

the performance results via a bar-chart in terms of billions

of traversed edges per second (GTEPS). The bars in the

figure with -comp keyword are the ones with the compiler-

vectorized versions. Almost for all the graphs, 512-bit Intel

Xeon Phi vectorization gives the best results. For Gowalla,

NotreDame, and WikiTalk, 256-bit versions are better.

Overall, manual vectorization is only slightly better than

compiler-based vectorization. This shows that if the code

is written in a generic and smart way, the compiler does its

job and optimizes relatively well.

B. Impact of the number of BFSs on the performance

Motivated by Figure 4, we evaluate the performance of

compiler-based hardware and software vectorization in terms

of the number of concurrent BFSs on CPU and Intel Xeon

Phi coprocessor. Figure 5 presents the results. Note that

the registers in the CPU are 256 bits whereas the ones

in Intel Xeon Phi are 512 bits (these values are marked

with vertical lines in the figure). For both architectures,

the acceleration of the performance decreases after those

1http://snap.stanford.edu/data/index.html

vertical lines, and software vectorization comes into play

since the register sizes are reached. Hence, we can argue that

as expected, hardware vectorization is much more effective

to improve the performance. However, its use is limited by

the register sizes. Besides, the performance usually increases

even with software vectorization. On Intel Xeon Phi, such

improvement is more visible.

For the CPU, there is no performance improvement on

any of the graphs when the number of BFSs is increased

from 4, 096 to 8, 192. This is expected since there are only

16 256-bit registers per core that can support only up to

4, 096 BFSs. For Xeon Phi, the number of 512-bit registers

per core is 32 which can support up to 16, 384 BFSs. All

of these conclude that the accelerator can make use of the

vectorization in a much better way. As the figures show, on

Orkut, Intel Xeon Phi reaches 77 GTEPS for the closeness

centrality computation whereas the CPU can reach only 36.3

GTEPS.

 1

 10

 100

 32 64 128 256 512 1024 2048 4096 8192

G
T

E
PS

b

Amazon
Gowalla
Google

NotreDame
WikiTalk

Orkut
LiveJournal

(a) CPU

 1

 10

 100

 32 64 128 256 512 1024 2048 4096 8192

G
T

E
PS

b

Amazon
Gowalla
Google

NotreDame
WikiTalk

Orkut
LiveJournal

(b) PHI

Figure 5. Performance of the compiler-based hardware (left of the vertical
lines) and software (right of the vertical lines) vectorization on CPU and
Intel Xeon Phi.

An interesting observation from Figure 5 is that the

1392

vectorized implementation shows a better performance and

obtain better speedups on particular graphs. For example,

the code shows its best performance on Orkut for both

CPU and Intel Xeon Phi architectures. We have multiple

reasonings for these performance differences as there are

various parameters, e.g., graph structure and cache usage,

that affect the performance. For example, increasing the

number of BFSs also increases the memory footprint that

can damage the cache utilization and be a bottleneck while

improving the performance.

In a traditional BFS code, the graph is loaded from mem-

ory once a single BFS is executed. On the other hand, in the

vectorized code, after a sufficient number of BFSs, the graph

is loaded at most d times, one per each BFS level, where

d is the diameter of the graph. In our experiments, all the

graphs are generated from real-world social networks which

already tend to have small diameters. However, Orkut has

the smallest one among the seven we used.

After a sufficient number of BFSs, i.e., the case where

each vertex appears at each BFS level for at least one BFS,

the number of BFSs does not effect the number of graph

loads. Hence, by using k times more concurrent BFSs, we

reduce the overall number of graph loads k times. The

impact of this gain on the overall performance depends on

the percentage of graph-loads and edge-traversals on the

overall execution time. The density of the graph, which is the

average number of neighbors per vertex, is a logical metric

to evaluate this impact since the rest of the operations, e.g.,

bit counting, usually depends the number of vertices. Indeed,

comparing the graph densities in Table I and performances

in Figure 5, it is easy to see that the performance improve-

ments are positively correlated with graph densities. That

is for denser graphs such as Orkut, LiveJournal, and

Amazon, the performance is better.

For practical evidence, we break the execution of the

compiler-based vectorization with 512 BFSs into three parts;

initialization, SpMM, and update. We show the individual

execution times of these parts on Intel Xeon Phi in Figure 6.

As explained above, when the number of BFSs is increased,

only the SpMM part is accelerated. Therefore, it is expected

that if the proportion of SpMM is high in the overall

execution then the performance improvement is more when

the number of BFSs is increased. For Orkut in the figure,

the percentage of the SpMM is higher compared to other

graphs. Therefore, its performance continues to increase

when the number of BFSs is increased.

Another reason of the performance differences is a simple

observation from Figure 2. Recalling that Orkut already

has a bad cache-hit ratio with 32 BFSs and it does not get

worse after 256 BFSs, it is expected that the cache-hit ratio

will not be a bottleneck on the performance improvement

for Orkut. On the other hand, for NotreDame, the cache-

hit ratio is really good with 32 BFSs and it gets significantly

worse as the number of BFSs increases. This behavior

negatively affects the performance improvement trend for

NotreDame as shown in Figure 5.

��

����

����

����

����

�	

�	��

�	��

���� ������� ������ ����������������� ����� �� �!������

"���
#$%%

&$'���

Figure 6. The Init, SpMM, and Update times (in proportion) on Intel Xeon
Phi with 512 concurrent BFS for the seven graphs used in the experiments.

C. Comparing the vectorized code with non-vectorized one

We compare the proposed compiler-based hardware and

software vectorized implementation (denoted with -comp)

with the state-of-the-art non-vectorized parallel imple-

mentation in terms of the traversed giga-edges per sec-

ond (GTEPS). Figure 7 presents the results of the com-

parison with the direction-optimized CPU code (denoted

with -DO). The results are presented for the CPU and Intel

Xeon Phi architectures separately. For software vectoriza-

tion, 4, 096 and 8, 192 BFSs are used for CPU and Intel

Xeon Phi, respectively. For all graphs and both architecture,

the hardware vectorized variants perform better than the

direction optimized baseline, and the software vectorized

variants performs better than the hardware vectorized one.

For example, on Orkut, the proposed approach with 8, 192
BFSs on Intel Xeon Phi is 11.08 times faster than parallel

state-of-the-art technique on CPU. Table II presents the

relative improvement achieved on both CPU and Phi using

software vectorization for all the graphs compared to the

state-of-the-art CPU-DO. The improvement on the CPU

ranges from 1.67 to 6.29 times faster with an average of

3.71 times faster. On Intel Xeon Phi, it ranges from 1.71 to

11.82 times faster and averages at 4.55 times faster.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed hardware and software vector-

ization for closeness centrality computation. We utilized the

given architectures efficiently by applying multiple BFS op-

erations at the same time. Comparison of different vectoriza-

tion schemes are presented and experimentally evaluated on

cutting-edge hardware Intel x86 many-core and multi-core

architectures. For vectorizing the code, we showed that one

does not need to dwell into low-level hardware intrinsics,

instead one can implement the code at a high-level in C++,

1393

��

���

���

���

���

���

�	�

�
�

���

����� ������� ������ �������� �������� ��� � !�"�#� ����

��
$%
&

'%()��
'%()&*++)��)�,-
'%()&*++).�*)��/	
%01)��
%01)&*++)���
%01)&*++).�*)��/�

Figure 7. Comparison of the proposed vectorized implementation with
the directed optimized implementation (aka. -DO).

CPU PHI
Graph DO SpMM-4096 SpMM-8192

Amazon 4.4 17.8 (3.97x) 24.9 (5.55x)
Gowalla 8.8 25.4 (2.86x) 15.2 (1.71x)
Google 3.4 14.8 (4.30x) 23.5 (6.79x)

NotreDame 6.3 10.6 (1.67x) 11.2 (1.77x)
WikiTalk 4.7 17.3 (3.68x) 12.9 (2.74x)

Orkut 7.0 36.3 (5.19x) 77.7 (11.08x)
LiveJournal 3.5 22.1 (6.29x) 41.6 (1.82x)

Geo. Mean (3.71x) (4.55x)

Table II
PERFORMANCE OF THE STATE-OF-THE-ART ALGORITHM CPU-DO AND

OF THE PROPOSED TECHNIQUE ON CPU (CPU-SpMM-comp-4096)
AND ON XEON PHI (PHI-SpMM-comp-8192) USING SOFTWARE

VECTORIZATION. PERFORMANCE IS EXPRESSED IN GTEPS, THE RATIO

TO CPU-DO IS GIVEN BETWEEN THE PARENTHESIS.

and modern compilers can automatically vectorize the code,

albeit for a very small performance deficit. Furthermore, we

showed that using software vectorization, on top of hardware

vectorization, we can further improve the performance. With

all the techniques we proposed in this study, we achieve

performance up to 11 times faster than the state-of-the-art

techniques on CPU.

As a future work, we would like to extend our studies

to other modern architectures and investigate an analytical

model to chose the best vector size for a given input graph

and architecture properties.

We believe that our proposed techniques can be applied

for other graph kernels as well as other irregular computa-

tions that requires multiple traversals. Use of vectorization

techniques, such as the ones proposed in this work, are

inevitable to achieve good performance on the modern multi-

and many-core architectures with the wide vector units.

ACKNOWLEDGMENT

This work was partially supported by the Defense Threat

Reduction Agency grant HDTRA1-14-C-0007. We are also

thankful to Intel for providing us the Intel Xeon Phi card

used in the experiments.

REFERENCES

[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable
graph exploration on multicore processors. In SuperComput-
ing, pages 1–11, 2010.

[2] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. Fast ex-
act computation of betweenness centrality in social networks.
In Proceedings of International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), 2012.

[3] S. Beamer, K. Asanović, and D. Patterson. Direction-
optimizing breadth-first search. In Proceedings of Supercom-
puting (SC), 2012.

[4] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based sparse
matrix representation for memory-efficient SMVM kernels.
In Proc. of ICS, pages 100–109, 2009.

[5] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[6] A. Buluç and J. R. Gilbert. The combinatorial BLAS: Design,
implementation, and applications. International Journal of
High Performance Computing Applications (IJHPCA), 2011.

[7] A. Buluç, S. Williams, L. Oliker, and J. Demmel. Reduced-
bandwidth multithreaded algorithms for sparse matrix-vector
multiplication. In Proc. IPDPS, 2011.

[8] Ö. Şimşek and A. G. Barto. Skill characterization based
on betweenness. In Proceedings of Neural Information
Processing Systems (NIPS), 2008.

[9] M. Frasca, K. Madduri, and P. Raghavan. NUMA-aware
graph mining techniques for performance and energy effi-
ciency. In High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for, pages
1–11, 2012.

[10] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart. Edge
vs. node parallelism for graph centrality metrics. In GPU
Computing Gems: Jade Edition. Morgan Kaufmann, 2011.

[11] S. Jin, Z. Huang, Y. Chen, D. G. Chavarrı́a-Miranda, J. Feo,
and P. C. Wong. A novel application of parallel betweenness
centrality to power grid contingency analysis. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1–7, 2010.

[12] R. Lichtenwalter and N. V. Chawla. DisNet: A framework
for distributed graph computation. In Proceedings of Inter-
national Conference on Advances in Social Networks Analysis
and Mining (ASONAM), 2011.

[13] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient
sparse matrix-vector multiplication on x86-based many-core
processors. In Proceedings of the 27th international ACM
conference on International conference on supercomputing,
ICS ’13, pages 273–282, New York, NY, USA, 2013. ACM.

[14] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G.
Chavarrı́a-Miranda. A faster parallel algorithm and efficient
multithreaded implementations for evaluating betweenness
centrality on massive datasets. In 23rd International Sym-
posium on Parallel and Distributed Processing, Workshops
and PhD Forum (IPDPSW), Workshop on Multithreaded
Architectures and Applications (MTAAP), 2009.

1394

[15] E. L. Merrer and G. Trédan. Centralities: Capturing the fuzzy
notion of importance in social graphs. In Proceedings of the
Second ACM EuroSys Workshop on Social Network Systems
(SNS), 2009.

[16] D. Mizell and K. Maschhoff. Early experiences with large-
scale Cray XMT systems. In 23rd International Symposium
on Parallel and Distributed Processing, Workshops and PhD
Forum (IPDPSW), Workshop on Multithreaded Architectures
and Applications (MTAAP), pages 1–9, May 2009.

[17] P. Pande and D. A. Bader. Computing betweenness centrality
for small world networks on a GPU. In 15th Annual High
Performance Embedded Computing Workshop (HPEC), 2011.

[18] M. C. Pham and R. Klamma. The structure of the computer
science knowledge network. In Proceedings of International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM), 2010.

[19] A. E. Sarıyüce, K. Kaya, E. Saule, and Ü. V. Çatalyürek.
Betweenness centrality on GPUs and heterogeneous architec-
tures. In Proceedings of the 6th Workshop on General Pur-
pose Processor Using Graphics Processing Units, GPGPU-6,
2013.

[20] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Shat-
tering and compressing networks for betweenness centrality.
In SIAM Data Mining Conference (SDM), 2013.

[21] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek.
STREAMER: a distributed framework for incremental close-
ness centrality computation. In Proc. of IEEE Cluster 2013,
Sep 2013.

[22] E. Saule and Ü. V. Çatalyürek. An early evaluation of the
scalability of graph algorithms on the intel mic architecture.
In 26th International Symposium on Parallel and Distributed
Processing, Workshops and PhD Forum (IPDPSW), Workshop
on Multithreaded Architectures and Applications (MTAAP),
May 2012.

[23] E. Saule, K. Kaya, and Ü. V. Çatalyürek. Performance
evaluation of sparse matrix multiplication kernels on intel
xeon phi. In Proc. of the 10th Int’l Conf. on Parallel
Processing and Applied Mathematics (PPAM), Sep 2013.

[24] Z. Shi and B. Zhang. Fast network centrality analysis using
GPUs. BMC Bioinformatics, 12:149, 2011.

[25] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Proc. SciDAC
2005, J. of Physics: Conference Series, 2005.

1395

