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Abstract

The betweenness metric has always been intriguing and
used in many analyses. Yet, it is one of the most com-
putationally expensive kernels in graph mining. For
that reason, making betweenness centrality computa-
tions faster is an important and well-studied problem.
In this work, we propose the framework, BADIOS,
which compresses a network and shatters it into pieces
so that the centrality computation can be handled in-
dependently for each piece. Although BADIOS is de-
signed and tuned for betweenness centrality, it can eas-
ily be adapted for other centrality metrics. Experimen-
tal results show that the proposed techniques can be a
great arsenal to reduce the centrality computation time
for various types and sizes of networks. In particular,
it reduces the computation time of a 4.6 million edges
graph from more than 5 days to less than 16 hours.
Keywords: Betweenness centrality; network analysis;
graph mining

1 Introduction

Centrality metrics play an important role while detect-
ing the central and influential nodes in various types
of networks such as social networks [18], biological net-
works [15], power networks [12], covert networks [16]
and decision/action networks [6]. The betweenness met-
ric has always been an intriguing one and has been
implemented in several tools which are widely used in
practice for analyzing networks and graphs [19]. In
short, the betweenness centrality (BC) score of a node
is the sum of the fractions of the shortest paths be-
tween node pairs that pass through the node of in-
terest [8]. Hence, it is a measure of the contribu-
tion/load/influence/effectiveness of a node while dis-
seminating information through a network.

Although BC has been proved to be successful for

∗This work was partially supported by the U.S. Department
of Energy SciDAC Grant DE-FC02-06ER2775 and NSF grants
CNS-0643969, OCI-0904809 and OCI-0904802.

network analysis, computing the centrality scores of all
the nodes in a network is expensive. Brandes pro-
posed an algorithm for computing BC with O(nm) and
O(nm + n2 log n) time complexity and O(n + m) space
complexity for unweighted and weighted networks, re-
spectively, where n is the number of nodes in the net-
work and m is the number of node-node interactions in
the network [2]. Brandes’ algorithm is currently the best
algorithm for BC computations and it is unlikely that
general algorithms with better asymptotic complexity
can be designed [14]. However, it is not fast enough to
handle Facebook’s billion or Twitter’s 200 million users.

In this work, we propose the BADIOS frame-
work which uses a set of techniques (based on
Bridges, Articulation, Degree-1, and Identical vertices,
Ordering, and Side vertices) for faster betweenness cen-
trality computation. The framework shatters the net-
work and reduces its size so that the BC scores of the
nodes in two different pieces of network can be com-
puted correctly and independently, and hence, in a more
efficient manner. It also preorders the graph to improve
cache utilization. The source code of BADIOS1 and a
technical report [22] are available.

For the sake of simplicity, we consider only stan-
dard, shortest-path vertex-betweenness centrality on
undirected unweighted graph. However, our techniques
can be used for other path-based centrality metrics
such as closeness, or other BC variants, e.g., edge
and group betweenness [3]. BADIOS also applies to
weighted and/or directed networks. And all the tech-
niques are compatible with previously proposed approx-
imation and parallelization of the BC computation.

We apply BADIOS on a popular set of graphs with
sizes ranging from 6K edges to 4.6M edges. We show an
average speedup 2.8 on small graphs and 3.8 on large
ones. In particular, for the largest graph we use, with
2.3M vertices and 4.6M edges, the computation time is
reduced from more than 5 days to less than 16 hours.

1http://bmi.osu.edu/hpc/software/badios/
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The rest of the paper is organized as follows:
In Section 2, an algorithmic background for BC is
given. The shattering and compression techniques are
explained in Section 3. Section 4 gives experimental
results on various kinds of networks. We give the related
work in Section 5 and conclude the paper with Section 6.

2 Background

Let G = (V,E) be a network modeled as a simple graph
with n = |V | vertices and m = |E| edges where each
node is represented by a vertex in V , and a node-node
interaction is represented by an edge in E. Let Γ(v) be
the set of vertices which are connected to v.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. A path is a sequence of vertices such that
there exists an edge between consecutive vertices. A
path between two vertices s and t is denoted by s t.
Two vertices u, v ∈ V are connected if there is a path
from u to v. If all vertex pairs are connected we say
that G is connected. If G is not connected, then it is
disconnected and each maximal connected subgraph of
G is a connected component, or a component, of G.

Given a graph G = (V,E), an edge e ∈ E is a
bridge if G − e has more connected components than
G, where G − e is obtained by removing e from E.
Similarly, a vertex v ∈ V is called an articulation vertex
if G− v has more connected components than G, where
G− v is obtained by removing v and its adjacent edges
from V and E, respectively. G is biconnected if it
is connected and it does not contain an articulation
vertex. A maximal biconnected subgraph of G is a
biconnected component: if G is biconnected it has only
one biconnected component, which is G itself.

G = (V,E) is a clique if and only if ∀u, v ∈ V ,
{u, v} ∈ E. The subgraph induced by a subset of vertices
V ′ ⊆ V is G′ = (V ′, E′ = {V ′ × V ′} ∩ E). A vertex
v ∈ V is a side vertex of G if and only if the subgraph
of G induced by Γ(v) is a clique. Two vertices u and v
are identical if and only if either Γ(u) = Γ(v) (type-I)
or {u} ∪ Γ(u) = {v} ∪ Γ(v) (type-II). A vertex v is a
degree-1 vertex if and only if |Γ(v)| = 1.

2.1 Betweenness Centrality: Given a connected
graph G, let σst be the number of shortest paths from
a source s ∈ V to a target t ∈ V . Let σst(v) be the
number of such s  t paths passing through a vertex
v ∈ V , v 6= s, t. Let the pair dependency of v to s, t

pair be the fraction δst(v) = σst(v)
σst

. The betweenness
centrality of v is defined by

(2.1) bc[v] =
∑

s 6=v 6=t∈V

δst(v).

Since there are O(n2) pairs in V , one needs O(n3)

operations to compute bc[v] for all v ∈ V by us-
ing (2.1). Brandes reduced this complexity and pro-
posed an O(mn) algorithm for unweighted networks [2].
The algorithm is based on the accumulation of pair de-
pendencies over target vertices. After accumulation, the
dependency of v to s ∈ V is

(2.2) δs(v) =
∑
t∈V

δst(v).

Let Ps(u) be the set of u’s predecessors on the
shortest paths from s to all vertices in V . That is,

Ps(u) = {v ∈ V : {u, v} ∈ E, ds(u) = ds(v) + 1}

where ds(u) and ds(v) are the shortest distances from
s to u and v, respectively. Ps defines the shortest paths
graph rooted in s. Brandes observed that the accumu-
lated dependency values can be computed recursively:

(2.3) δs(v) =
∑

u:v∈Ps(u)

σsv

σsu
× (1 + δs(u)) .

To compute δs(v) for all v ∈ V \ {s}, Brandes’
algorithm uses a two-phase approach (Algorithm 1).
First, a breadth first search (BFS) is initiated from s
to compute σsv and Ps(v) for each v. Then, in a back
propagation phase, δs(v) is computed for all v ∈ V
in a bottom-up manner by using (2.3). Each phase
considers all the edges at most once, taking O(m) time.
The phases are repeated for each source vertex. The
overall complexity is O(mn).

3 Shattering and Compressing Networks

BADIOS uses bridges and articulation vertices for
shattering graphs. These structures are important
since for many vertex pairs s, t, all s  t (shortest)
paths are passing through them. It also uses three
compression techniques, based on removing degree-1,
side, and identical vertices from the graph. These
vertices have special properties: The BC score of each
degree-1 and side vertex is 0, since they cannot be on
a shortest path unless they are one of the endpoints.
And when u and v are identical, bc[u] and bc[v] are
equal. A toy graph and a basic shattering/compression
process via BADIOS is given in Figure 1.

Exploiting the existence of above mentioned struc-
tures on BC computations can be crucial. For exam-
ple, all non-leaf vertices in a binary tree T = (V,E)
are articulation vertices. When Brandes’ algorithm is
used, the complexity of BC computation is O(n2). One
can do much better: Since there is exactly one path
between each vertex pair in V , for v ∈ V , bc[v] is
equal to the number of pairs communicating via v, i.e.,
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Data: G = (V, E)
bc[v]← 0, ∀v ∈ V
for each s ∈ V do

S ← empty stack, Q← empty queue
P[v]← empty list, σ[v]← 0, d[v]← −1, ∀v ∈ V
Q.push(s), σ[s]← 1, d[s]← 0
.Phase 1: BFS from s
while Q is not empty do

v ← Q.pop(), S.push(v)
for all w ∈ Γ(v) do

if d[w] < 0 then
Q.push(w)
d[w]← d[v] + 1

if d[w] = d[v] + 1 then
1 σ[w]← σ[w] + σ[v]

P[w].push(v)
.Phase 2: Back propagation
δ[v]← 0, ∀v ∈ V
while S is not empty do

w ← S.pop()
for v ∈ P [w] do

2 δ[v]← δ[v] + σ[v]
σ[w]
× (1 + δ[w])

if w 6= s then
3 bc[w]← bc[w] + δ[w]

return bc

Algorithm 1: Bc-Org

bc[v] = 2×((lvrv) + (n− lv − rv − 1)(lv + rv)) where lv
and rv are the number of vertices in the left and right
subtrees of v, respectively. This approach takes only
O(n) time. A similar argument can be given for cliques
since every vertex is a side vertex and has a 0 BC score.

As shown in Figure 1, BADIOS applies a series
of operations as a preprocessing phase: Let G = G0

be the initial graph, and G` be the one after the
`th shattering/compression operation. The ` + 1th
operation modifies a single connected component of G`

and generates G`+1. The preprocessing continues if
G`+1 is amenable to further modification. Otherwise,
it terminates and the final BC computation phase of
the framework begins.

3.1 Shattering Graphs: Let G = (V,E) be the
original graph. For simplicity, we assume that G is
connected. To correctly compute the BC scores after
shattering G, we assign a reach attribute to each vertex.
Let v′ be a vertex in C ′, a component in the shattered
graph G′: reach[v′] is the number of vertices in G which
are only reachable from C ′ via v′. At the beginning, we
set reach[v] = 1 for all v ∈ V .

3.1.1 Shattering with articulation vertices: Let
u′ be an articulation vertex in a component C ⊆ G`

after the `th operation of the preprocessing phase. We
first shatter C into k (connected) components Ci for
1 ≤ i ≤ k by removing u′ from G` and adding a local

a

b b
b'

c

d

c{d}

e

c{d,e} f

g

h

1 32 54

Figure 1: (1) a is a degree-1 vertex and b is an articulation
vertex. The framework removes a and create a copy b′

to represent b in the bottom component. (2) There is no
degree-1, articulation, or identical vertex, or a bridge.
Vertices b and b′ are now side vertices and they are
removed. (3) Vertex c and d are now type-II identical
vertices: d is removed, and c is kept. (4) Vertex c and e
are now type-I identical vertices: e is removed, and c is
kept. (5) Vertices c and g are type-II identical vertices
and f and h are now type-I. The last reductions are not
shown but the bottom component is compressed to a
singleton vertex. The 5-cycle above cannot be reduced.

copy u′i of u′ to each new component by connecting u′i
to the same vertices u was connected within Ci. The
reach values for each local copy is set with

(3.4) reach[u′i] =
∑

v′∈C\Ci

reach[v′]

for 1 ≤ i ≤ k. We will use org(v′) to denote the
mapping from V ′ to V , which maps a local copy v′ ∈ V ′

to the corresponding original copy in V .
At any time of the preprocessing phase, a vertex s ∈

V has exactly one representative u′ in each component
C such that reach[u′] is incremented by one due to s.
This vertex is denoted as rep(C, s). Note that each
local copy is a representative of its original. Note also
that, if rep(C, s) = u′ and rep(C, t) = v′ with v′ 6= u′

then org(u′) is on all s t paths in G.
Algorithm 2 computes the BC scores of the vertices

in a shattered graph. Note that the only difference with
Bc-Org are lines 1 and 3, and if reach[v] = 1 for all
v ∈ V , then the algorithms are equivalent. Hence, the
complexity of Bc-Reach is alsoO(mn) for a graph with
n vertices and m edges.

Let G = (V,E) be the initial graph, |V | = n, and
G′ = (V ′, E′) be the one shattered via preprocessing.
Let bc and bc′ be the scores computed by Bc-Org(G)
and Bc-Reach(G′), respectively. We will prove that

(3.5) bc[v] =
∑

v′∈V ′|org(v′)=v

bc′[v′],
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Data: G′ = (V ′, E′) and reach
bc′[v]← 0, ∀v ∈ V ′

for each s ∈ V ′ do
· · · .same as Bc-Org
while Q is not empty do
· · · .same as Bc-Org

1 δ[v]← reach[v]− 1, ∀v ∈ V ′

while S is not empty do
w ← S.pop()
for v ∈ P[w] do

2 δ[v]← δ[v] + σ[v]
σ[w]
× (1 + δ[w])

if w 6= s then
3 bc′[w]← bc′[w] + (reach[s]× δ[w])

return bc’
Algorithm 2: Bc-Reach

when the graph is shattered at articulation vertices.
That is, bc[v] is distributed to bc′[v′]s where v′ is a
local copy of v. Let us start with two lemmas.

Lemma 3.1. Let u, v, s be vertices of G such that all
s v paths contain u. Then, δs(v) = δu(v).

Proof. For any target vertex t, if σst(v) is positive then

δst(v) =
σst(v)
σst

=
σsuσut(v)
σsuσut

=
σut(v)
σut

= δut(v)

since all s t paths are passing through u. According
to (2.2), δs(v) = δu(v).�

Lemma 3.2. For any vertex pair s, t ∈ V , there exists
exactly one component C of G′ which contains a copy
of t and a representative of s as two distinct vertices.

Proof. (by induction) Given s, t ∈ V , the statement is
true for the initial (connected) graph G since it contains
one copy of each vertex. Assume that it is also true
after the `-th shattering. Let C be this component.
When C is further shattered via t’s copy, all but one
newly formed (sub)components contains a copy of t as
the representative of s. For the remaining component
C ′, rep(C ′, s) = rep(C, s) which is not a copy of t.

For all components other than C, which contain
a copy t′ of t, the representative of s is t′ by the
inductive assumption. When such components are
further shattered, the representative of s will be again
a copy of t. Hence the statement is true for G`+1, and
by induction, also for G′.�

The local copies of an articulation vertex v, cre-
ated while shattering, will take the role of v in their
components. Once the reach value for each copy is
set as in (3.4), line 1 of Bc-Reach handles the BC
contributions from each new component (except the one
containing the source), and line 3 of Bc-Reach fixes the
contribution of vertices reachable only via the source s.

Theorem 3.1. Eq. 3.5 is correct after shattering G
with articulation vertices.

Proof. Let C be a component of G′, s′, v′ be two vertices
in C, and s, v be their original vertices in V , respectively.
Note that reach[v′]− 1 is the number of vertices t 6= v
such that t does not have a copy in C and v lies on all
s t paths in G. For all such vertices, δst(v) = 1, and
the total dependency of v′ to all such t is reach[v′]− 1.
When the BFS is started from s′, line 1 of Bc-Reach
initiates δ[v′] with this value and computes the final
δ[v′] = δs′(v′). This is the same dependency δs(v)
computed by Bc-Org.

Let C be a component of G′, u′ and v′ be two
vertices in C, and u = org(u′), v = org(v′). According
to the above paragraph, δu(v) = δu′(v′) where δu(v)
and δu′(v′) are the dependencies computed by Bc-Org
and Bc-Reach, respectively. Let s ∈ V be a vertex,
s.t. rep(C, s) = u′. According to Lemma 3.1, δs(v) =
δu(v) = δu′(v′). Since there are reach[u′] vertices
represented by u′ in C, the contribution of the BFS
from u′ to the BC score of v′ is reach[u′] × δu′(v′) as
shown in line 3 of Bc-Reach. Furthermore, according
to Lemma 3.2, δs′(v′) will be added to exactly one copy
v′ of v. Hence, (3.5) is correct.�

3.1.2 Shattering with bridges: Although the ex-
istence of a bridge implies the existence of two artic-
ulation vertices, handling bridges are easier and only
requires the removal of the bridge. We embed this op-
eration to BADIOS as follows: Let G` be the shat-
tered graph obtained after ` operations, and let {u′, v′}
be a bridge in a component C of G`. Hence, u′ and
v′ are both articulation vertices. Let u = org(u′) and
v = org(v′). A bridge removal operation is similar to a
shattering via an articulation vertex, however, no new
copies of u or v are created. Instead, we let u′ and v′ act
as a copy of v and u in the newly created components.

Let Cu and Cv be the components formed after re-
moving edge {u′, v′} which contain u′ and v′, respec-
tively. Similar to (3.4), we add

∑
w∈Cv

reach[w] and∑
w∈Cu

reach[w] to reach[u′] and reach[v′], respec-
tively, to make u′ (v′) the representative of all the ver-
tices in Cv (Cu).

After a bridge removal, updating the reach values
is not sufficient to make Lemma 3.2 correct. No
component contains distinct representative of u (v) and
copy of v (u) anymore. Hence, δv(u) and δu(v) will
not be added to any copy of u and v, respectively, by
Bc-Reach. But we can compute the difference and add

δv′(u′) =

(( ∑
w∈Cu

reach[w]

)
− 1

)
×
∑

w∈Cv

reach[w],
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to bc′[u′] and δu′(v′) to bc′[v′], where δu′(v′) is com-
puted by interchanging u and v in the right side of the
above equation. Note that Lemma 3.2 is correct for all
other vertex pairs.

Corollary 1. Eq. 3.5 is correct after shattering G
with articulation vertices and bridges.

3.2 Compressing Graphs: BADIOS’s compres-
sion techniques aim to reduce the number of vertices
and edges in the graph.

3.2.1 Compression with degree-1 vertices: Let
G` be the graph after ` operations, and let u′ ∈ C be a
degree-1 vertex in a component C of G` which is only
connected to v′. Removing a degree-1 vertex from a
graph is the same as removing the bridge {u′, v′} from
G`. But this also reduces the number of vertices. Hence,
we handle this case separately and set G`+1 = G` − u′.
The updates are the same as the ones for bridge removal.
That is, we add reach[u′] to reach[v′] and increase
bc′[u′] and bc′[v′], respectively, with

δv′(u′) = (reach[u′]− 1)×
∑

w∈C\{u′}

reach[w],

δu′(v′) =

 ∑
w∈C\{u′}

reach[w]

− 1

× reach[u′].

Corollary 2. Eq. 3.5 is correct after shattering G
with articulation vertices and bridges, and compressing
it with degree-1 vertices.

3.2.2 Compression with identical vertices: If
some vertices in G are identical their BC scores are the
same. Hence, it is possible to combine these vertices and
avoid extra computation. We use 2 types of identical
vertices: Vertices u and v are type-I (or type-II) identi-
cal if and only if Γ(u) = Γ(v) (or Γ(u) ∪ {u} = Γ(v) ∪
{v}). For the identical-vertex-based compression, we as-
sign an ident attribute to each vertex where ident(v′)
denotes the number of vertices in G that are identical
to v′ in G′. Initially, ident[v′] is set to 1 for all v ∈ V .

The compression works as follows: Let G` =
(V`, E`) be the graph after ` operations, and let I ⊂ V`

be a set of identical vertices. To obtain G`+1, we remove
all u′ ∈ I from G` except one, which acts as a proxy
for the others. Let v′ ∈ V`+1 be the proxy vertex.
We increase ident[v′] by

∑
v′′∈I,v′′ 6=v′ ident[v′′], and

associate a list I\{v′} with v′. The integration of
the identical-vertex compression is realized in three
modifications on Algorithm 1: During the first phase,
line 1 is changed to σ[w]← σ[w]+σ[v]×ident[v], since
v can be a proxy for some vertices other than itself.

Similarly, w can be a proxy, and line 2 is modified as
δ[v] ← δ[v] + σ[v]

σ[w] × (δ[w] + 1) × ident[w] to correctly
simulate w’s identical vertices. Finally, the source s
can be a proxy, and the current BFS phase can be
a representative for ident[s] phases. To handle that,
the BC updates at line 3 are changed to bc′[w] ←
bc′[w]+ident[s]×δ[w]. The BC scores of all the vertices
in I are equal.

The only paths ignored via these modifications are
the paths between u ∈ I and v ∈ I. If I is type-II
the u v path contains a single edge and has no effect
on dependency (and BC) values. However, if I is type-
I, such paths have some impact. Fortunately, it only
impacts the immediate neighbors’ BC scores of I. Since
there are exactly

∑
u∈I(ident[u](

∑
v∈I,u 6=v ident[v]))

such paths, this amount is equally distributed among
the immediate neighbors of I.

The technique presented in this section has been
presented without taking the reach attribute into ac-
count. Both attributes can be maintained simultane-
ously. The details are not presented here due to space
limitation. The main challenge is to keep track of the
BC of each identical vertex since they can differ if the
reach value of the identical vertices are not equal to 1.

Corollary 3. Eq. 3.5 is correct after shattering G
with articulation vertices and bridges, and compressing
it with degree-1, and identical vertices.

3.2.3 Compression with side vertices: Let G` be
the graph after ` operations, and let u′ be a side vertex
in a component C of G`. Since Γ(u′) is a clique, no
shortest path is passing through u′, i.e., u′ is always
on the sideways. Hence, we can remove u′ from G` by
only compensating the effect of the shortest s′  t′

paths where u′ is either s′ or t′. To do this, we
initiate a BFS from u′ similar to the one in Bc-Reach.
As Algorithm 3 shows, the only differences are two
additional lines 1 and 2.

Data: G` = (V`, E`), a side vertex s, reach, and bc′

· · · .same as Bc-Reach
while Q is not empty do
· · · .same as the BFS in Bc-Reach

δ[v]← reach[v]− 1, ∀v ∈ V`

while S is not empty do
w ← S.pop()
for v ∈ P[w] do

δ[v]← δ[v] + σ[v]
σ[w]

(1 + δ[w])

if w 6= s then
bc′[w]← bc′[w] + (reach[s]× δ[w])+

1 (reach[s]× (δ[w]− (reach[w]− 1))
2 bc′[s]← bc′[s] + (reach[s]− 1)× δ[s]

return bc’
Algorithm 3: Bfs-Side
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Let v′, w′ be two vertices in C different than u′, and
v, w be their original vertices. Although both vertices
will keep existing in C − u′, since u′ will be removed,
δv′(w′) will be reach[u′] × δv′u′(w′) less than it should
be. For all such v′, the aggregated dependency will be∑

v′∈C,v′ 6=w′

δv′u′(w′) = δu′(w′)− (reach[w′]− 1),

since none of the reach[w′] − 1 vertices represented by
w′ lies on a v′  u′ path and δv′u′(w′) = δu′v′(w′). The
same dependency appears for all vertices represented
by u′. Line 1 of Bfs-Side takes into account all these
dependencies.

Let s ∈ V be a vertex s.t. rep(C, s) = v′ 6= u′.
When we remove u′ from C, due to Lemma 3.2, δs(u) =
δv′(u′) will not be added to any copy of u. Since, u′ is
a side vertex, δv′(u′) = reach[u′] − 1. Since there are∑

v′∈C−u′ reach[v′] vertices which are represented by a
vertex in C − u′, we add

(reach[u′]− 1)×
∑

v′∈C−u′

reach[v′]

to bc′[u′] after removing u′ from C. Line 2 of Bfs-Side
compensates this loss.

Removing a single side vertex has a little impact of
the overall time since Bfs-Side is almost as expensive
as Bc-Org for a given source. The main interest of
side vertices removal is to discover new special vertices
in the graph, which are cheaper to remove.

Corollary 4. Eq. 3.5 is correct after shattering G
with articulation vertices and bridges, and compressing
it with degree-1, identical, and side vertices.

3.3 Combination of Techniques: BADIOS’s pre-
processing phase is a loop where an iteration tries to
shatter/compress the graph by the techniques until no
reduction is possible. Indeed, a single iteration does not
cover all the reduction possibilities, since each technique
can make the graph amenable to another one. This is
one of the novel features of the framework. More specif-
ically, a degree-1 removal can create new degree-1, iden-
tical, and side vertices. Or, a shattering can reveal new
degree-1 and side vertices. Similarly, by removing an
identical vertex, new identical, degree-1, articulation,
and side vertices can appear. And lastly, new iden-
tical and degree-1 vertices can be discovered when a
side vertex is removed from the graph. Hence, a loop
is necessary to fully exploit the reduction. BADIOS
first applies degree-1 removal since it is the cheapest to
handle. Next, it shatters the graph by first removing
the bridges, and then articulation vertices. The order
is important for efficiency because a bridge removal is
cheaper than an articulation point removal. We then

remove the identical vertices in the graph in the order
of type-II and type-I. Notice that type-II removals can
reveal new type-I identical vertices but the reverse is
not possible. The framework iteratively uses these 4
techniques until it reaches a point where no reduction is
possible. At that point, it removes the side vertices to
discover new special vertices. The reason behind delay-
ing the side-vertex removal is that it is expensive, i.e.,
an extra two-phase BFS is needed. Hence, BADIOS
does not use side vertices until it really needs them.

3.4 Implementation Details: Linear time algo-
rithms for articulation vertex and bridge detection ex-
ist [24, 10]. BADIOS uses the algorithm in [10] to
detect the articulation vertices and it decomposes the
graph into its biconnected components at once. Al-
though the final decomposition is the same when the
graph is iteratively shattered one vertex at a time, a
biconnected component decomposition is faster. A sim-
ilar approach has also been employed for the bridges
and they are removed at once.

For compression, detecting all degree-1 vertices in
a single iteration takes O(m + n) time. Detecting
identical vertices is also expected to be a linear-time
process if for all v ∈ V`, the hash of Γ(v) is computed
via a collision resistant function. In BADIOS, for all
v ∈ V`, we use hash(v) =

∑
u∈Γ(v) u. Upon collision of

hash values, the neighborhood of the two vertices are
explicitly compared.

To detect a side vertex v of degree k, we use a simple
algorithm which verifies if the graph induced by Γ(v) is
a k-clique. BADIOS only searches for cliques of less
than 5 vertices, since preliminary experiments showed
that searching larger cliques is expensive to be practical.
Similar to shattering, after detecting all vertices from
a certain type, we apply a cumulative compression
operation to remove all the detected vertices at once.

4 Experimental Results

We implemented BADIOS in C++. The code is
compiled with gcc v4.4.4 and optimization flags -O2
-DNDEBUG. The graph is kept in memory in the com-
pressed row storage (CRS) format. The experiments
are run on a computer with two Intel Xeon E5520 CPU
clocked at 2.27GHz and equipped with 48GB of main
memory. All the experiments are run sequentially.

For the experiments, we used 19 networks
from the UFL Sparse Matrix Collection (http:
//www.cise.ufl.edu/research/sparse/matrices/).
Their properties are summarized in Table 1. They are
from different application areas, such as grid (power),
router (as-22july06, p2p-Gnutella31), social (hep-
th, PGPgiantcompo, astro-ph, cond-mat-2005, soc-
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Graph Time (in sec.)
name |V | |E| org. best Sp.
Power 4.9K 6.5K 1.47 0.60 2.4
Add32 4.9K 9.4K 1.50 0.19 7.6
HepTh 8.3K 15.7K 3.48 1.49 2.3
PGPgiant 10.6K 24.3K 10.99 1.55 7.0
ProtInt 9.6K 37.0K 11.76 7.33 1.6
AS0706 22.9K 48.4K 43.72 8.78 4.9
MemPlus 17.7K 54.1K 19.13 9.28 2.0
Luxemb. 114.5K 119.6K 771.47 444.98 1.7
AstroPh 16.7K 121.2K 40.56 19.41 2.0
Gnu31 62.5K 147.8K 422.09 188.14 2.2
CondM05 40.4K 175.6K 217.41 97.67 2.2

geometric mean 2.8
Epinions 131K 711K 2,193 839 2.6
Gowalla 196K 950K 5,926 3,692 1.6
bcsstk32 44.6K 985K 687 41 16.5
NotreDame 325K 1,090K 7,365 965 7.6
RoadPA 1,088K 1,541K 116,412 71,792 1.6
Amazon0601 403K 2,443K 42,656 36,736 1.1
Google 875K 4,322K 153,274 27,581 5.5
WikiTalk 2,394K 4,659K 452,443 56,778 7.9

geometric mean 3.8

Table 1: The graphs used in the experiments. Column
org. shows the original time of Bc-Org without any
modification. And best is the minimum execution time
achievable via BADIOS. The names of the matrices are
kept short where the full names can be found in the text.

sign-epinions, loc-gowalla, amazon0601, wiki-Talk),
protein-interaction (protein-interaction 1), circuit
simulation (add32, memplus), road (luxemburg.osm,
roadNet-PA), auto (bcsstk32), and web networks (web-
NotreDame, web-Google). We symmetrized the directed
graphs.

4.1 Graph ordering: As most of the graph-based
kernels in data mining, the order of the vertices and
edges accessed by Brandes’ algorithm is important due
to cache locality. If two vertices in a graph are close
to each other, a BFS will access them almost at the
same time. Hence, if we put close vertices in G
to close locations in memory, the number of cache
misses are expected to decrease. For this reason, the
framework initiates a BFS from a random vertex in
G and uses the queue order of the vertices as their
ordering in G. Further benefits of BFS ordering on the
execution time of a graph-based kernel are explained
in [5]. There are also some other graph ordering works
in the literature [7, 13].

For each graph in our set, the first and second bars
in Figure 2 show the time of Bc-Org with the natural
and BFS vertex ordering, respectively. For 18/19
graphs, the BFS ordering improved the performance.
It reduced the time by 14% on average and by 43%
for web-Google. Hence a BFS ordering of the graph is
usually preferable to the natural ordering of a real-life
network for long graph mining kernels such as BC.

4.2 Shattering and compressing graphs: For
each graph, we tested 7 different combinations of the
improvements proposed in this paper: They are denoted
with o, do, dao, dbao, dbaio, and dbaiso, where ‘o’ is the
BFS ordering, ‘d’ is degree-1 vertices, ‘b’ is bridge, ‘a’
is articulation vertices, ‘i’ is identical vertices, and ‘s’
is side vertices. The ordering of the letters denotes the
order of techniques in the loop.

We measure the preprocessing time and BC compu-
tation time separately. Figures 2(a) and 2(b) presents
the runtimes for each combination normalized w.r.t.
Brandes’ algorithm. For each graph, each figure has
7 stacked bars for the 7 combinations in the order de-
scribed above. In Figures 2(c)–2(d), the number of
edges remaining in the graph after the preprocessing
phase are given for different combinations. In the fig-
ures, components are represented by different colors and
6 combinations are investigated for each graph (since or-
dering does not change the structure of the graph).

As Figure 2 shows, there is a direct correlation
between the amount of edges in G′ and the overall
execution time. (Except for soc-sign-epinions and loc-
gowalla where the improvement is correlated with a
decrease in number of vertices, which are omitted for
space constraint.) This proves that our rationale behind
investigating shattering and compression techniques is
valid. Yet, since red is almost always the dominating
color, Figures 2(c)–2(d) show that real-life graphs do not
contain good articulation vertices which allow shattering
a graph into balanced sized components.

Table 1 shows the runtime of the base algorithm
as well as the runtime of the combination that lead
to the best improvement and the speedup obtained by
that combination. Almost for all graphs, BADIOS
provides a significant improvement. We observe up
to 16.5 speedup on large graphs. For wiki-Talk,
applying all techniques reduced the runtime from 5
days to 16 hours. Some of the techniques are shown
to be very useful for some graphs. For example, the
side-vertex removal enables a complete reduction for
memplus and add32. On the other hand, for some of
the graphs, e.g., web-Google and web-NotreDame, it
increases the runtime by a small amount. As the figure
shows, the identical-vertex removal technique is highly
effective (see bcsstk32, cond-mat-2005, as-22july06 or
astro-ph). Also, as the results for PGPgiantcompo
show, shattering via both bridges and articulation
vertices is faster than shattering only via articulation
vertices. Note that although both combinations result
in the same graph, bridge removal is cheaper.

Although it is not that common, applying degree-
1- and identical-vertex removal can degrade the perfor-
mance by a small amount. When the number of vertices
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(a) Normalized execution times for small graphs
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(b) Normalized execution times for large graphs
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(c) #remaining edges for small graphs
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Figure 2: The plots on the left and right show the results on graphs with less than and more than 500K edges,
respectively. The top plots show the runtime of the variants: base, o, do, dao, dbao, dbaio, dbaiso. The times are
normalized w.r.t. base and divided into three: preprocessing, the first phase and the second phase of the BC
computation. The bottom plots show the number of edges in the largest 200 components after preprocessing.

removed is small, their removal does not compensate the
overhead induced by the reach and ident attributes
in the algorithms. The only graph BADIOS does not
perform well on is the co-purchasing network of Amazon
website, amazon0601, where it brings less than 20% of
improvement. This graph contains large cliques formed
by the users purchasing the same item, and hence does
not have enough number of special vertices.

The 7 combinations are compared with each other
using a performance profile graph presented in Figure 3.
A point (r, p) in the profile means that with p proba-
bility, the time of the corresponding combination on a
graph G is at most r times worse than the best time
obtained for that G. Hence, the closer to the y-axis is
the better the combination is.

One can easily see that any parameter combination
of BADIOS is better than the base algorithm. The
combination with only graph ordering (o) has the worse
performance profile of BADIOS and it is never opti-
mal. According to the graph, most of the time, using
all possible techniques is the best idea. This strategy
is the optimal one with more than 60% probability. If
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Figure 3: Performance profile of the 7 combinations for
BADIOS on all the selected graphs.

only a little information is available dbaiso should be
the default choice for BADIOS. However, given that
preprocessing does not take too much time, one can run
only the preprocessing first to get the amount of re-
duction obtained by each combination of parameters.
Then, depending on that reduction, the best path can
be selected. That way, the overhead induced of by the
slight more expensive kernels can be avoided.
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5 Related Work

Several techniques have been proposed to cope with
large networks with limited success either by using ap-
proximate computations [4, 9], or by throwing hardware
resources to the problem by parallelizing the computa-
tions on distributed memory architectures [17], multi-
core CPUs [20], and GPUs [23, 11].

To the best of our knowledge, there are two concur-
rent works since our first release, noted in our technical
report [22]. The first work introduces degree-1 vertex
removal for BC [1]. In the second, Puzis et al. propose
to remove articulation vertices and structurally equiv-
alent vertices which correspond to our type-I identical
vertices [21]. We did not compare our speedups with
theirs for three reasons: the techniques they use form
only a subset of the techniques we proposed in this work,
they are not well integrated as we did in BADIOS, and
even our base implementation is already 40–45 times
faster than their fastest algorithm (see the results for
soc-sign-epinions [1] and p2p-Gnutella31 [21]). We be-
lieve that an efficient implementation of a novel algo-
rithm is mandatory to evaluate any improvement.

6 Conclusion

In this work, we proposed the BADIOS framework
to reduce the execution time of betweenness central-
ity computations. It uses techniques that break graphs
into pieces while keeping the information to recompute
the pair and source dependencies which are the build-
ing blocks of BC scores. It also uses some compression
techniques to reduce the number of vertices and edges.
Combining these techniques provides great reductions
in graph sizes and component numbers. An experi-
mental evaluation with various networks shows that the
proposed techniques are highly effective in practice and
they can be a great arsenal to reduce the execution time
for BC computation. For one of our social networks, we
saved 4 days.

As a future work, we are planning to extend our
techniques to other centrality measures such as closeness
and group-betweenness. Some of our techniques can
readily be extended for the weighted and directed
graphs, but for some, a complete modification may be
required. We will investigate these modifications. In
addition, we are planning to adapt our techniques for
parallel and/or approximate BC computations.
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