
On Cohesively Polarized Communities in Signed Networks
Jason Niu

University at Buffalo
Buffalo, NY, USA

jasonniu@buffalo.edu

Ahmet Erdem Sarıyüce
University at Buffalo
Buffalo, NY, USA

erdem@buffalo.edu

ABSTRACT
Locating and characterizing polarization is one of the most impor-
tant issues to enable a healthier web ecosystem. Finding groups of
nodes that form strongly stable agreements and participate in col-
lective conflicts with other groups is an important problem in this
context. Previous works approach this problem by finding balanced
subgraphs, in which the polarity measure is optimized, that result
in large subgraphs without a clear notion of agreement or conflict.
In real-world signed networks, balanced subgraphs are often not
polarized as in the case of a subgraph with only positive edges. To
remedy this issue, we leverage the notion of cohesion—we find
pairs of cohesively polarized communities where each node in a
community is positively connected to nodes in the same commu-
nity and negatively connected to nodes in the other community. To
capture the cohesion along with the polarization, we define a new
measure, dichotomy. We leverage the balanced triangles, which
model the cohesion and polarization at the same time, to design a
heuristic that results in good seedbeds for polarized communities
in real-world signed networks. Then, we introduce the electron
decomposition which finds cohesively polarized communities with
high dichotomy score. In an extensive experimental evaluation,
we show that our method finds cohesively polarized communities
and outperforms the state-of-the-art methods with respect to sev-
eral measures. Moreover, our algorithm is more efficient than the
existing methods and practical for large-scale networks.
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1 INTRODUCTION
The growing controversy surrounding the issues of today’s so-
ciety, especially those related to political topics, has led to in-
creased interactions between people with alike and opposite opin-
ions. However, excessive polarization in social media platforms
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impacts the health of public discourse and democracy. Characteri-
zation, detection, and mitigation of polarized groups is a timely and
compelling problem which has been thoroughly studied in recent
years [6, 10, 19, 25, 26, 35, 42–45, 53]. Polarized groups are often
characterized as a pair of communities where nodes form strongly
stable agreements in their own community and participate in col-
lective conflicts with the nodes from other community [9, 52, 55].
In addition, the scale of the social media platforms poses new algo-
rithmic challenges for efficient analysis of the available data [9].

Signed networks are a powerful tool to model positive and
negative interactions, such as friend-foe and trust-distrust rela-
tions [12, 31]. One classical measure to identify polarized groups is
the balance, which measures the stability according to the place-
ment of positive and negative edges. Heider defined that a signed
graph is balanced if all its cycles are positive—a cycle is positive
if it contains an even number of negative edges [31]. A common
measure for partial balance is the fraction of the balanced triangles
+++ and +−− [5, 12]. There has been some recent studies that sug-
gest balanced subgraphs as a proxy for polarized communities in
signed networks [9, 46, 52, 55]. One common disadvantage of these
works is that they optimize an ill-defined measure, polarity, which
results in large subgraphs without a clear notion of agreement or
conflict. The main reason for this behavior is that +++ triangles
in real-world signed networks are significantly more abundant
than +−− triangles, thus +++ dominates the resulting balanced
subgraphs in which the conflicts cannot be captured well.

In this work, we propose to leverage the notion of cohe-
sion to find polarized communities. Although finding cohesive
subgraphs is a fundamental graph mining problem for all kinds
of networks with key applications [2, 3, 20, 23, 27, 28, 38, 47, 51],
it is not much studied in signed networks. Existing studies only
consider strict models such as cliques [41] or focus on streaming
workloads [11] but have not leveraged the cohesion while finding
polarized communities. To capture the cohesion along with the
polarity to better model the agreement within communities and
the conflict across communities, we devise the dichotomy measure,
which characterizes the extent of polarization for a given pair of
communities. We introduce an efficient heuristic that takes advan-
tage of the balanced triangles, which model both the cohesion and
the polarization. Inspired by the truss decomposition [16], which
finds cohesive regions with hierarchical relations in simple un-
signed networks, we propose atom decomposition to find signed
triangle-specific cohesive subgraphs. We show that not only are
balanced triangles more abundant in the real-world signed net-
works, but they are also significantly closer to each other than
expected, thus tend to form good seedbeds for cohesively polarized
subgraphs with high dichotomy. Building on this observation, we
propose electron decomposition which finds polarized communities
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with high dichotomy in an efficient way. In an extensive experi-
mental evaluation on real-world and synthetic networks, we show
that electron decomposition finds better polarized communities
than the state-of-the-art with respect to various measures. Our
contributions can be summarized as follows:
• Dichotomy to model polarized communities. We use polar-
ity and cohesion to define the dichotomy measure which targets
large communities with proportional sizes.
• Triangle-based heuristics.We propose the atom decomposition
to find signed triangle-specific subgraphs and show that it obtains
good seedbeds for polarized communities. Then, we introduce the
electron decomposition to find cohesively polarized communities.
• Evaluation. We compare our results against several baselines
on real-world and synthetic networks with respect to several
measures. Electron decomposition obtains non-trivial size com-
munities of higher quality than the state-of-the-art methods. We
present a case study on the Correlates of War dataset to showcase
anecdotal examples. Furthermore, our algorithm is more efficient
than the alternative methods and is practical for large networks.

2 PRELIMINARIES
Wework on a simple and undirected signed graph𝐺 = (𝑉 , 𝐸) where
𝑉 is the set of nodes and 𝐸 = 𝐸+∪𝐸− is the set of edges such that 𝐸+
and 𝐸− are the sets of positive and negative edges, respectively. The
neighbors of a node 𝑣 is denoted by 𝑁 (𝑣). We define each triangle
in a signed network to be of type +++ , +−− , ++− , or −−− , where
each + and − is the sign of a unique edge in the triangle.

In this work, we aim to find a subgraph that consists of two
polarized communities where the nodes in the same community
are connected with positive edges and the nodes from different
communities are connected with negative edges. We denote the
target subgraph, 𝑆 = (𝑉𝑆 , 𝐸𝑆 ), as the union of left and right com-
munities, denoted by (𝑉𝐿, 𝐸𝐿) and (𝑉𝑅, 𝐸𝑅), and the edges across
the left and right communities, 𝐸𝐿𝑅 . Hence, 𝑉𝑆 = (𝑉𝐿 ∪ 𝑉𝑅) and
𝐸𝑆 = (𝐸𝐿 ∪𝐸𝑅 ∪𝐸𝐿𝑅). Any edge set with a sign superscript denotes
the subset of edges with that sign, e.g., 𝐸−

𝐿
is the set of negative

edges in 𝐸𝐿 . Without loss of generality, we assume that the larger of
two communities (in number of nodes) is called the left community,
hence |𝑉𝐿 | ≥ |𝑉𝑅 | by default.
Balance measures. A graph is balanced if its node set can be par-
titioned into two subsets such that each negative edge joins nodes
from different subsets [30]. A popular measure for partial balance
is the relative 3-balance— the ratio of the number of balanced trian-
gles to the total number of triangles in the graph [5]. Triangles are
preferred when characterizing the partial balance since triangles
represent the strongest interactions [8]. However, relative 3-balance,
along with other balance measures such as degree of balance and
normalized frustration index [5], does not guarantee polarization
as in the case of a graph with only positive edges.
Cohesive subgraphs and truss decomposition. The problem of
truss decomposition is based on cohesive subgraph discovery. The
cohesion of a subgraph is measured in terms of the edge ratio,
which is the ratio of the number of edges in the subgraph to the
number of node pairs. The most intuitive definition for a cohesive
subgraph is a clique in which every pair of nodes is connected.
However, it is often too rigid, resulting in small subgraphs with
trivial significance. Thus, more relaxed forms of a cohesive subgraph

have been proposed and 𝑘-truss is one such proposal that has been
shown to be effective [16]:

Definition 1. A 𝑘-truss of𝐺 is a maximal connected subgraph of
𝐺 where each edge participates in at least 𝑘 triangles in the subgraph.

The truss number of an edge 𝑒 ∈ 𝐸 (denoted by 𝐾 (𝑒)) is the
largest 𝑘 for which there is a 𝑘-truss that contains 𝑒 . The edges
in the 𝑘-truss are triangle-connected to each other, which means
any pair of edges 𝑒, 𝑒 ′ in a 𝑘-truss either participates in the same
triangle or connected to each other via a series of other edges
𝑒 = 𝑒1, 𝑒2, ..., 𝑒𝑘 = 𝑒 ′ such that each consecutive edge pair 𝑒𝑖 , 𝑒𝑖+1
(for 1 ≤ 𝑖 < 𝑘) shares a triangle [32, 49]. Truss decomposition is
the process of finding the truss numbers of all the edges in a given
graph through a peeling process which iteratively peels the edge
with the lowest triangle count. The triangle count of an edge that
is being peeled is assigned as its truss number [16]. For a given
graph 𝐺 = (𝑉 , 𝐸), the space complexity of the truss decomposition
is 𝑂 ( |𝑉 | + |𝐸 |) and the time complexity is 𝑂 (∑𝑣∈𝑉 |𝑁 (𝑣) |2). An
edge can reside in multiple 𝑘-trusses with different 𝑘 values, which
results in a hierarchy where lower 𝑘-trusses contain (i.e., serve as
a parent of) higher 𝑘-trusses. The terminal subgraphs which do
not have a child in the truss hierarchy are called the leaf trusses.
Leaves have the highest edge ratio and thus represent the strongest
interactions. A truss has a depth of 𝑥 from a leaf if its distance to the
closest leaf is 𝑥 . We use the fast hierarchy construction algorithms
to obtain the actual subgraphs during the truss decomposition, for
which the time complexity is the same as peeling [48].

3 RELATEDWORK
Here we review prior works on finding balanced and polarized
subgraphs and put them in context of our work.

Controversy in Unsigned Networks. Garimella et al. quanti-
fied controversy in unsigned networks by classifying two commu-
nities which are strongly separated [26]. They proposed a random
walk based method to measure the controversy, which is based on
the probability that nodes will end in the same set after a random
walk. Random walk controversy (RWC) is defined as follows:

(𝐿𝐿) (𝑅𝑅)
(𝐿𝐿 + 𝑅𝐿) (𝐿𝑅 + 𝑅𝑅) −

(𝐿𝑅) (𝑅𝐿)
(𝐿𝑅 + 𝑅𝑅) (𝐿𝐿 + 𝑅𝐿) (1)

where 𝑋𝑌 represents the number of walks which start in set 𝑋
and end in set 𝑌 . We use the authors’ code to calculate random
walk controversy in polarized communities where negative edges
are ignored. 50% of the nodes are randomly selected as starting
nodes from each set and the walk terminates when another starting
node is reached. Our work differs from Garimella et al.’s method
by operating on signed networks and considering subgraphs with
high cohesion across partitions.

Finding Balanced Communities. A related problem is to find
a perfectly balanced subgraph for which the size of the node set
is maximized. Figueiredo and Frota proposed a branch-and-cut
approach [21] and introduced applications in risk management [22].
Ordozgoiti et al. proposed an algorithm which greedily removes
nodes the from the graph until the graph is balanced, followed by
adding back the nodes which do not impact balance [46]. The main
difference between our work and these approaches is that we allow
partial balance and we also target high cohesion in the subgraphs.

For partial balance, Bonchi et al. introduced a spectral algorithm,
EIGENSIGN, which computes the first eigenvector corresponding to
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the largest eigenvalue in the adjacency matrix and then discretizes
its entries [9]. EIGENSIGN aims to find a pair of communities 𝑆 that
maximizes the polarity measure:

𝑃𝑂𝐿(𝑆) =
2 ∗ (|𝐸+

𝐿
| + |𝐸+

𝑅
| − |𝐸−

𝐿
| − |𝐸−

𝑅
| + |𝐸−

𝐿𝑅
| − |𝐸+

𝐿𝑅
|)

|𝑉𝐿 | + |𝑉𝑅 |
(2)

where 𝐸𝐿𝑅 is the set of edges between the left and right sets. Bonchi
et al. also adapted the greedy 2-approximation approach proposed
by Charikar for finding the most cohesive subgraph [13], herein we
refer to as GREEDY. It iteratively peels the node with the minimum
difference between its positive and negative edge counts and the
subgraph with the maximum polarity in this process is returned.
One drawback of the polarity measure is that it measures
balance but not polarization. Contrary to its name, a high value
for the polarity measure does not always indicate the existence of
two polarized communities. The polarity measure can be high even
when one of the communities is empty — a subgraph whose edges
are almost entirely positive is close to a complete agreement and
there is no polarization at all. In our work, we remedy this issue
by studying cohesively polarized communities. We compare our
algorithms against EIGENSIGN and GREEDY in Section 6.

Detecting 𝑘 Conflicting Groups. In this problem, the objec-
tive is to find 𝑘 subsets of nodes which are positively connected
within subsets and negatively connected between subsets. The find-
ing polarized communities problem is simply a special case of this
problem for 𝑘 = 2. Chu et al. proposed an algorithm which aims
to find all groups which contain k polarized subgraphs in signed
networks [15]. However, their algorithm only finds polarized com-
munities within each local region, which often yields subgraphs of
lesser quality. A better algorithm for the same problem is proposed
by Tzeng et al. [52]. Tzeng et al. proposed two spectral methods,
SCG-MA and SCG-R, which both operate on the leading eigenvector
of the adjacency matrix and differ in their rounding schemes [52].
In our problem formulation, prior knowledge of 𝑘 is not required,
unlike [52]. Nevertheless, we compare our algorithms against SCG-
MA and SCG-R in Section 6.

Correlation Clustering. The objective is to partition the nodes
of a signed graph into a specific number of clusters such that there
are mostly positive edges within clusters and mostly negative edges
across clusters [7]. The 2-correlation-clustering problem is a specific
case where the number of clusters is two. Bansal et al. introduced
a 3-approximation algorithm which considers pairs of clusters for
all 𝑣 ∈ 𝑉 such that 𝑣 and all its positively connected neighbors
are in one cluster and all its negatively connected neighbors are
in the other cluster [7]. Inspired by Bansal et al.’s 3-approximation
algorithm, Bonchi et al. [9] proposed returning the cluster pair
which maximizes the polarity measure (Equation 2), which we refer
to as BANSAL. Coleman et al. proposed an algorithm, PASTA-TOSS,
for the 2-correlation-clustering problem which iteratively moves
nodes across sets and returns the resulting distribution with the
highest polarity [17].We use PASTA-TOSS to partition the subgraphs
returned by our algorithms into left and right communities. We
compare our algorithms against BANSAL in Section 6.

Balanced Clique Enumeration. Recently, Sun et al. and Chen
et al. studied the problem of maximal balanced 𝑘-clique enumer-
ation in signed networks [14, 50], which aims to find maximal

cliques with no unbalanced triangles. Gao et al. introduced the max-
imal multipolarized clique model [24] where cliques are polarized
with each other. However, the definition of a clique is often too
rigid, resulting in small subgraphs with trivial significance. Here
we consider 𝑘-truss, a more relaxed model.
𝑘-truss Based Models. There are a few recent works that at-

tempt adapting the 𝑘-truss model for signed networks. Zhao et al.
defined the signed 𝑘-truss as a subgraph where each edge takes
part in at least 𝑘 − 2 balanced triangles and there is no unbalanced
triangles [56]. Their proposed solution, which we refer to as ZHAO,
iteratively removes the edge which participates in at least one
unbalanced triangle and results in the largest subgraph until the re-
maining graph does not contain any unbalanced triangles. Wu et al.
introduced another model, signed (𝑘, 𝑟 )-truss, where each edge is in
at least 𝑘 balanced triangles and at most 𝑟 unbalanced triangles [54].
Both Zhao et al.’s and Wu et al.’s truss-based models find a single
edge-induced subgraph where only a subset of edges among the se-
lected subset of nodes is considered as part of the subgraph [54, 56].
We compare our algorithms against ZHAO in Section 6.

4 MODELING POLARIZED COMMUNITIES
In this paper, we aim to find cohesively polarized pairs of com-
munities with non-trivial size. For cohesion, we use the edge ratio
(see Section 2). We consider cohesion in our problem formulation to
prevent weakly connected communities from being misrepresented
as strongly polarized. This makes our algorithms more practical
than the existingmethods.We consider groups of nodes as a commu-
nity, which are best modeled as vertex-induced subgraphs in which
all the edges among the nodes are considered to be in the subgraph.
We believe that this is more realistic than finding edge-induced
subgraphs [54, 56] because it is often the set of entities, not specific
connections, that one is interested in real-world applications.

Previous works on balanced subgraphs [7, 9, 52] consider balance
as a direct link to polarization. However, balanced subgraphs do not
have to be polarized as in the case of a subgraph with only positive
edges. In this case, it is impossible to identify and limit the spread of
polarization. Therefore, we consider a new approach based strictly
on finding cohesively polarized communities of significant size.

Cohesively polarized communities. Polarized communities
are two or more conflicting groups with positive connections in
each group and negative connections in between the groups. Polar-
ized communities are balanced but the opposite is not true: a set of
nodes with only positive edges is balanced but not polarized.

To quantify the polarized communities, various measures have
been proposed by earlier works, as explained in Section 3. The
polarity measure (Equation 2) has two disadvantages in modeling
polarized communities: (1) It does not care about the size of each
community separately, i.e., it is perfectly okay if one of the com-
munities does not exist or have a trivial size; (2) It combines two
different objectives, agreement inside and conflict across, hence
lets one dominate the other when optimizing the measure. Aref
et al. proposed two measures to remedy the second issue [4]: co-
hesiveness is defined as the fraction of positive edges to the total
number of edges within sets and divisiveness is defined as the
ratio of negative edges to the total number of edges between sets.
Those two measures, however, cannot address the first issue and
also do not penalize the negative edges inside each community
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and positive edges across the communities. A subgraph with high
cohesiveness may have a lower edge ratio compared to another
subgraph with similar cohesiveness. Likewise, high divisiveness is
trivial if the two communities of the subgraph are separated by a
few negative edges.

To address the issues mentioned above, we define Dichotomy,
which quantifies the quality of a given pair of polarized communi-
ties 𝑆 by using the polarity, cohesion, and the ratio of the community
sizes, as follows:

𝑃𝑂𝐿(𝑆) · |𝐸𝐿 | + |𝐸𝑅 |( |𝑉𝐿 |+ |𝑉𝑅 |
2

) · 𝑚𝑖𝑛( |𝑉𝐿 |, |𝑉𝑅 |)
𝑚𝑎𝑥 ( |𝑉𝐿 |, |𝑉𝑅 |)

(3)

𝑃𝑂𝐿(𝑆) represents the polarity (Equation 2) between the commu-
nities. Dichotomy measures the polarization of a subgraph by con-
sidering all the traits of a cohesively polarized subgraph. We want
to find subgraphs which maximize the polarity and cohesion while
having similar left and right set sizes so one community does not
overwhelm the other. These traits each correspond to a part of
the dichotomy formulation. Note that although a simple polarized
4-clique has perfect cohesion and equal left and right set sizes, it
has low polarity due to its size, and thus its dichotomy is poor.

Our main problem is defined as follows:

Problem 1. Given an undirected signed graph 𝐺 , find a pair of
polarized communities with optimal dichotomy.

Bonchi et al. proved maximizing polarity to be NP-hard [9], and
therefore by extension, Problem 1 is also NP-hard. We propose
heuristics (Section 5) to find polarized communities with high di-
chotomy.

5 ALGORITHMS
We start with the atom decomposition (Section 5.1), which is at
the core of our final algorithm, and give an early empirical evalu-
ation to understand the structure of real-world signed networks
(Section 5.1.1). Motivated by our observations, we propose electron
decomposition for Problem 1 to find pair(s) of cohesively polarized
communities (Section 5.2).

5.1 Using Triangles for Cohesion and Balance
Triangles offer a unique opportunity to capture cohesion and bal-
ance at the same time. The literature is rich with the methods that
use triangles to model cohesive subgraphs in various kinds of net-
works [32, 33, 49]. Here we introduce a new subgraph definition
for cohesive subgraphs with respect to a given set of triangle types
in signed networks.

Definition 2. A (𝑘, △)-atom of G is a maximal triangle-connected
subgraph of G where each edge participates in at least 𝑘 triangles of
type in △.
△ is the set of triangle types for which the subgraphs are to be
found. If △ has all the four signed triangle types, (𝑘, △)-atom is
equivalent to the 𝑘-truss in the unsigned version of the network.
For simplicity, we denote balanced triangles (△ = {+++ , +−− }) by
𝑏𝑎𝑙 and unbalanced triangles (△ = {++− , −−− }) by 𝑢𝑛𝑏𝑎𝑙 . We use
△-atom as shorthand for (𝑘, △)-atomwhen 𝑘 is not relevant. We also
define the △-atom number of an edge as the largest 𝑘 for which
there is a non-empty (𝑘, △)-atom that contains the edge. As in the

Algorithm 1: ATOM (𝐺, △)
Input:𝐺 (𝑉 , 𝐸) : graph, △: set of triangle types
Output: 𝐾 : △-atom numbers

1 𝑇 (𝑒) ← 0 ∀ edge 𝑒 ∈ 𝐸
2 foreach triangle 𝑡 ∈ 𝐺 do
3 if type(𝑡 ) ∈ △ then𝑇 (𝑒)++ ∀ edge 𝑒 ∈ 𝑡
4 Mark every 𝑒 ∈ 𝐸 as unprocessed
5 foreach unprocessed edge 𝑒 with minimum𝑇 (𝑒) do
6 𝐾 (𝑒) ←𝑇 (𝑒)
7 foreach triangle 𝑡 ∈ 𝐺 | type(𝑡 ) ∈ △ ∧ 𝑒 ∈ 𝑡 do
8 if any edge 𝑒′ ∈ 𝑡 is processed then continue
9 foreach edge 𝑒′ ∈ 𝑡 , 𝑒′ ≠ 𝑒 do

10 if 𝑇 (𝑒′) > 𝑇 (𝑒) then𝑇 (𝑒′)--
11 Mark 𝑒 as processed
12 return 𝐾

case of 𝑘-truss, all the (𝑘, △)-atoms in a graph form a hierarchy
where subgraphs with low 𝑘 values contain the subgraphs with
higher 𝑘 values. The largest 𝑘 value for which there exists a non-
empty (𝑘, △)-atom is the maximum △-atom number. A (𝑘, △)-
atom with the maximum atom number is themaximum △-atom
and a (𝑘, △)-atom that does not contain any (𝑘 ′, △)-atom such that
𝑘 ′ > 𝑘 is a leaf △-atom (i.e., a leaf in the hierarchy).

To find (𝑘, △)-atoms in a given graph (for all 𝑘 values), we intro-
duce atom decomposition, ATOM in short, in Algorithm 1. It takes as
input a signed graph G and a set of triangle types △ and finds the
△-atom number of all the edges. The triangle count of each edge
is initialized to the number of triangles of type in △ that the edge
participates in (lines 1-3). Then, a peeling process is performed to
iteratively peel the edge with the lowest triangle count (of types in
△) from the graph (lines 5-11). In each iteration, the △-atom number
of the edge of interest is assigned, triangle count of the neighboring
edges (with higher value) is decremented, and the edge of interest is
marked as processed. At the end, △-atom numbers of all the edges
are returned (line 12). To construct the subgraphs and hierarchy,
we consider the fast hierarchy construction algorithms in [48] (de-
tails are omitted for brevity). ATOM finds cohesive subgraphs with
maximal number of given triangle types.
Time and space complexity. Unlike truss decomposition, ATOM
only processes the triangles of a certain type, i.e., it performs truss
decomposition on a smaller graph consisting of a subset of triangles
from the original graph. This translates to the two additional checks
in ATOM to ensure that the correct types of triangles are counted
(line 3) and the correct types of triangles are used in the peeling (line
7). Those checks are performed in constant time and do not take
additional space, thus the time and space complexities of ATOM are
the same as truss decomposition (see Section 2).

5.1.1 Early Evaluation. Weperform an early evaluation ofATOM to
understand the structure of real-world signed networks in terms
of signed triangles (see Table 3 for the datasets). To characterize
the significance of the results in real-world networks, we use a null
model for comparison, proposed by Kirkley et al. [34]. In this model,
the structure of the graph is not changed (i.e., unsigned version
stays the same) and only the signs of the edges are randomized
while the ratio of negative edges is preserved (e.g., each edge in the
randomized version of Bitcoin network is assigned a negative sign
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Table 1: Maximum △-atom numbers. For each △, real denotes the
real value and exp. is the average value of corresponding random-
ized networks. bal denotes {+++ , +−− }.

Real-world +++ +−− ++− −−− 𝑏𝑎𝑙

networks real exp. real exp. real exp. real exp. real exp.
Bitcoin 9.0 7.2 8.0 2.0 3.0 3.2 2.0 1.6 10.0 7.2

Wikielections 17.0 12.1 4.0 3.0 5.0 7.1 4.0 2.6 17.0 12.1
Tw-referendum 51.0 46.3 11.0 2.1 7.0 6.0 0.0 1.2 51.0 46.3

Slashdot 34.0 19.0 7.0 4.0 3.0 12.0 3.0 3.0 34.0 19.0
Epinions 104.0 69.9 10.0 5.7 8.0 26.6 8.0 3.0 104.0 69.9

Wikipolitics 28.0 23.0 3.0 3.0 4.0 7.0 6.0 2.0 28.0 23.0
Wikiconflict 28.0 5.0 14.0 16.0 15.0 9.0 22.0 14.4 28.0 18.0

Table 2: Average proportion of the corresponding triangle type (△)
within each leaf in the △-atomhierarchy. Column labels are defined
as in Table 1. Tw-referendum returned no applicable subgraphs for
△ = {−−− }.

Real-world +++ +−− ++− −−− 𝑏𝑎𝑙

networks real exp. real exp. real exp. real exp. real exp.
Bitcoin 0.98 0.69 0.82 0.17 0.48 0.37 0.31 0.59 0.97 0.86

Wikielections 0.88 0.51 0.32 0.13 0.32 0.41 1.00 0.03 0.89 0.77
Tw-referendum 1.00 0.86 0.80 0.01 0.21 0.16 n/a 0.57 1.00 1.00

Slashdot 0.99 0.48 0.63 0.14 0.14 0.42 0.87 0.54 0.99 0.98
Epinions 0.99 0.59 0.50 0.08 0.26 0.36 0.49 0.01 0.98 0.96

Wikipolitics 0.95 0.71 0.18 0.15 0.22 0.31 0.83 0.18 0.96 0.94
Wikiconflict 0.71 0.06 0.58 0.44 0.62 0.28 0.84 0.26 0.73 0.68

with 15% probability). For each real-world network, we generate 10
randomized networks and report the average values.
Placement of signed triangles. Previous studies have shown that
balanced triangles (+++ , +−− ) are more abundant than unbalanced
triangles (++− , −−− ) and also more frequent than expected in real-
world signed networks [5, 29, 39]. However, there has been limited
research on the relative placement of these triangles in relation to
each other. We now check how close the signed triangles of same
(or similar) type are placed in real-world networks and in their
randomized counterparts. To quantify this, we use the maximum △-
atom numbers (Table 1) and the average proportion of the selected
triangles in leaf atoms (Table 2).

A large maximum △-atom number implies that the edges in the
corresponding subgraph participate in a larger number of triangles
of type in △, thus the triangles of type △ are placed close to each
other. Table 1 presents the maximum atom numbers of real net-
works and randomized networks (on average) for five settings. If △
has a balanced triangle (first, second, and last settings), the maxi-
mum atom number is significantly larger in the real network than in
the randomized versions. On the other hand, if △ = {++− }, the real
maximum atom number is smaller than the expected value (except
Wikiconflict). The +−− results in Table 1 are particularly striking
because even in the networks with a smaller fraction of +−− than
++− triangles (Tw-referendum, Epinions), the maximum {+−− }-
atom number is larger than the maximum {++− }-atom number in
real networks!

A proxy to quantify the closeness of triangles is the proportion
of selected triangle types in the resulting subgraph. If the average
proportion of triangles is larger than the expected, then the leaves
of the real network are typically more cohesive than expected
with respect to the corresponding triangle type(s). To measure
that, we compute the leaf atoms with various △ settings in both
real and randomized networks, compute the fraction of selected

triangle types in each, and calculate the average value (e.g., if △ =

{+−− }, we check the fraction of +−− triangles in the leaf {+−− }-
atoms). Note that leaf atoms have the highest edge ratio when
compared to its surroundings. Table 2 presents the results for five
settings. +++ and +−− each (and together) yields subgraphs with
a higher fraction of selected triangles in real networks than in
randomized networks. Also, ++− exhibits smaller proportions than
expected for four of seven networks. We observe that not only
are balanced triangles more abundant in the real networks,
they are also typically closer to each other than expected,
thus tend to form good seedbeds for highly balanced and/or
polarized subgraphs.

5.2 Finding Polarized Communities
△-atom is designed to maximize the number of triangles of desired
type(s). However, it does not prevent the undesired type(s) of tri-
angles from forming. In our early evaluation in Section 5.1.1, we
found that +++ triangles typically dominate the triangle count and
that balanced triangles overall are much more common. Therefore,
if we simply use {+++ , +−− }-atoms to find polarized communi-
ties, +++ triangles may overwhelm +−− triangles. As mentioned
in Section 2, all the subgraph definitions in this work are vertex-
induced, implying that all the edges among the chosen set of nodes
are considered to be part of the subgraph. If one is looking for bal-
anced subgraphs, 𝑏𝑎𝑙-atoms ({+++ , +−− }-atoms) only ensure that
each edge is part of many balanced triangles but does not enforce
anything about participations in unbalanced triangles. The most co-
hesive 𝑏𝑎𝑙-atoms may contain many unbalanced triangles, e.g., 27%
of the triangles in leaf 𝑏𝑎𝑙-atoms of Wikiconflict are unbalanced
(see the last pair of columns in Table 2). Although △-atom provides
a simple model to find subgraphs with many triangles of interest,
it is not capable to find cohesively polarized pairs of communities.
Therefore, we propose to explicitly avoid unwanted triangles with
a pre-processing step.

We propose a conflict-based algorithm which builds upon the
(𝑘, △)-atom model. Since many previous algorithms often find sub-
graphs with mainly positive edges, poor conflict is one of the most
common reasons for low dichotomy. These algorithms find sub-
graphs which are balanced but may not be polarized. Ideally, a
polarized subgraph is balanced and contain two distinct communi-
ties with positive edges within and negative edges in between. As
shown in Section 5.1.1, +++ triangles are typically much more com-
mon than +−− triangles in real-world signed networks. Hence, the
balanced and cohesive subgraphs found by 𝑏𝑎𝑙-atom often feature
one large positively connected community and one much smaller
opposing community, if at all. In order to find two polarized com-
munities of non-trivial and comparable size, +−− triangles must
be given a higher importance than +++ . {+−− }-atom (i.e., polar-
ized atom) may seem like the obvious choice in this context since
it maximizes the number of +−− triangles. However, it does not
prevent the presence of other types of triangles. Existence of other
types of triangles would reduce the polarization between the two
communities.

To prevent the presence of undesirable triangles while keeping
+−− triangles, we can filter out the nodes which are least correlated
to the polarization. To this end, we first rank the nodes for removal
by using the difference between the count of +−− and unbalanced
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Algorithm 2: ELECTRON (𝐺 , 𝛽)
Input:𝐺 (𝑉 , 𝐸) : graph, 𝛽 : threshold in [-1, 1]
Output: 𝐾 : processed {+−− }-atom numbers

1 𝑇 (𝑢) ← 0 ∀ node 𝑢 ∈ 𝑉
2 foreach triangle 𝑡 ∈ 𝐺 do
3 if 𝑡 is +−− then𝑇 (𝑢)++ ∀ node 𝑢 ∈ 𝑡
4 else if 𝑡 is unbalanced then𝑇 (𝑢)-- ∀ node 𝑢 ∈ 𝑡
5 while |𝑉 | > 0 do
6 𝑓 ← min

𝑢∈𝑉
𝑇 (𝑢)
( |𝑉 |−12 )

// Minimum friction in the graph

7 if 𝑓 >= 𝛽 then break // Threshold is reached

8 𝑁 ← {node 𝑢 ∈ 𝑉 | 𝑇 (𝑢)
( |𝑉 |−12 )

= 𝑓 } // Min. friction nodes

9 foreach node 𝑢 ∈ 𝑁 do
10 foreach triangle 𝑡 ∈ 𝐺 | 𝑢 ∈ 𝑡 do
11 if 𝑡 is +−− then𝑇 (𝑣)-- ∀ node 𝑣 ∈ 𝑡 | 𝑢 ≠ 𝑣

12 else if 𝑡 is unbal. then𝑇 (𝑣)++ ∀ node 𝑣 ∈ 𝑡 | 𝑢 ≠ 𝑣

13 Remove 𝑢 from𝐺

14 𝐾 ← 𝐴𝑇𝑂𝑀 (𝐺 , {+−− })
15 return 𝐾

triangles {++− ,−−− }. This difference favors balanced triangles over
unbalanced triangles. Note that we specifically ignore +++ triangles
to put more emphasis on the presence of +−− triangles. In addition,
we want to factor in cohesion too since it is part of the dichotomy.
Let 𝑇 +−−

𝑢𝑏
(𝑢) be the number of +−− triangles minus the number

of unbalanced triangles containing 𝑢. The maximum number of
+−− triangles a node can participate in is

( |𝑉 |−1
2

)
. We define the

friction of a node 𝑢 ∈ 𝑉 to measure how important it is for the total
polarization of the graph (takes values in [-1,1] interval):

𝑇 +−−
𝑢𝑏
(𝑢)( |𝑉 |−1

2
) (4)

We give a tunable algorithm, electron decomposition (ELECTRON in
short), that leverages the friction values of the nodes to find co-
hesively polarized communities with high dichotomy (Algorithm
2). ELECTRON takes as input a signed graph G and a threshold 𝛽 ,
and outputs the {+−− }-atom numbers of the filtered graph. ELEC-
TRON has a pre-processing stage which filters the input graph
according to a specified threshold 𝛽 (lines 1-13). The threshold 𝛽
provides a trade-off between the subgraph size and conflict—higher
𝛽 values typically result in smaller subgraphs with higher degrees of
conflict. After the computation of 𝑇 +−−

𝑢𝑏
values for each node (lines

1-4), the nodes with minimum friction are iteratively removed from
the graph until the friction of all the nodes satisfy the threshold 𝛽 ,
which is in the interval [-1, 1] (lines 5-13). Note that once a node is
removed, the friction of the neighboring nodes may change (lines
9-13). At the end, {+−− }-atom decomposition is performed on the
remaining graph (line 14). After the {+−− }-atoms are computed, the
two communities (left and right sets) in each subgraph is obtained
by Coleman et al.’s PASTA-TOSS algorithm, which partitions the
nodes into two communities with highest polarity [17]. The top
subgraph from our algorithm is the maximum {+−− }-atom. If there
are multiple subgraphs with the same highest 𝑘 , then we choose
the subgraph with the best dichotomy.

Time and space complexity. In addition to the atom decom-
position (line 14), we perform a filtering process (lines 1-13) as
a peeling computation over nodes. 𝑇 +−−

𝑢𝑏
values of the nodes are

Table 3: Signed Networks.
Real-world networks |𝑉 | |𝐸| |𝐸− |/ |𝐸 | # triangles

Bitcoin (BI) 5,881 21,492 0.15 33,493
Wikielections (WE) 7,115 100,693 0.22 607,279
Tw-referendum (TW) 10,884 251,406 0.05 3,120,811

Slashdot (SL) 82,140 500,481 0.23 579,565
Epinions (EP) 131,580 711,210 0.17 4,910,076

Wikipolitics (WP) 138,587 715,883 0.12 2,978,026
Wikiconflict (WC) 116,717 2,026,646 0.62 13,831,236

maintained in a bucket (instead of friction values, because all have
the same denominator), which ensures picking the node(s) with
minimum friction value in constant time. This is a variation of the
(1,3)-nucleus decomposition, proposed in [49], where the triangle
counts of the nodes are used for peeling. The time complexity of
this filtering process is the same as truss decomposition and its
space complexity is 𝑂 ( |𝑉 |). Hence, the time and space complexity
of electron decomposition are the same as atom decomposition.

6 EXPERIMENTAL EVALUATION
We evaluate our algorithms on real-world networks against several
baselines. We use various measures in evaluation.
Datasets. Important statistics of the used real-world signed net-
works are given in Table 3. Bitcoin and Epinions are who-trusts-
whom networks of the users of Bitcoin OTC and Epinions.com,
respectively [40]. Tw-referendum is built from Twitter data about
the 2016 Italian Referendum: an interaction is negative if two users
are classified with different stances, and is positive otherwise [37].
Slashdot contains friend/foe links between the users of Slash-
dot [40]. Wikiconflict, Wikielections, and Wikipolitics con-
tain links between users from the EnglishWikipedia [36]. The edges
of Wikiconflict represent positive and negative edit conflicts be-
tween users. Wikielections is the network of users that voted for
and against each other in admin elections. Wikipolitics contains
interpreted interactions between users that have edited pages about
politics. We also use two large unsigned networks for scalability
evaluation: LiveJournal and Orkut. We randomly assign the edge
signs and perform runtime experiments (see Table 7).
Measures. For polarized communities, we consider random walk
controversy (RWC) (Equation 1), polarity (Equation 2), cohesiveness,
divisiveness (Section 4), and dichotomy (Equation 3)).
Baselines. We compare our algorithms against several state-of-
the-art baselines: BANSAL [7], EIGENSIGN [9], GREEDY [9], SCG-
MA and SCG-R (𝑘=2) [52], and ZHAO [56] (detailed descriptions
are given in Section 3). Since SCG-MA consistently finds subgraphs
with lower balance compared to the other baselines, it is omitted in
the results.We also use the truss decomposition [16], whichwe refer
to as TRUSS, as a baseline (it is same as {+++ ,++− ,+−− ,−−− }-atom
dec.). For all baselines, we consider the vertex-induced subgraphs
that are obtained by including the endpoints of the edges outputted
by the baseline.
Setup. All experiments are performed on a Linux operating sys-
tem (v. Linux 3.10.0-1127) running on a machine with Intel(R)
Xeon(R) Gold 6130 CPU processor at 2.10 GHz with 192 GBmemory.
We implemented our algorithms in C++ and compiled using gcc
6.3.0 at the -O2 level. Code is available at https://tinyurl.com/
polarizedSubgraphs.

https://tinyurl.com/polarizedSubgraphs
https://tinyurl.com/polarizedSubgraphs
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Table 4: Results for the polarized communities obtained by our al-
gorithms and baselines. |V𝐿 | and |V𝑅 | denote the number of nodes in
left and right sets (larger is the left set w.l.o.g), RWC is randomwalk
controversy, Pol. is polarity, Coh. is cohesiveness, Div. is divisive-
ness, and Dic. is dichotomy. For the baselines (BANSAL, EIGENSIGN,
GREEDY, SCG-R, ZHAO, TRUSS), we show the one that gives the high-
est dichotomy and denote it with a trailing asterisk. P-ATOM denotes
the {+−−}-atomdecomposition (i.e., polarized atomdecomposition).

Networks Algorithms |𝑉𝐿 | |𝑉𝑅 | RWC Pol. Coh. Div. Dic.
Bitcoin BANSAL* 21 20 1.00 23.07 0.98 1.00 12.78

B-ATOM 17 6 1.00 16.70 0.99 1.00 4.52
P-ATOM 9 8 1.00 14.00 0.98 1.00 11.07

ELECTRON 19 17 1.00 23.00 1.00 1.00 13.52
Wikielections BANSAL* 408 7 0.83 39.49 0.88 0.89 0.08

B-ATOM 65 0 - 39.08 - - 0.00
P-ATOM 155 3 - 3.00 0.53 1.00 0.01

ELECTRON 6 4 1.00 7.00 1.00 1.00 3.63
Tw-referendum BANSAL* 543 100 0.32 52.21 1.00 0.61 0.92

B-ATOM 128 0 - 99.00 - - 0.00
P-ATOM 15 14 1.00 23.66 1.00 1.00 18.66

ELECTRON 15 14 1.00 23.66 1.00 1.00 18.66
Slashdot SCG-R* 26 6 0.64 7.12 1.00 0.92 0.38

B-ATOM 77 0 - 60.36 - - 0.00
P-ATOM 49 7 1.00 7.00 0.55 1.00 0.56

ELECTRON 30 6 1.00 13.00 0.67 1.00 1.81
Epinions BANSAL* 249 5 1.00 157.76 1.00 1.00 1.98

B-ATOM 142 1 - 135.83 1.00 1.00 0.92
P-ATOM 134 15 1.00 1.15 0.46 1.00 0.05

ELECTRON 28 6 1.00 5.29 0.50 1.00 0.80
Wikipolitics BANSAL* 599 11 0.58 48.45 0.98 0.41 0.07

B-ATOM 86 0 - 58.72 - - 0.00
P-ATOM 10 3 - 9.23 1.00 1.00 2.13

ELECTRON 9 2 - 8.91 1.00 1.00 1.76
Wikiconflict BANSAL* 369 134 0.91 131.07 0.91 0.96 14.19

B-ATOM 147 0 - 69.05 - - 0.00
P-ATOM 33 31 1.00 40.72 0.90 1.00 26.09

ELECTRON 40 36 1.00 46.08 0.98 1.00 25.68

6.1 Polarized Communities
Table 4 shows the results for the pairs of polarized communities
obtained by {+−− }-atom decomposition (denoted by P-ATOM),
ELECTRON (𝛽 = 0.1), and the best baseline algorithm in terms
of dichotomy. For each graph and algorithm, we list the number
of nodes in the left and right communities (larger one is the left
w.l.o.g.), random walk controversy, polarity, cohesiveness, divisive-
ness, and dichotomy. Trivial subgraphs with empty right sets do
not have a cohesiveness and divisiveness score.

P-ATOM and ELECTRON consistently have the best dichotomy
scores, often outperforming all other algorithms by several factors.
Note that random walk controversy and polarity scores are not in
line with the other measures in several cases, which suggests that
they are not reliable measures. Since real-world networks typically
consist of multiple smaller polarized communities instead of a single
large community, finding multiple high quality subgraphs is often
desirable instead of misclassifying a larger subgraph.

6.2 Finding Multiple Communities
Our algorithms can find multiple pairs of polarized communities
along with the maximal pair, which are ranked by their atom num-
bers. Each of these non-maximal subgraphs with high dichotomy
can tell a unique story about a polarization within the signed net-
work. For the baselines, we can find multiple sets of polarized com-
munities by removing the resulting communities from the graph
and reapplying the algorithm on the residual graph. We repeat this
process to obtain at most 10 pairs of polarized communities.

Table 5: Average results for the polarized communities obtained by
our algorithms and baselines. NP is the number of pairs of polarized
communities and the rest is defined as in Table 4.

Networks Algorithms NP |𝑉𝐿 | |𝑉𝑅 | Pol. Coh. Div. Dic.
Bitcoin BANSAL* 10 53.8 5.1 10.76 0.93 0.77 1.79

P-ATOM 9 18.7 12.4 11.71 0.80 1.00 6.14
ELECTRON 2 20.0 17.0 23.50 1.00 1.00 13.06

Wikielections BANSAL* 10 197.3 13.1 25.00 0.92 0.55 0.33
P-ATOM 2 431.5 15.0 10.87 0.59 1.00 0.04

ELECTRON 2 8.0 4.0 8.07 1.00 1.00 3.10
Tw-referendum BANSAL* 9 294.1 15.0 54.49 1.00 0.69 0.25

P-ATOM 3 34.3 25.0 36.17 1.00 1.00 17.69
ELECTRON 3 29.7 18.7 34.26 1.00 1.00 16.77

Slashdot EIGENSIGN* 4 191.0 80.2 38.85 0.96 0.95 0.97
P-ATOM 7 42.3 5.9 5.76 0.75 1.00 0.37

ELECTRON 2 34.0 6.0 15.22 0.70 1.00 1.83
Epinions EIGENSIGN* 3 199.3 4.0 94.69 1.00 0.99 0.46

P-ATOM 11 70.2 9.1 5.69 0.83 1.00 0.79
ELECTRON 3 33.0 6.7 7.73 0.54 1.00 1.08

Wikipolitics BANSAL* 10 159.1 1.5 40.85 0.99 0.61 0.04
P-ATOM 10 51.4 8.1 6.54 0.94 1.00 0.44

ELECTRON 1 9.0 2.0 8.91 1.00 1.00 1.76
Wikiconflict EIGENSIGN* 7 91.6 51.7 46.65 0.86 1.00 9.91

P-ATOM 154 17.6 3.1 3.21 0.51 1.00 0.56
ELECTRON 2 43.0 36.0 47.98 0.98 1.00 24.94

Table 5 shows the average results for the pairs of polarized com-
munities obtained by {+−− }-atom decomposition (P-ATOM), ELEC-
TRON (𝛽 = 0.1), and the best baseline algorithm in terms of di-
chotomy. For each graph and algorithm, we list the number of
obtained community pairs, average number of nodes in the left
and right sets (larger set is the left w.l.o.g.), and average polarity,
cohesiveness, divisiveness, and dichotomy. Trivial subgraphs with
empty right sets are omitted. For our algorithms, only the subgraphs
within a depth level of 2 from a leaf are considered.

ELECTRON has the best dichotomy score in 6 of 7 networks, often
outperforming the second-best algorithm by a significant margin.
Tw-referendum is the only dataset where P-ATOM slightly outper-
forms ELECTRON. ELECTRON is often able to find two communities
with non-trivial sizes, thanks to its focus on +−− triangles.

6.3 ELECTRON Threshold Experiments
We compare the results of ELECTRON for different values of 𝛽 .
Figure 1 shows the number of subgraph nodes and dichotomy
when 𝛽 is 0.1, 0.2, and 0.3. ELECTRON avoids finding subgraphs
which are harmonious as a whole but contain a small conflicting
group hidden within, unlike other algorithms. In general, 𝛽 value

Figure 1: ELECTRON ’s threshold experiments. For 𝛽 values of 0.1, 0.2,
and 0.3, we plot the number of nodes (left) and dichotomy (right).
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Table 6: Average results for the subgraphs obtained by our algo-
rithms and baselines on CoW. NP is the number of pairs of polarized
communities and the rest is defined as in Table 4. We only show al-
gorithms which have the best result for Pol., Coh., Div., and/or Dic.
(highlighted in blue).

Algorithm NP |𝑉𝐿 | |𝑉𝑅 | Pol. Coh. Div. Dic.
ZHAO 8 24.12 1.62 13.84 0.60 1.00 0.05
TRUSS 8 27.5 0.12 21.35 0.99 1.00 0.11
P-ATOM 3 17.0 4.67 6.64 0.76 1.00 3.50

ELECTRON 2 10.5 6.0 11.18 0.97 1.00 4.99

of 0.1 gives subgraphs with high dichotomy for the majority of
the networks, hence suggested as default. One can choose slightly
higher 𝛽 values for higher degrees of conflict at the expense of
smaller community sizes, where dichotomy represents the trade-
off.
6.4 Case Study: Correlates of War
In this section, we present a case study to evaluate the algorithms
on the CoW (Correlates of War) dataset [18]. Nodes in CoW are the
countries, negative edges indicate a major conflict such as war, and
positive edges represent alliances or peace treaties. The original
data has 52 signed networks corresponding to different time periods
between 1946 and 1999. Here we aggregate the data by choosing
the most common sign for each edge (or the most recent, if tied). In
total, there are 180 nodes, 397 negative edges, 1406 positive edges,
and 12249 triangles. USA has the highest positive degree and RUS
has the highest negative degree.

Table 6 shows the average results for all obtained communities
(as described in Section 6.2). We omit the algorithms who do not
perform best in any of the measures. P-ATOM and ELECTRON are
the only algorithms that are able to find a subgraph with significant
dichotomy. Almost all of the baselines (except SCG-R) and B-ATOM
find the same subgraph consisting of 33 countries strongly aligned
with the USA— there are 554 positive and only 7 negative edges. The
top subgraph found by ELECTRON (the maximum {+ − −}-atom of
the filtered graph) is shown in Figure 2. One set has the countries in
alliance with USA and the other set contains the countries who had
a positive relationship with RUS, which is expected since the time
range mapped by CoW includes the cold war period. P-ATOM finds
a smaller version of this subgraph. None of the other baselines
can find a similar subgraph that depicts the cold war.

Although a large subgraph may have high balance, it may not
have high dichotomy. Subgraphs with low cohesion may represent
weaker alliances and/or conflicts where some countries may be
neutral (not friendly nor hostile) with each other. Subgraphs with
high cohesion may represent strong alliances between countries
who may not be directly involved in the cold war. Subgraphs with
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Figure 2: The top subgraph found by ELECTRON. White and black
nodes denote the left and right communities, respectively. Positive
edges are denoted by straight blue lines andnegative ones are shown
by dashed red lines.

Table 7: Runtime results (in seconds). We denote the computations
that exceed 12 hours by -.

Wikiconflict LiveJournal Orkut
|𝑉 |=117𝐾 |𝑉 |=4𝑀 , |𝐸 |=35𝑀 |𝑉 |=3𝑀 , |𝐸 |=109𝑀
|𝐸 |=2𝑀 |𝐸− |/ |𝐸 | |𝐸− |/ |𝐸 |

Algorithm 0.05 0.25 0.5 0.05 0.25 0.5
BANSAL 11.5K - - - - - -

EIGENSIGN 344 10.2K 3.2K 607 8.3K 4.3K 5.0K
GREEDY 7.7K - - - - - -
SCG-R 2.8K 6.9K 2.4K 2.6K 2.7K 2.8K 3.4K
ZHAO 496 4.6K 1.9K 2.6K 20.2K 19.9K 21.7K
TRUSS 20 106 105 123 668 671 671

B-ATOM 38 352 315 316 2.0K 2.3K 1.9K
ELECTRON 47 681 632 722 1.6K 2.0K 2.3K

high dichotomy consists of two strong alliances in a significant
conflict with each other. Hence, capturing the polarization in
the formof dichotomy is the key tomeasure the significance
of the relationships within a subgraph.
6.5 Runtime Performance
We compare the runtimes of our algorithms and the baselines on
the largest network in our dataset, Wikiconflict, and also two
large unsigned networks: LiveJournal and Orkut in Table 7. We
randomly assign the edge signs in LiveJournal and Orkut, and
used three different probabilities for negative edges, 0.05, 0.25, and
0.5, to see if the fraction of signs impact the results. We generate
10 random networks for each configuration and considered the
average runtimes. We terminate the computations after 12 hours.
TRUSS, B-ATOM, and ELECTRON find multiple polarized communi-
ties through their peeling process. For baselines, we find multiple
sets of polarized communities as explained in Section 6.2.

For Wikiconflict, our algorithms are faster than the baselines,
with the exception of TRUSS. All the proposed algorithms finish
in about a minute or less. TRUSS takes less time because it simply
considers all the triangles without any specific checks for edge signs,
which makes it ineffective in finding polarized communities. For
LiveJournal and Orkut, we observe similar trends. Our algorithms
are consistently faster than the baselines, taking a few minutes
for LiveJournal and less than an hour for Orkut. No significant
difference is observed for different ratios of negative edges.

7 CONCLUSION
We studied the problem of finding polarized communities. We lever-
aged cohesion to define the dichotomy measure which can better
model the polarized communities in real-world signed networks.
We then proposed a heuristic, ELECTRON, that successfully takes
advantage of the signed triangles. Experimental evaluation on real-
world networks showed that our algorithms typically yield more
polarized and cohesive communities when compared to the state-of-
the-art methods. We believe that our algorithms will be beneficial
in real-world applications that are engaged with signed networks.
For example, cohesively polarized subgraphs in online discussion
platforms can point to the set of users that are heavily interested
in a topic with strong opinions.
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