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Abstract—Complex systems frequently exhibit multi-way,
rather than pairwise, interactions. These group interactions can-
not be faithfully modeled as collections of pairwise interactions
using graphs and instead require hypergraphs. However, methods
that analyze hypergraphs directly, rather than via lossy graph
reductions, remain limited. Hypergraph motifs hold promise in
this regard, as motif patterns serve as building blocks for larger
group interactions which are inexpressible by graphs. Recent
work has focused on categorizing and counting hypergraph
motifs based on the existence of nodes in hyperedge intersection
regions. Here, we argue that the relative sizes of hyperedge inter-
sections within motifs contain varied and valuable information.
We propose a suite of efficient algorithms for finding top-k triplets
of hyperedges based on optimizing the sizes of these intersection
patterns. This formulation uncovers interesting local patterns of
interaction, finding hyperedge triplets that either (1) are the least
similar with each other, (2) have the highest pairwise but not
groupwise correlation, or (3) are the most similar with each other.
We formalize this as a combinatorial optimization problem and
design efficient algorithms based on filtering hyperedges. Our
comprehensive experimental evaluation shows that the resulting
hyperedge triplets yield insightful information on real-world
hypergraphs. Our approach is also orders of magnitude faster
than a naive baseline implementation.

I. INTRODUCTION

Many complex systems contain higher-order interactions
which are groupwise rather than pairwise. These systems may
suffer from significant information loss when modeled as
a graph [1]. For example, graph representations of author-
paper [2], company-board member [3], and actor-movie [4]
networks link entities within one of these classes based on their
group membership within the other. Once such networks are
modeled as graphs, groupwise relationships amongst entities
cannot be distinguished from pairwise ones. Finding dominant
patterns within these groupwise relationships is an important
part of categorizing today’s web ecosystem.

Hypergraphs precisely capture these group relationships in-
visible in ordinary graphs. A hypergraph consists of nodes and
hyperedges, where each hyperedge can contain any number
of nodes. Hypergraphs can also be represented as a bipartite
graph where nodes represent hypergraph nodes in one partition
and hyperedges in the other; bipartite edges link nodes across
partitions if the corresponding hyperedge contains that node.
Despite their broad applicability and expressivity, hypergraph

algorithms are limited when compared to their graph coun-
terparts. Furthermore, as shown in [5], [6], a number of
existing hypergraph algorithms only consider pairwise (rather
than groupwise) relationships, thereby effectively treating the
hypergraph as a graph. Consequently, there is significant
demand for efficient, hypergraph-native methods which utilize
the higher-order relationships hypergraphs encode.

One promising avenue for hypergraph-native analysis is
motif discovery. Motif discovery is effective in a myriad of
graph mining tasks, such as controversy identification [7],
DNA analysis [8], and dense subgraph discovery [9]. In
graphs, it is common for motifs to be based on triangles, which
are cycles of length three and hence the smallest nontrivial
dense subgraph. While there is no consensus as to what
constitutes a “hypergraph triangle,” a natural approach is to
consider three hyperedges as the smallest nontrivial building
blocks of hypergraph structure. Since hyperedges can contain
more than two nodes, they can intersect in a wide variety of
different ways that are impossible with three graph edges.

Focusing precisely on these intersection patterns, recent
work has aimed to classify and enumerate hypergraph motifs.
Most relevant to our work, Lee et al. [10] define 30 h-
motifs which exhaustively cover all ways three hyperedges
can intersect, up to symmetries. Crucially, these h-motifs are
defined based on whether nodes exist within certain inter-
section regions between hyperedges. However, in practice,
the sizes of intersection regions carry important information
about the strength of overlap between hyperedge groups [11].
Consequently, h-motifs ignore key distinguishing qualities: the
majority of motifs may belong to the same h-motif class and
the intersection sizes within each motif may vary between
being uniform and highly skewed. This problem is exacer-
bated in the presence of large hyperedges, as high cardinality
hyperedges increase the probability of having at least one node
in intersection regions, thereby allowing a single type of h-
motif’s counts to dominate all the others.

For these reasons, we propose a quantitative approach to
hypergraph motifs. We focus on sets of three hyperedges, or
hyperedge triplets, and the sizes of their connectivity patterns.
We call the nodes in one hyperedge but not the other two
the triplet’s independent regions, those in two but not the
third the disjoint regions, and those in all three the common



region. We formulate finding top hyperedge triplets as an
optimization problem where we want to maximize the size of a
specific region compared to the others. This yields three related
problems: finding hyperedge triplets that (1) are the least
correlated with one another, (2) have the highest pairwise but
not groupwise correlation, and (3) are the most correlated with
one another as a group. Our approach not only finds the global
maxima for each of these three problems but also readily
adapts to discover local maximum triplets—those maxima
containing a given hyperedge—and can be extended to find
larger subgraphs as well. This local procedure can be used to
give insight on behavioral patterns and the larger subgraphs
formed from these triplets may represent larger, cohesive
communities connected by a similar interest. In this work,
we focus on finding the top-k hyperedge triplets where k is a
user-inputted positive integer. Finding top-k motifs has been
previously studied with weighted triangles [12], [13], [14],
[15] and flow motifs [16]. To the best of our knowledge, there
is no prior work on finding size-aware motifs in hypergraphs.

To study this problem, we first consider a naive approach
which either iterates over all triplets or cyclic-connected
triplets of hyperedges. We show that this approach has pro-
hibitive time and space costs and is therefore not scalable
for large hypergraphs. As a remedy, we propose a hyperedge
avoidance scheme which skips over hyperedges based on their
cardinalities and intersection sizes. We also make use of a
preprocessing routine which filters out inapplicable nodes and
hyperedges and ranks hyperedges based on their cardinalities.
In an extensive experimental evaluation, we investigate the
applicability of our algorithms on real-world networks through
several case studies and application scenarios. We also exam-
ine the runtime performance of our algorithms.

Our contributions are summarized as follows:
• Novel problem formulation. We formulate three maximiza-

tion problems for finding top-k hyperedge triplets which
capture new relationships in hypergraph data. To the best of
our knowledge, this is the first proposal for discovering the
top-k size-aware hypergraph motifs.

• Efficient algorithms. We introduce algorithms for solving
the three aforementioned maximization problems. Our algo-
rithms, which iteratively update to-be-processed hyperedges
based on the current maximum hyperedge triplet, improve
upon a naive approach based on iterating over all candidate
hyperedge triplets.

• Experimental evaluation. We evaluate our algorithms on
several real-world hypergraphs to demonstrate practical run-
times. We also perform numerous case studies to illustrate
the informative insights afforded by the top-k hyperedge
triplets in practice.

II. PRELIMINARIES

A hypergraph is denoted as H = (V,E) where V is a set
of elements called nodes and E = (e1, . . . , em) is an indexed
family of sets where each ei ⊆ V is called an hyperedge. For
v ∈ V , E(v) is the set of hyperedges containing v and |E(v)|
is the degree of node v. For each hyperedge ei ∈ E, i is the

label for ei and |ei| is the size of ei. We call a set of three
hyperedges T = {a, b, c} a triplet. Hyperedges within a triplet
may be equivalent as sets but are always distinguishable by
index. We use

(
X
k

)
to denote the set of k-element subsets of

X . Lastly, we define n = |V |+ |E| and m =
∑

v∈V |E(v)| =∑
e∈E |e|.

III. RELATED WORK

Here, we review prior work on bipartite and hypergraph
motifs.
Butterflies. Butterfly is a 2 x 2 biclique and represents
the smallest unit of cohesion in bipartite graphs [17], [18].
There have been many works on butterfly counting [19], [20]
along with efficient parallel approaches [21]. Butterflies are
commonly used as a basic motif for defining the community
structure in bipartite networks, clustering coefficients [22],
[3], and generative bipartite models [23]. Sarıyüce and Pinar
developed peeling algorithms based on butterflies for dense
subgraph discovery [9]. The main drawback of the butterfly is
its small size; it is restricted to two nodes and two hyperedges
and has limited ability in capturing higher-order relations.
6-cycles. A 6-cycle is formed by two connected wedges (2-
paths) which are closed by an additional wedge [24]. 6-cycles
are effectively used as an alternative to butterflies in clustering
coefficient definitions for bipartite graphs [25], [26]. One issue
with a 6-cycle is that it does not account for the presence
or lack of other possible edges among the 6 nodes. As a
remedy, an induced 6-cycle, which contains exactly 6 edges,
is proposed as it forms a triangle in the unipartite projection
with the minimal number of edges [27]. However, (induced)
6-cycles, like butterflies, offer a limited view on local structure
as it has a restricted number of nodes and hyperedges.
Higher-order motifs. Proposed by Lotito et al. [28], [29],
higher-order motifs provide an interesting approach for mod-
eling higher-order relations in hypergraphs. Given k num-
ber of nodes, higher-order motifs are all the possible non-
isomorphic connected hypergraphs (e.g., 6 motifs for k = 3)
where hyperedges can be overlapping. The authors provided
a combinatorial characterization of higher-order motifs by
giving upper and lower bounds for all possible motifs of
nodes. Significance profiles using motifs of size 3 and 4,
with respect to the configuration model in [30], show that
networks from the same domain exhibit similar trends. Higher-
order motifs are based on a set number of nodes which can
involve any number of hyperedges whereas our hyperedge
triplets can consider any number of nodes but are limited
to three hyperedges. In addition, we are interested in finding
specific motif instances that optimize our measures rather than
providing a global graph property.
s-walks. Initially proposed by Aksoy et al. as a framework for
hypergraph walks [11], s-walk is a sequence of hyperedges
where each consecutive pair of hyperedges share at least s
nodes. Aksoy et al. used s-walks as a basis for connected
component analysis, closeness-centrality, and clustering coef-
ficients in hypergraphs. s-walks can be further classified as s-
traces, s-meanders, and s-paths. A closed s-walk of size three



(a) h-motif 4 (b) h-motif 8 (c) h-motif 14 (d) h-motif 20

Fig. 1: A few examples of h-motifs, as denoted in [10]. Each circle
denotes an hyperedge and intersections represent the set of common
nodes. Colored-regions are non-empty.

connects three hyperedges in a cyclic manner. A closed s-walk
is an s-trace if all hyperedges are unique as sets; an s-meander
if it is an s-trace where no two hyperedge intersections are the
same; and an s-path if it is an s-meander where no hyperedge
intersection is a subset of another.
h-motifs. Lee et al. introduced h-motifs to describe the con-
nectivity patterns of three connected hyperedges [10]. Three
hyperedges are defined to be connected if 1 of them is adjacent
to 2 of the others. Given a set of 3 connected hyperedges
{e, f, g}, there exists 7 regions that describe the connectivity
relations: e\(f∪g), f \(e∪g), g\(e∪f), (e∩f)\g, (f∩g)\e,
(e∩g)\f , and e∩f∩g (see Figure 1). Based on these regions,
h-motifs describe all possible combinations of whether nodes
exist in them, up to symmetry. There are 24 closed h-motifs
where all three hyperedges are overlapping with each other. We
show four high frequency closed h-motifs in Figure 1. Lee et
al. observed that h-motif distributions can be used effectively
for evolution analysis of author-paper networks and hyperedge
prediction models. The aforementioned s-walk definition is
related to h-motif in that an h-motif can be categorized more
coarsely as a 1-trace, 1-meander, and/or 1-path of length three.
We stress that h-motifs do not consider size information,
unlike our work, as they only take into account the existence
or lack of nodes in each region. In a journal extension [31],
Lee et al. expanded upon h-motifs with kh-motifs by further
classifying them into k categories based on their region sizes
c, e.g., 3h-motifs have three categories for each region: (1)
c = 0, (2) c = 1, and (3) c ¿ 1. This again has the same
h-motif problem of larger hyperedges where all regions fall
into category (3). The authors motivate h-motifs and kh-motifs
through the avenue of hypergraph classification, unlike our
work which targets community detection.

IV. MOTIVATION

Before formalizing our problem statements, we first go over
the motivation in light of our preceding discussion of related
work.

The motivation behind Lee et al’s h-motif [10] and Aksoy
et al.’s s-walk [11] works (and by extension, ours) is in the
analysis of the structure of hypergraphs. These higher-order
methods operate directly on the hyperedges and reveal struc-
tures that cannot be detected by graph-based measures. Our hy-
peredge triplet approach is more related to h-motifs [10] and s-
walk [11] based motifs than bipartite cycle-based motifs [24],
[27] or higher-order motifs [28]. Butterflies and 6-cycles

constrain the number of hyperedges and nodes in a motif to
two or three, whereas our study considers three hyperedges
containing any number of nodes. Like our approach, h-motifs
also contain exactly three hyperedges and an unconstrained
number of nodes. Since the intersection relationships in h-
motifs are more refined than those in s-walks, we focus on
motivating our method in comparison to the existing h-motif
approach. However, note that the authors in [10] use h-motifs
in hypergraph classification (of small hypergraphs) while our
work is based on community detection (where the hypergraph
may be large).

Unlike h-motifs which analyze all structures, of which
many are trivial, our work provides a framework for finding
the best structures and relationships in a hypergraph. The
key difference between our work and h-motifs is that we
explicitly take the sizes of intersecting regions into account.
As we are the first work to find these interesting structures
using the intersection sizes of hyperedges, our work discovers
new insights unable to be uncovered by previous methods.
Factoring in the sizes of intersections has strong ramifications
when applying these methods to real-world hypergraphs. For
example, it is noteworthy that when testing the applicability
of h-motifs on real-world datasets, Lee et al. [10] only
tested on hypergraphs which filter their hypergraph data to
keep the maximum hyperedge size as 25. While in some
contexts removing hyperedges of certain cardinalities might
be justifiable [32] or part of data cleaning, ignoring large
hyperedges does lead to information loss, especially in con-
texts where large hyperedges are prevalent such as diseases
that connect thousands of genes or products with a large
number of reviews. To make it concrete, we offer a preliminary
study on how such filterings impact the occurrence of h-
motifs. We give the h-motif distribution for the raw unfiltered
GENE-DISEASE [33] dataset (see Table I) against a filtered
GENE-DISEASE with hyperedges of cardinality at most 25 in
Figure 2. Removal of higher cardinality hyperedges causes
the h-motif distribution to be relatively flat compared to the
original version—note that motif counts reduce from billions
to thousands. Furthermore, in the unfiltered version, it is
striking that four specific h-motif counts dominate the whole
distribution—namely motifs 4, 8, 14, and 20 where at least five
of seven regions are non-empty (shown in Figure 1). In our
evaluation, we found this occurrence to be common in real-
world hypergraphs when there are a significant number of high
cardinality hyperedges. This suggests that larger hyperedges—
a common occurrence guaranteed by the heavy-tailed degree
distributions—may skew the h-motif distributions, posing a
challenge for the expressivity of the h-motif framework.

To investigate this further, we generate synthetic versions
of GENE-DISEASE and examined the h-motif distribution.
We use the Erdős-Rényi and Chung-Lu hypergraph models
developed by Aksoy et al. [23] based on the work of Miller
and Hagberg [34]. Since Erdős-Rényi randomizes based on
the probability of a vertex-hyperedge membership, it often
generates hypergraphs of lower variance in terms of its
degree distribution. Chung-Lu, however, tries to match the



Fig. 2: Closed h-motif counts for GENE-DISEASE. The x-axis
contains arbitrary motif numberings for the closed h-motifs in [10].
Figure 1 shows the top four h-motifs in the original network.

degree distribution of a real-world hypergraph, which keeps
hyperedge cardinalities and vertex degrees in line with the
original network. Results suggest that the Erdős-Rényi version
typically does not have any significant disparity in its h-
motif counts, unlike the original network and similar to the
results from filtering high cardinality hyperedges. However,
the Chung-Lu model, which matches the degree distribution
in expectation, had a similar h-motif distribution compared to
the original GENE-DISEASE network. The reasoning for this is
clear: higher cardinality hyperedges often participate in more
h-motifs compared to hyperedges with lower cardinalities. Due
to the large number of nodes, these h-motifs also frequently
have at least one node in each of their regions. Thus, the
evaluation on synthetic data also suggests that the large
hyperedges may obscure and confound h-motif distribution
patterns.

For our model, we work on hyperedge triplets ranked by
the custom weights (function of sizes) of their intersection
patterns. This is similar to the concept of weighted triangle in
edge-weighted graphs [35]. Weighted triangles are 3-cliques
which are commonly measured by either the mean or the sum
of the triangle’s edge weights. Benson et al. studied using
weighted triangles for higher-order link prediction where the
goal is to predict which groups of nodes are most likely
form a new simplex (a group interaction) [36]. As such, these
simplexes essentially represent new hyperedges. Their analysis
suggests that triples of nodes with strong ties are most likely to
form new simplexes in the future. Inspired by Benson et al.’s
work, Kumar et al. proposed fast algorithms for finding the
top-k weighted triangles [12]. There are also many other works
which study top-k weighted triangles in recent years [13], [14],
[15]. In our work, we find the top-k hyperedge triplets which
adapts the concept of a weighted triangle for hypergraphs.

V. PROBLEM STATEMENT

Our approach focuses on the sizes of the different “region
types” defined by the intersection relations within a triplet. To
define these regions formally, let X ⊆ T denote a subset of

hyperedges within a triplet T . Then N := NT is defined by

N(X) =

( ⋂
x∈X

x

)
\

 ⋃
x∈T\X

x

 .

Put equivalently, N(X) picks out the elements shared across
every hyperedge within X that are not in other hyperedges
(in T ). Applying this function to all subsets of T yields a
partition, as visualized in Figure 3a. These regions fall into
three categories which we call the independent (R1), disjoint
(R2), and common (R3) regions:
• R1 = {N(a), N(b), N(c)}
• R2 = {N(a, b), N(a, c), N(b, c)}
• R3 = {N(a, b, c)}
We subsequently use these 3 region types to formulate 3
notions of hyperedge triplet weights. Namely, for a hyperedge
triplet T , its independent W1, disjoint W2, and common
weight W3 is given by:

Wj(T ) =
minX∈(Tj )

|N(X)|

1 +
∑

i>j

∑
X∈(Ti )

|N(X)|
(1)

We take the minimum size of the target regions in the numer-
ator to prevent the misrepresentation of hyperedge triplets if
one region dominates the others. This is based on the concept
that a group is only as strong as its weakest link. We force
all three hyperedges to have high cardinalities which leads
to insightful relationships, unlike other aggregation functions
such as sum and mean. To avoid an undefined value when all
antagonistic regions are empty, we increment the denominator
by one. Division is used to reward a significant proportion
of nodes in the desired regions with the possibility of a
few outliers. Each weight definition (W1, W2, W3) considers
only the regions involving the number of hyperedges in their
subscript. For W1, we consider any region involving any single
hyperedge, which is all 7 regions. For W2, we consider any
region involving any two hyperedges, which includes both
R2 and R3. For W3, we consider any region involving all

(a) Region labels. (b) A toy triplet.

Fig. 3: Hyperedge triplet regions. Figure 3a depicts the independent
(R1), disjoint (R2), and common (R3) regions for the hyperedge
triplet {A,B,C}. Figure 3b shows a toy triplet where the in-
dependent weight is W1(T ) = min(7,5,6)

1+(2+2+3+1)
= 5

9
, the disjoint

weight is W2(T ) = min(2,2,3)
1+1

= 1, and the common weight is
W3(T ) =

min(1)
1

= 1.



three hyperedges, which is only R3. Lastly, while we focus
on triplets in this work, we note the above definition may be
applied to k-tuples of hyperedges for k > 3, yielding k-many
different region types. Figure 3b gives a toy example where
W1(T ) = min(7,5,6)

1+(2+2+3+1) = 5
9 , W2(T ) = min(2,2,3)

1+1 = 1, and

W3(T ) =
min(1)

1 = 1.
To account for the role that size plays in hypergraph motifs,

we consider the independent, disjoint and common weights to
define “good” hyperedge triplets. As we do not constrain the
number of nodes in a given region, we focus not on enumer-
ating motifs with a given intersection region size distribution
but rather on finding the “optimal” motifs with regard to their
size patterns. We thus cast this as a maximization problem
where we seek hyperedge triplets with the highest weights in
Equation 1. Our weight definition ensures that in the optimal
triplets a significant proportion of nodes are evenly distributed
across the corresponding region types. Our problem is defined
as follows:

Problem 1. For a hypergraph with hyperedge set E, the
maximum {independent, disjoint, common} problem is to find
the T ∈

(
E
3

)
that maximizes {W1(T ),W2(T ),W3(T )}.

In our implementation, we find the top-k hyperedge triplets
where k is a user-inputted positive integer. These hyperedge
triplets can then be used as building blocks for larger con-
nected structures.
Remark. We want to emphasize that a few other alternative,
and intuitive, weight definitions have significant flaws that
may lead to misleading results. One such formulation would
be the proportion of nodes in a specific region compared to
all regions. However, such an objective function would be
misleading as the weight definition would be normalized and
unable to adequately address the cardinalities of hyperedges—
a triplet with millions of nodes could be ranked the same as
a trivial triplet with only a few nodes. Another formulation
that divides by the sum of all other regions would be too
strict in sparse hypergraphs where the sizes in R1 frequently
dominates those in R2 and R3. This would result in only a
few, if any, significant disjoint and common hyperedge triplets.
Using min() in the denominator would also lead to misleading
results as three hyperedges may be labeled as independent even
though two of the three have significant overlap. Other aggre-
gation functions such as sum() and mean() in the numerator
may result in an empty hyperedge participating in a triplet
with two large hyperedges, which is a trivial relationship. Our
formulation involves a layered approach with R1 → R2 →
R3 where we take the minimum size of all regions in the
current layer and divide by the sum of the sizes of all deeper
layers. We also believe that this formulation can naturally be
extended to any number of hyperedges. For example, with four
hyperedges, we can incorporate another layer R4 for four-way
relationships which results in an additional layer after R3.

VI. ALGORITHMS

We start by introducing a naive approach in Section VI-A
which iterates over the set of candidate hyperedge triplets

Algorithm 1: BASIC (H , k, α)
Input: H = (V,E): hypergraph, k ∈ [1,∞),
α ∈ {1, 2, 3}: algorithm type, corresponding to
INDEPENDENT, DISJOINT, COMMON, respectively
Output: 4k: top-k hyperedge triplets

1 4k ← ∅; 4w ← 0
2 rename hyperedges in E by decreasing degrees
3 sort neighbor lists in H in ascending order
4 S ← ∅ // hashmap of hyperedge pairs to

node sets

5 foreach ex ∈ E do
6 foreach u ∈ ex do
7 foreach ey ∈ E(u) s.t. y > x do
8 S[x, y]← S[x, y] ∪ u
9 // C(α) is candidate set; which is all

triplets for INDEPENDENT and closed

triplets for DISJOINT/COMMON

foreach ex, ey, ez ∈ C(α) s.t. x < y < z and
|ez| > 4w do

10 w ← weight of {ex, ey, ez}
11 if w > 4w then
12 if |4k| < k then 4← 4∪ {ex, ey, ez}
13 if |4k| = k then
14 4min ← minimum weight triplet in 4k

15 replace 4min in 4k with {ex, ey, ez}
16 4w ← minimum weight in 4k

17 return 4k

for each maximization problem. Then, we propose a new
technique which filters future hyperedge triplets based on the
previously visited maximum ones in Section VI-B. Lastly, we
show how our algorithms can be adapted for local search
and introduce a merging approach to find larger subgraphs
of triplets in Section VI-C.

A. Enumerating through Candidate Sets

Here, we introduce a common framework for the three
baseline algorithms in Algorithm 1, BASIC. It has three
variants—INDEPENDENT, DISJOINT, COMMON—and all scan
through all the triplets in their candidate sets. The candidate
set for each problem is the minimal set of hyperedge triplets
that contains the desired maximum triplet.

The input is a hypergraph H = (V,E), a positive integer k,
and an algorithm type α, which is equal to 1, 2, or 3, for INDE-
PENDENT, DISJOINT, and COMMON variants, respectively. We
begin by modifying hyperedge ids and sorting neighbor lists
such that hyperedges with lower ids have higher cardinalities
than those with higher ids (lines 2 and 3). By organizing
hyperedges based on their cardinalities, we can process higher
cardinality hyperedges first, increasing the chance of finding
the maximum hyperedge triplet at an earlier iteration. After-
wards, we store all non-empty pairwise intersections between
two hyperedges in a container S (line 4). Then, we iterate
through all candidate hyperedge triplets where the lowest
cardinality hyperedge is greater than the current maximum
weight (line 9). The candidate set for the INDEPENDENT



variant (C(1)) is simply all
(
E
3

)
hyperedge triplets. For the

other variants, the candidate set (C(2) and C(3)) is all the
closed hyperedge triplets: ex, ey, ez ∈

(
E
3

)
s.t. |ea ∩ eb| > 0 ∀

ea, eb ∈
({ex,ey,ez}

2

)
. We find closed hyperedge triplets in O(1)

time by performing a lookup on S for overlapping hyperedges.
To speed up the weight computation on line 10, we use the
pairwise intersections stored in S to limit duplicate common
neighbor operations. Finally, the hyperedge triplets with the
highest weights are returned.

Time Complexity. Lines 5-8 traverses through all paths of
length 2 which contain two hyperedges and takes O(m · |E|)
time. Lines 9-16 compute the weight for all hyperedge triplets
and takes O(

(|E|
3

)
· |V |) time, which is equivalent to the total

time complexity.
Space Complexity. In addition to the O(m) space required

for the graph, we store the intersection between every pair of
intersecting hyperedges in a container S (line 4). Therefore,
the space complexity is at most O(m · |E|). Since real-world
hypergraphs are typically very sparse, the required space is
usually much less than this maximum.

B. Avoiding Irrelevant Triplets

In this section, we introduce our main algorithms, MAX-
INDEPENDENT, MAX-DISJOINT, and MAX-COMMON. These
algorithms skip the processing of irrelevant hyperedges with
low cardinalities.

Given a hyperedge triplet {ex, ey, ez}, let x = |ex|, y =
|ey|, z = |ez|, xy = |ex ∩ ey|, xz = |ex ∩ ez|, yz = |ey ∩ ez|,
and xyz = |ex∩ey∩ez|. We can then represent the independent
(W1), disjoint (W2), and common weight (W3) formulations
in Equation 1 as:

W1 =
min(x− xy − xz, y − xy − yz, z − xz − yz) + xyz

xy + xz + yz − 2 · xyz + 1
(2)

W2 =
min(xy, xz, yz)− xyz

xyz + 1
(3)

W3 = xyz (4)

To speed up computation, we can skip over hyperedges
based on the upper bounds of their weights. Unlike the O(1)
time it takes to find the sizes of the independent regions
{x, y, z}, the disjoint {xy, xz, yz} and common regions {xyz}
take O(|V |) time for their set intersection operations. We
can achieve speedup by avoiding unnecessary set intersection
operations for hyperedge triplets with insufficient weight upper
bounds. This upper bound then becomes tighter as additional
region sizes are computed. Without loss of generality, we
have the following inequalities for {x, y, z}, which give us
new upper bounds: xyz ≤ min(xy, xz, yz) and

⌊
x
2

⌋
≥

min(xy/z, xz/y, yz/x). Let Ŵ1 be equal to the substitution
of min(xy, xz, yz) for xyz in W1. Then we have the following
inequalities which provide new upper bounds:
• Independent. x ≥ min(x,y)−xy

xy+1 ≥ Ŵ1 ≥W1

• Disjoint.
⌊
x
2

⌋
≥W2, xy ≥ min(xy, xz, yz) ≥W2

Algorithm 2: MAX (H , k, α)
Input: H = (V,E): hypergraph, k ∈ [1,∞),
α ∈ {2, 3}: algorithm type, corresponding to
DISJOINT, COMMON, resp.
Output: 4k: top-k hyperedge triplets

1 4k ← ∅; 4w ← 0
2 rename hyperedges in E by decreasing degrees
3 sort neighbor lists in H in ascending order
4 S ← ∅ // hashmap of hyperedge pairs to

node sets

5 // bool. expression depending on alg. type

θ(e,4w, α)←
⌊
|e|
2

⌋
> 4w if α = 2 else |e| > 4w

6 foreach ey ∈ E s.t. θ(ey,4w, α) do
7 T ← ∅ // hashmap of hyperedges to node

sets

8 foreach u ∈ ey do
9 foreach ez ∈ E(u) s.t. z > y and θ(ez,4w, α)

do
10 T [z]← T [z] ∪ u
11 foreach z,Nyz ∈ T s.t. |Nyz| > 4w do
12 // skip pair based on pairwise upper

bound

if |Nyz| > 4w then continue
13 foreach x,Nxy ∈ S[y] s.t. x ∈ S[z] do
14 v ← min(|Nxy|, |S[z][x]|, |Nyz|)
15 // skip common region calculation

based on triplet upper bound

if v > 4w then continue
16 w ← |ex ∩ ey ∩ ez|
17 if α = 2 then w ← v−w

w+1

18 if w ≤ 4w then continue
19 if |4k| < k then 4← 4∪ {ex, ey, ez}
20 if |4k| = k then
21 4min ← minimum weight triplet in 4k

22 replace 4min in 4k with {ex, ey, ez}
23 4w ← minimum weight in 4k

24 if θ(ey,4w, α) then
25 foreach z,Nyz ∈ T s.t. θ(ez,4w, α) do
26 S[z][y]← Nyz // limit duplicate

set ops
27 return 4k

• Common. x ≥ xy ≥ min(xy, xz, yz) ≥W3

Algorithm 2, MAX, presents our improved framework for
the DISJOINT and COMMON variants—pseudocode for the
INDEPENDENT variant is similar. We use the new upper
bounds above as part of an “early stopping” scheme. For
all of our algorithms, we start by renaming hyperedge ids
by decreasing degrees (higher cardinality hyperedges have
a lower id) and sorting neighbor lists in ascending order.
Then, we iterate through all pairs of hyperedges with at least
one common node. Note that we skip any hyperedge whose
upper bound is not greater than the current maximum weight.
Next, we store all non-empty hyperedge pairwise intersections
in a local container T . Afterwards, we iteratively traverse



through candidate hyperedge triplets and compute their weight.
Throughout this process, we update the upper bound criteria
accordingly and prematurely stop weight computation if the
upper bound does not exceed the target weight 4w. Our final
step is storing the global set intersections in a container S to
limit duplicate set intersection computations.

Our algorithms can be adapted to find hyperedge triplets
with a weight above a desired threshold. We can fix 4w to a
set threshold and return all hyperedge triplets whose weight
exceeds 4w.

Time Complexity. All three of our variants have the same
time complexity. In the worst-case, there exists no maximum
hyperedge triplets with a positive weight and hence the time
complexity is the same as Algorithm 1, which is O(

(|E|
3

)
·|V |).

However, due to this being a rare scenario in real-world
hypergraphs, this is a very loose bound and our new algorithms
are typically much faster than Algorithm 1, as shown in
Section VII-E.

Space Complexity. For all three variants of the new al-
gorithm, global container S (Line 4) dominates the space
complexity of container T (Line 7). The space complexity
here is the same as Algorithm 1, which is O(m · |E|).

C. Applications

We consider two higher-level applications for our hyperedge
triplets.
Local search. Our algorithms can be adapted to find top-k
hyperedge triplets containing a given hyperedge query. We can
iterate over hyperedge triplets containing a queried hyperedge
and output those with the highest weights. This provides a way
of exploring maximal hypergraph motifs in the context of a
chosen hyperedge of interest. Local search can also give an
insight about the nature of the query hyperedge by comparing
the weights of its top-k independent, disjoint, and common
triplets. For example, a hyperedge associated with relatively
high common weights compared to its independent weights is
typically bundled with other hyperedges.
Large subgraphs of triplets. Although maximal hyperedge
triplets are informative, they only describe the relationships
between 3 hyperedges. We can obtain subgraphs with more
than 3 hyperedges by combining hyperedge triplets into larger
clusters of closely-related hyperedges. The idea is to merge
overlapping hyperedge triplets with high weights to find
groups of similar hyperedges. We can create an edge-weighted
graph where nodes represent hyperedges, edges connect nodes
which are in a hyperedge triplet, and edge weights reflect the
number of shared triplets to which that pair of hyperedges
belong. The connected components of this graph then represent
larger groups of hyperedges that are closely related.

VII. RESULTS

In this section, we evaluate our algorithms on several real-
world hypergraphs. We first explore the distribution of nodes
in our maximum hyperedge triplets through a study on entropy
in Section VII-A. Then, we present an in-depth case study on
the YELP dataset in Section VII-B. Next, in Sections VII-C

TABLE I: Dataset details. |V | is the number of nodes, |E| is the
number of hyperedges, m is the sum of node degrees (or hyperedge
sizes), and d∗E is the maximum hyperedge size.

Dataset |V | |E| m d∗E
GD 17,549 24,444 628,566 5,053
FO 25,076 178,265 718,379 1,091
DB 258,769 7,783 463,497 24,821
YE 1,987,929 150,346 6,745,760 7,568
AT 1,775,852 559,775 5,727,435 5,730
AB 15,362,619 2,930,451 51,062,224 58,147

and VII-D, we discuss the results of the applications built on
hyperedge triplets, as discussed in Section VI-C. Lastly, we
give the runtime results in Section VII-E.

Table I presents the statistics of our real-world hyper-
graphs used in experiments up to Section VII-E. GENE-
DISEASE (GD) is a network of gene-disease associations
from DisGeNET [33]. FOOD (FO) contains recipe reviews
covering 18 years of user interactions on food.com [37].
DBPEDIA (DB) connects artistic works or artists with genres
from DBpedia [38]. YELP (YE) features user business re-
views from Yelp [39]. AMAZON-TOOLS (AT) and AMAZON-
BOOKS (AB) contain user ratings on the tools/home improve-
ment and books categories of Amazon, respectively [40].

All experiments are performed on a Linux operating system
with an Intel Xeon Gold processor at 2.1 GHz and 256GB
memory. We implemented our algorithms in C++ and com-
piled using GCC 7.1.0 at the -O3 level. Our code is available at
https://anonymous.4open.science/r/hyperedge-triplets-blinded.

A. Node Distributions with Entropy

We first evaluate the goodness of our weight formulation
(Equation 1) from an information theoretical perspective in
Figure 4. We consider the relative entropies (i.e. Shannon en-
tropies) of the top 1M hyperedge triplets w.r.t. the independent
and disjoint variants in YELP. Relative entropy is defined as

−
∑
x∈X

px · log(px) where px is the probability of the event

x ∈ X . For the independent variant (Figure 4a), we compute
two entropy values for each triplet: (1) entropy of the three
independent regions (R1s in Figure 3a), denoted by green
circles, and (2) entropy of the sum of independent regions
(sum of R1s), sum of disjoint regions (sum of R2s), and
triple of the common region (3*R3), denoted by red circles.
The green circles, which are close to 1, imply that nodes
tend to be evenly distributed across the independent regions
whereas the red circles, which are close to 0, suggest that
almost all nodes are in the independent regions. This shows
that the numerator of Equation 1 is effective at establishing
parity among independent regions and that the denominator
ensures disparity among all region types. Similarly, for the
disjoint variant (Figures 4b), we compute two entropy values
for each triplet: (1) entropy of the three disjoint regions
(R2s in Figure 3a), denoted by green circles, and (2) entropy
of the sum of disjoint regions (sum of R2s) and triple of
the common region (3*R3), denoted by red circles. Again,
triplets with larger disjoint weights have higher parity w.r.t. the



(a) Independent: YELP (b) Disjoint: YELP

Fig. 4: Relative entropies of the independent and disjoint regions for
the top 1M independent and disjoint triplets, respectively. Entropies
are between the colored regions in the legend.

Fig. 5: The maximum disjoint hyperedge triplet in YELP: Ruby
Slipper Cafe, Coop’s Place, and The Original Pierre Maspero’s in
New Orleans.

disjoint regions and higher disparity w.r.t. regions of different
types. Our problem formulations can thus be viewed through
an information theoretical perspective: we target hyperedge
triplets which maximize the disparity among region types.

B. Case Study: YELP

In this section, we present the top hyperedge triplets
for each objective—independent, disjoint, and common—
on YELP [39].
Independent. The maximum hyperedge triplet has The Eagle,
Palace Café, and Mesa Verde restaurants with a weight of
1796. All three are highly reviewed restaurants in different
cities across the United States (Indianapolis with 2233 reviews,
New Orleans with 1822 reviews, and Santa Barbara with 1796
reviews, respectively) and serve different cuisines.
Disjoint. The maximum hyperedge triplet contains three
restaurants in New Orleans with a weight of 68. Ruby Slip-
per Cafe (A), Coop’s Place (B), and The Original Pierre
Maspero’s (C) are all within walking distance, as shown in
Figure 5. Ruby Slipper Cafe is a breakfast and brunch restau-
rant while others serve Cajun/Creole food with the Coop’s

Place being a bar and the The Original Pierre Maspero’s being
a sit-down restaurant. Interestingly, although many users have
reviewed two of the three restaurants, no users have reviewed
all three. Checking the keywords in the reviews, we observe
a division of users who go out to eat breakfast with around
35% of the reviews mentioning breakfast for AB and AC
but only about 6% for BC, where lunch and dinner are more
common. With an approximately 25% higher proportion of
reviews describing the bar experience for AB compared to
AC, the difference between AB and AC seems to rely upon
the preference for bars or restaurants.

From these findings, the management of A now know that
many of its interested customers often go to B or C based on
their bar or traditional restaurant preference, respectively. If
B is closed for a certain period of time, the management of
A can feature its bar offerings to improve business during this
period. As such, hyperedge triplets are an effective building
block for sites such as Y elp to help businesses make more
informed decisions.

Common. With a weight of 244, Reading Terminal Market,
Pat’s King of Steaks, and Geno’s Steaks are three businesses
in Philadelphia within 2 miles from each other with 5,721,
4,250, and 3,401 total reviews, respectively. Reading Terminal
Market is a popular farmers market while Pat’s King of Steaks
and Geno’s Steaks are cheesesteak stalls right next to each
other. The rivalry between Pat’s and Geno’s cheesesteaks
has sparked a well-known, contested debate. Along with the
historic tourist destination of Reading Terminal Market, three
of Philadelphia’s most popular tourist spots are captured here
thanks to the users who predominantly review all three places.

C. Local Hyperedge Triplets

Here, we provide a case study for the local search around a
query hyperedge, described in Section VI-C. We select the
Really Good Vegetarian Meatloaf (Really!) recipe, a niche
vegetarian meal, in the FOOD dataset and find the top-10
maximum triplets for all three variants around it.
Independent. All of the top-10 independent triplets (best
weight: 128) contain a meat option, such as ”fabulous beef
stew” or ”tortured chicken - beer can”, reflecting an opposite
taste for vegetarians. The third option is typically a healthy
meat option such as ”zesty low fat chicken breasts” or ”potato
salad with chipotle peppers (a man’s salad)” which contains
bacon. Note that the recipes with meat options also offer
distinct features of being healthy or not.
Disjoint. The top-10 disjoint triplets (best weight: 12) often
include a dessert like ”thick chocolate pudding” and ”oatmeal
cottage cheese pancakes” along with a chicken meal such as
”creamy cajun chicken pasta” and ”amazing chicken mari-
nade”. Note that the top disjoint weight (12) is much smaller
than the top independent weight (128).
Common. The top common weight (9) is even lower than
disjoint’s, suggesting that there is not much correlation with
other recipes.



Fig. 6: AMAZON-BOOKS’s largest connected component for common
weights of at least 500. The edge thickness in the visualization is
proportional to the number of triplets containing the connecting book
products. There are 6 Harry Potter books, one Harry Potter box set,
2 Harry Potter audiobooks, and a Casual Vacancy novel.

TABLE II: Runtime results (in seconds). ”−” denotes timed-out runs
that took more than 24 hours.

INDEPENDENT DISJOINT COMMON
Net. BASIC MAX BASIC MAX BASIC MAX

GD 4.72K 18.78 452.28 5.97 15.30 0.18
DB 14.39 0.24 0.32 0.24 0.30 0.22
YE 20.51K 2.93 2.46K 4.82 1.18K 3.41
AT - 2.72 145.94 3.41 43.47 2.86
AB - 32.61 68.75K 42.58 1.93K 24.19

D. Larger Patterns Via Triplet Merging

We now consider the hyperedge triplet merging approach
described in Section VI-C on AMAZON-BOOKS using hy-
peredge triplets with a common weight of at least 500. The
largest connected component in the results consists of ten J.K.
Rowling novels with nine related to the Harry Potter series
and one The Casual Vacancy edition. Figure 6 shows the
graph of this connected component with triangles representing
hyperedge triplets and edge thickness denoting the number of
triplets containing the book pair. The first two Harry Potter
novels along with the two audiobooks participate in many
triplets and form a central cluster. This follows the trend that
the first books in a series are typically more popular than later
books and that many readers prefer to own both a physical
copy and the corresponding audiobook. In regards to multiple
physical copies, readers typically do not purchase and review
multiple physical copies of the same book, as shown with the
Harry Potter box set lacking significant connectivity with its
individual novels.

E. Runtime Experiments

We compare our improved algorithms against the naive
baseline for finding the top-1 triplet for each variant. Ta-
ble II gives the results. BASIC-INDEPENDENT is not able
to finish computation in under 24 hours for AT and AB.
MAX-INDEPENDENT, MAX-DISJOINT, and MAX-COMMON
significantly outperform Algorithm 1 variants (BASIC-

Fig. 7: Runtimes (left) and number of processed triplets (right) for
MAX when varying k on AB.
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INDEPENDENT, BASIC-DISJOINT, and BASIC-COMMON).
Speedups vary between 1.3x and 1,615x.

When considering the top-k triplets, Figure 7 shows the
runtimes and number of processed triplets for our largest
network, AB, when varying k. Our best algorithms are able to
find and rank the top 1 million hyperedge triplets in about 1.9,
4.4, and 0.9 hours for our independent, disjoint, and common
formulations, respectively. We achieve this by processing only
a small proportion of all |E|3 hyperedge triplets. Real-world
hypergraphs typically have skewed degree distributions where
there are a few hyperedges with very large cardinality and
many with low cardinality. It is expected that hyperedges of
larger cardinalities tend to participate in higher weight triplets.
As a result, our “early stopping” considerations in Algorithm 2
have a significant impact on the runtime even though its time
complexity is the same as its corresponding BASIC variants.

VIII. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel problem formulation
for finding different types of top-k hyperedge triplets. The
connection patterns we formulate take advantage of the quality
offered by the intersection sizes in the ranking and discovery
of hypergraph motifs. We proposed efficient algorithms to
materialize each of those formulations in real-world data.
Experiments and case studies on real-world hypergraphs show
practical benefit and efficient computation on networks with
millions of nodes and edges.

Although h-motifs are designed to classify (small) hyper-
graphs, they are trivial for large hypergraphs, unlike hyperedge
triplets. It is well known that many graph neural network
architectures also have difficulty classifying large hypergraphs
due to their memory and runtime constraints. Hyperedge
triplets provide a building block for fast and memory-efficient
large hypergraph classification models, which we will address
as future work. Despite the strong performance exhibited by
our algorithms, we are yet to process hypergraphs with billions
of edges in a reasonable amount of time, which is another
interesting future direction to explore. Hyperedge triplets can
also be used to study hyperedge prediction as the hyperedges
with the strongest ties (or weights) are more likely to involve
nodes in new hyperedges.
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