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Abstract. Core decomposition is an efficient building block for various
graph analysis tasks such as dense subgraph discovery and identifying
influential nodes. One crucial weakness of the core decomposition is its
sensitivity to changes in the graph: inserting or removing a few edges can
drastically change the core structure of a graph. Hence, it is essential to
characterize, quantify, and, if possible, improve the resilience of the core
structure of a given graph in global and local levels. Previous works
mostly considered the core resilience of the entire graph or important
subgraphs in it. In this work, we study node-based core resilience mea-
sures upon edge removals and insertions. We first show that a previously
proposed measure, Core Strength, does not correctly capture the core
resilience of a node upon edge removals. Next, we introduce the concept
of dependency graph to capture the impact of neighbor nodes (for edge
removal) and probable future neighbor nodes (for edge insertion) on the
core number of a given node. Accordingly, we define Removal Strength
and Insertion Strength measures to capture the resilience of an individ-
ual node upon removing and inserting an edge, respectively. As naive
computation of those measures is costly, we provide efficient heuristics
built on key observations about the core structure. We consider two key
applications, finding critical edges and identifying influential spreaders,
to demonstrate the usefulness of our new measures on various real-world
networks and against several baselines. We also show that our heuristic
algorithms are more efficient than the naive approaches.

1 Introduction

The k-cores are proposed as the seedbeds in which cohesive subsets of nodes can
be found [36]. A k-core is defined as the maximal connected subgraph in which
every vertex has at least k neighbors in the subgraph. Each node is assigned
a core number which denotes the maximum k for which the node is a part of
k-core. Thanks to its linear time complexity, k-cores are used as a standard tool
in various applications at downstream graph analytics. Examples include the
analysis of internet topology [11], predicting protein interactions [2], identifying
influential spreaders [20], and community detection [3,6,16,21].

Despite its widespread use, k-cores are known to have a weak resilience
against a few changes in the graph [1,22]. Inserting or removing a few edges
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can drastically change the core structure of a graph. In applications where noise
is common or the studied graph has uncertain parts, core decomposition is not
reliable. For example, networks are constructed as a result of indirect measure-
ments in various applications, such as the Internet router/AS level graphs by
traceroutes [15], biological networks by experimental correlations [35], and social
media based networks by limited samples via the APIs [5]. It is essential to char-
acterize, quantify, and, if possible, improve the resilience of the core structure of
a given graph in such applications at global and local levels.

In previous works, the resilience of k-core is studied under node or edge
removal to improve users’ involvement in social networks [29,42,45], bolster
connections to protect a social network from unraveling [9] and determining the
edges that should be monitored for attacks on technological networks [22]. Those
studies only consider the core structure of the entire graph or a few important
subgraphs (e.g., maximum k-cores). There is no holistic study to quantify
the node-based core resilience for any given node in the graph upon
edge removals and edge insertions. Considering the query-driven scenarios
in uncertain or noisy networks where the properties of the nodes are important,
such as identifying influential nodes in spreading processes [26] or information
diffusion [27] and finding critical nodes/edges [31], it is crucial to measure the
resilience of core numbers against edge removals as well as insertions.

In this work, we study node-based core resilience measures upon edge
removals and insertions. We first demonstrate that a previously proposed node-
based measure, Core Strength [22], is inaccurate at capturing the changes in the
core number upon edge removals. Next, we propose the concept of dependency
graph which captures the impact of neighbor nodes (for removal case) and prob-
able future neighbor nodes (for insertion case) on the core number of a given
node. In the dependency graph for removal, one-way dependency relationships
between neighboring nodes help to identify the resilience of core numbers. Like-
wise, in the insertion case, we discover the one-way dependency relationships to
quantify the likelihood of a change in the core number. Using the dependency
graphs, we define a pair of Removal Strength and Insertion Strength measures
for each node. Calculating those node strengths for big graphs in a naive way
is computationally intensive. For edge removal, we use the equal edges [46] and
k-corona [17] properties to design RSC algorithm. For insertion, we design ISC
algorithm based on the number of connections a node has with the same or higher
core number. As node-level aspects of a graph are important in many real-world
applications, we consider two applications to demonstrate the benefit of our new
measures: finding the most critical edges to remove/insert such that the number
of nodes that changes their initial core numbers is maximized [14,45,46] and
identifying influential spreaders [13,28,40]. For both applications we compare
our node-based measures against several state-of-the-art baselines.

Our contributions can be summarized as follows:

– We point out that the Core Strength definition (by [22]) is incorrect and
provide counterexamples as well as empirical results to show its unreliability.
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– To quantify the node resilience upon edge removal and edge insertion, we
use the concept of dependency graphs. Accordingly, we introduce a pair of
Removal Strength and Insertion Strength measures.

– We design RSC and ISC algorithms to compute the new node resilience mea-
sures for removal and insertion.

– We consider two motivating applications to examine the effectiveness of those
metrics: finding critical edges and identifying influential spreaders.

– We evaluate our measures and algorithms on real-world networks. We demon-
strate the efficiency and effectiveness of our techniques against several base-
lines on the two applications mentioned above.

2 Background

In this work, we consider G = (V,E) as an undirected and unweighted graph,
where V and E represent the set of nodes and edges in G, respectively. We use
Ē to denote the complement of E, i.e., Ē = {(u, v)|u ∈ V, v ∈ V, (u, v) /∈ E}. We
use N(u,G) to represent the set of neighbors of u in G and Γ(u,G) to denote
the distance-2 neighbors of u. Let S ⊆ G be a subgraph of G. We use deg(u, S)
to denote the degree of u in S. In some cases we consider a directed graph G′ in
which deg−(u,G′) and deg+(u,G′) denotes the in-degree and out-degree of u in
G′, respectively. In our notations, we omit G when it is obvious.

The k-core, denoted by Ck(G), is the maximal connected subgraph S ⊆ G
where every vertex has at least k connections in S, i.e., deg(u, S) ≥ k ∀u ∈ G.
The core number of a vertex is the largest k value for which a k-core contains the
vertex. Here, K(u,G) denotes the core number of u in G, and K.(G) is the core
vector, which is the core numbers of all vertices in G. The maximum k-core(s)
of a graph are the (non-empty) k-cores with largest value of k. The k-shell of a
graph is the set of nodes with core number k [11] and a subcore is a connected
subgraph of nodes with core number k [32]. The k-cores (for all k) are computed
by recursively removing vertices with degree less than k and their adjacent edges,
while assigning core numbers during the process, which takes O(|E|) time [8].

We define the subset of neighbors of a node u based on the relative core
numbers: ∆<(u,G) denotes the neighbors with smaller core numbers, i.e., {v :
v ∈ N(u,G) ∧ K(v,G) < K(u,G)} and ∆=(u,G) is the neighbors with equal
core numbers. Similarly, ∆>(u,G) and ∆≥(u,G) are defined.

3 Related Work

Network resilience is the capability of a network to maintain or restore its func-
tion under faults. Characterizing the resilience of a network is important for
critical systems such as power grids and transportation systems [24]. Character-
ization of the resilience is made with respect to various graph characteristics,
such as components and paths [34]. One interesting direction in this context is
the resilience of the core structure. Core decomposition is one of the most widely
used graph algorithms thanks to its linear complexity [36]. However, it is quite
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sensitive to changes in the graph and there are a few studies to characterize
and improve its robustness [1,10,14,22,44]. Here we summarize the literature on
core resilience and explore its significance in two motivating applications: finding
critical edges and identifying influential spreaders.

Table 1. Comparison of previous works on core resilience and our work.

[1] [22] [10] [14] [44] Our work

Graph structure Max cores Entire graph Entire graph Entire graph k-shells Core number

Edge insertion Yes No No No Yes Yes

Edge removal Yes Yes No No Yes Yes

Core Resilience. Adiga and Vullikanti found that the stability of maximum
k-cores under noise and sampling perturbations does not degrade in a monotonic
way [1]. Laishram et al. defined the core resilience of a graph as the correlation
between the core number rankings of the top r% nodes before and after p%
edges or nodes are removed at random [22]. As computing this is costly, they
proposed Core Strength and Core Influence measures as proxy to quantify the
resilience of a node’s core number upon node or edge deletions. Burleson-Lesser
et al. modeled network robustness by using the histogram of core numbers [10]
and found that ecological and financial networks with U-shaped histograms are
resilient to node deletion attacks. Dey et al. defined a graph’s stability based on
changes in each node’s core number upon node removals and studied identifying
critical nodes to delete to maximize the number of nodes falling from their initial
cores [14]. More recently, Zhou et al. studied attack strategies to change the core
numbers of the nodes by rewiring edges [44]. Unlike those studies, we focus on
node-based core resilience and consider both removal and insertion. For a given
node, we quantify the resilience of its core number upon edge insertion and
removals. Table 1 compares our work and previous studies on core resilience.

Finding Critical Edges. A related line of work has proposed problems to
minimize and maximize the size of a k-core by inserting/removing nodes/edges.
For the removal, the motivation is often to find critical nodes/edges that should
be kept in the graph to avoid unraveling in social networks or be watched against
targeted attacks in infrastructure networks [29,42,43,46]. In the context of core
resilience, such nodes/edges are the weak structures with low resilience against
removal and are suitable for targeted attacks. Regarding the insertion, the objec-
tive is to find new edges that can increase the user engagement [38,45] or incen-
tivize existing nodes to stay engaged so that other nodes are kept engaged as
well [9,23,41]. In the scope of core resilience, such nodes/edges are the critical
graph structures that are most vulnerable to increases in core numbers or core
sizes. All those works consider a specific k-core and study targeted attacks to
change the core structure with a minimal number of edge/node changes. In this
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work, we focus on the core numbers and use our new node-based core resilience
measures to select a limited number of edges so as to maximize the number of
nodes whose core numbers change (see Sect. 5.2).

Identifying Influential Spreaders. Another application that core numbers
are heavily used is identifying influential spreaders [20]. Influential spreaders
are the nodes that determine how information spreads over the network or how
a virus is propagated [4,18]. SIR (Susceptible-Infected-Recovered) model is a
classical tool to measure the influence of a given set of nodes [37]. In the SIR
model, a set of initially infected nodes are chosen which will spread the disease
at each time step, t. The fraction of infected nodes, denoted by S(t), is used to
measure the spread after t iterations. Kitsak et al. demonstrated that the most
efficient spreaders are located in the highest k-shells [20]. Wang et al. discovered
that greedily choosing multiple spreaders may result in some of them being
too close to each other and hence their influence overlaps [39]. They proposed
the IKS algorithm to select nodes from different k-shells based on the highest
node information entropy, which outperforms the other centrality or core-number
based measures. Considering the success of core-based measures, we use node-
based core resilience as a proxy to identify influential spreaders (see Sect. 5.3).

4 Node-Based Core Resilience

Earlier studies mostly defined core resilience measures for the entire graph. One
exception is the core strength (CS) definition by Laishram et al. [22], which
aims to measure the resilience of a node’s core number upon edge removals and
is defined as CS(u,G) = |∆≥(u,G)| − K(u,G) + 1. They claim that in order
to decrease K(u,G), at least CS(u,G) connections from u must be removed.
Here we show that this claim is not true by a simple counterexample and give
empirical evidence to show how frequently it fails in practice.

Consider the toy graph in Fig. 1a. CS(v3) is 3, which means that at least
three edges of v3 should be removed to decrease its core number, according to
Laishram et al. [22]. However, if we remove only (v3, v2) and (v3, v4), K(v3)
decreases to 1. Note that removing two edges does not always decrease K(v3),
e.g.,. deleting (v3, v1) and (v3, v2) does not affect K(v3). Depending on the edges
being removed, other nodes may have their core numbers changed too, and this
cascading effect may result in decreasing the core number of the vertex of interest.
Hence, not only the count but also the position of the removed edges matters in
quantifying the node-based core resilience.

One question is how likely to see such structures, where removing less than
CS(u) edges decreases K(u), in real-world networks. We perform a simple exper-
iment to check this. We consider the nodes in the maximum k-cores with a CS
of at least two. For each node, we remove one of its edges and observe its core
number changes. We repeat this for each edge of a node. Removing even a single
edge is sufficient around 10% of the time to decrease the core number (as shown
in [19]). Hence, the CS definition also fails frequently in practice.
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Fig. 1. Illustrative examples

As the CS definition is inaccurate in capturing the core resilience of a node
upon edge removals, we define a new measure, Removal Strength, to compute
the likelihood of a node’s core number change (Sect. 4.1). Moreover, we propose a
new measure, Insertion Strength, to assess the stability of a node’s core number
after an edge insertion (Sect. 4.2).

4.1 Resilience Against Edge Removal

We capture a node’s core resilience against edge removals by analyzing its depen-
dency on neighbor nodes. We focus on single edge removal, with a conjecture
that multiple edge removals can be approximated by considering multiple single
edge removals.

We define that the node u is dependent on node v, denoted as a relationship
v → u, if K(u) decrements after removing the edge (u, v). For a given graph
G = (V,E), we define the removal dependency graph , denoted byGrd = (V,Erd),
as a directed graph such that an edge (u, v) ∈ Erd if (u, v) ∈ E and K(v,G \
(u, v)) < K(v,G). We give an example in Fig. 1b. For the toy graph on the left,
the corresponding removal dependency graph (Grd) is given on the right. In the
Grd, v2 has two in-neighbors (v1 and v4) which means it is dependent on v1 and
v4. For an edge in G, if neither node is dependent on the other, then no edge
will appear in the Grd, such as (v1, v4). If each node is dependent on another,
then there are two edges in both directions, as for (v5, v6).

In-degree and out-degree of a node in the removal dependency graph give
important insights about its core resilience. A node with a large in-degree is
dependent on many of its neighbors, hence removing a nearby edge could reduce
its core number, implying a lower core resilience. We define In-Degree Removal
Strength of a node u, RSID(u), to quantify the resilience of u to retain its core
number upon edge removal(s): RSID(u) = 1

deg−(u,Grd) . The higher a node’s
out-degree in the dependency graph, the more strength it has to change the
other nodes’ core numbers. We define Out-Degree Removal Strength of a node
u, RSOD(u), to quantify the strength of u to change the core number of other
nodes: RSOD(u) = deg+(u,Grd).

4.1.1 Removal Strength Computation
A naive way to compute the removal dependency graph is to run incremental
core decomposition algorithm for every single edge removal [32,33], which will



Quantifying Node-Based Core Resilience 265

be costly. Here we propose efficient heuristics by using key observations about
the core structure.

We define node u ∈ G as vulnerable if K(u,G) = |∆≥(u,G)|. For a vulner-
able node u, the set of edges (u, v) where v ∈ ∆≥(u,G) is called the sensitive
edges of u (also called as equal edges in [46]).

Lemma 1. If a sensitive edge (u, v) of a vulnerable node u is removed, then
K(u,G) will decrease.

Proof. Proofs of Lemmas 1–7 are available in the extended version [19].

Sensitive edges of a vulnerable node provide a way to group certain edges
whose removal yields the same core vector, as first shown in [46].

Lemma 2. For a vulnerable node u, removing any sensitive edge yields the same
core vector, i.e., K.(G \ {(u, v1)}) = K.(G \ {(u, v2)}) where both edges are
sensitive.

According to [17], k-corona is a maximal connected subgraph of vulnerable
vertices with the same core number, k. Formally, S ⊆ G is a k-corona if ∀u ∈ S,
K(u,G) = k and u is a vulnerable vertex. We define k-corona adjacent edge
set, KAES(S), as the union of the sensitive edges of the vulnerable nodes in a
k-corona S, i.e.,

⋃
u∈S {(u, v)|v ∈ ∆≥(u,G)}.

Lemma 3. When an edge (u, v) is removed from the graph, there will be a
change in the core numbers if and only if the removed edge (u, v) is part of
a KAES.

Lemma 4. For a k-corona S, removing any edge in KAES(S) yields the same
core vector, i.e., K.(G\{(u, v)}) = K.(G\{(x, y)}) for (u, v), (x, y) ∈ KAES(S).

We define the subset of nodes whose core numbers change after removing a
single edge as Core Changed Nodes (CCN). According to Lemma 4, for a
k-corona S, if we choose any edge (u, v) ∈ KAES(S) to delete, then we will
get the same core vector. Hence we denote the set of nodes whose core numbers
change after removing any edge in a KAES(S) as CCNKAES(S).

Instead of examining every single edge in a graph, we can utilize
CCNKAES(S) to efficiently detect the changes in the core numbers of nodes.
Assume w.l.o.g. that K(u) ≤ K(v). If u is a vulnerable node, then, by Lemma
1, deleting an edge (u, v) will decrement the core number of u. If u is not a vul-
nerable node, we need to look at the properties of both u and v. If v is also not
a vulnerable node, then the edge (u, v) /∈ KAES, and there will be no changes
in K(u) or K(v) (by Lemma 3). However, if the node v is vulnerable, we need
to consider the following two cases to determine the changes in K(v):

Case 1: K(u) = K(v). Here, (u, v) is a sensitive edge, and deleting (u, v)
will decrement K(v) (Lemma 1). In this case, K(u) will also decrement if it
becomes affected by the changes in K(v). This information is actually captured
by the CCN set. If two nodes are in a same CCN , a change in the core number
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of one node affects the core number of the other node. Hence, if u and v are in
the same CCNKAES(S) for any k-corona S, then their core numbers depend on
each other.

Case 2: K(u) < K(v). In this case, K(v) will not change, as shown by [32].
Regarding K(u), as u is not a vulnerable node, it has at least K(u)+1 neighbors
in its k-core. Since v is not in the k-core of u, there will still be at least K(u)
neighbors in u’s k-core in G \ {(u, v}, and thus K(u) will not change either.

4.1.2 Removal Strength Algorithm
Building on the definitions and observations above, we propose RSC algorithm
(Algorithm 1) to compute RSID and RSOD for each node in a given graph. At
the beginning, we find the k-core(s) of a graph using the classical peeling based
algorithm proposed by Batagelj et al. [7] (line 4). Then using the BFS traversal,
we compute the set of k-coronas (S) in every k-core subgraph (line 6). Since
removing an edge (u, v) /∈ KAES does not affect the core number of any node
(by Lemma 3), we only consider the edges (u, v) ∈ KAES in each k-core. For
each k-corona S, we find the KAES (line 8). Thanks to Lemma 4, we remove
only one edge in KAES(S) and compute CCNKAES(S) for a KAES(S) (line
9) by using the incremental core decomposition algorithm from [33]. Next, we

Algorithm 1: RSC: Removal Strength Computation (G(V,E))
1 Input: G (V,E): graph
2 Output: RSID, RSOD: in and out-degree removal strength, respectively

3 Grd (V,E
′
) ← empty graph // removal dependency graph

4 Compute all the k-cores of G, Ck(G), and put in C
5 foreach k-core Ck(G) ∈ C do
6 Compute all k-coronas in Ck(G) and put in S
7 foreach k-corona S ∈ S do
8 Find KAES(S)
9 Delete any single edge e ∈ KAES(S), compute

CCNKAES(S) // by [33]

10 foreach u ∈ V do
11 if K(u) = |∆≥(u,G)| then
12 foreach v ∈ Nu do
13 if K(u) ≤ K(v) then

14 E
′
.push((v, u)) // K(u) will decrement, by Lemma 1

15 else
16 foreach v in Nu do
17 if K(v) = K(u) & K(v) = |∆≥(v,G)| &
18 u and v are in a same CCNKAES(S) then

19 E
′
.push((v, u)) // K(u) will decrement, by Case 1

20 foreach u in V do
21 RSID(u) ← 1

deg−(u,Grd)
, RSOD(u) ← deg+(u,Grd)

22 Return RSID, RSOD
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use Lemma 1 and the two observations (Case 1 and 2) to quickly determine
whether the core numbers will change after each edge removal (lines 10–19). At
the end, we calculate and return the in-degree and out-degree removal strengths
of all the nodes by using Grd (lines 20–22).

Time and Space Complexity. Line 4, as well as lines 10–19 takes O(|E|) time.
In the worst case, lines 5–9 takes O(|V | · |E|) time—if each node is a k-corona,
one edge is removed per node, hence |V | edge removals in total (line 9) and each
edge removal takes O(|E|) time per [33]. Overall time complexity is O(|V | · |E|),
but this is a loose bound as the number of k-coronas is significantly less than
|V | in real-world networks (even for large networks we observe the number of
k-coronas to be small, requiring us to remove fewer edges, as shown in Table 2
column 4 (% Gain)). In addition to graph (O(|E|)), we store |∆≥(u,G)| values
(O(|V |)), component ids to bookkeep CCNKAES(S) for each node (O(|V |)), and
RSID, RSOD values (O(|V |)). Overall space complexity is O(|E|).

4.2 Resilience Against Edge Insertion

We now characterize the resilience of a node’s core number against edge inser-
tions. We again focus on the impact of a single edge change, consider the changes
in a node’s core number based on new links it forms with other nodes, and model
the resilience accordingly. Regarding the set of edge insertions, it is impracti-
cal and unrealistic to think about all possible new links between any pair of
unconnected nodes, namely Ē. It is impractical because real-world networks are
sparse, i.e., |E| <<

(|V |
2

)
, which implies |Ē| >> |E|. It is unrealistic as it is

unexpected that a link will form between two nodes if they have no common
neighbors, i.e., if they are not distance-2 neighbors [25,30]. Even the number
of non-neighbor node pairs with at least one common neighbor is too large to
be considered, reaching up to 100·|E| for some real-world networks. Further-
more, those node pairs are not located homogeneously in the graph; some nodes
(mostly low-degree) have very few (or no) distance-2 neighbors, hence it is not
clear how to define insertion core resilience for those (see [19] for statistics).

To address these issues, we consider a fixed number (b) of edge insertions for
each node and construct the insertion candidate graph,Gic, accordingly. Here, we
fix b = 5 as it is close to the average degrees of the networks used in experiments
and no significant advantage is observed for larger b values. For any node u ∈ G,
and its distance-2 neighbors Γ(u), we consider the below cases to select the edges
and add to Gic:

– If |Γ(u)| > b, choose b random edges (u, v) such that v ∈ Γ(u).
– Else, choose all (u, v) edges such that v ∈ Γ(u) and choose b− |Γ(u)| random

(u,w) edge(s) such that w ∈ V (and w /∈ Γ(u)).

Note that b ensures a lower bound on the degree of a node in Gic, there can be
nodes with larger degree due to random edges coming from the other nodes.
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We define the dependency relationships between nodes by using the insertion
candidate graph, Gic. For each edge (u, v) ∈ Gic, we check how the core num-
bers of u and v change when (u, v) is inserted to G. u is said to be dependent
on node v, denoted as a relationship v → u, if K(u) increases after inserting the
edge (u, v). For a given graph G = (V,E) and Gic = (V,Eic), we define inser-
tion dependency graph, Gid = (V,Eid), as a directed graph such that an edge
(u, v) ∈ Eid if (u, v) ∈ Eic and K(v,G ∪ (u, v)) > K(v,G). Here, Gid is always
a subgraph of Gic. We give an example in Fig. 2. For the toy graph on the left,
corresponding insertion candidate graph is given in the middle (for b = 2). All
the nodes except v2 has at least two distance-2 neighbors. To ensure v2 has two
edges, we randomly select a node, v5, and put an edge between them. Straight
edges in the candidate graph are the edges due to the distance-2 neighborhood
(the if condition above) and the dashed edge is the random edge (from the else
condition). The corresponding insertion dependency graph is shown on the right.
For example, inserting (v3, v5) edge would increase K(v5) and does not impact
K(v3), hence (v3 → v5) is put.

Fig. 2. Examples for insertion candidate (b = 2) and dependency graphs.

A node with a large in-degree is dependent on many of its distance-2 (or ran-
dom) neighbors, implying a lower core resilience. We define In-Degree Insertion
Strength of a node u, ISID, to measure the node’s ability to preserve its core
number after edge insertion: ISID(u) = 1

deg−(u,Gid) . A node with a large-out
degree implies the ability to increase the core numbers of other nodes. We define
Out-Degree Insertion Strength of a node u, ISOD, to measure the strength of a
node to impact the nodes around it: ISOD(u) = deg+(u,Gid).

4.2.1 Insertion Strength Computation
A naive computation of the insertion dependency graph is to run incremental
core decomposition algorithm for every single edge insertion [32,33], which is
costly. Here we consider four lemmas that help to determine the core number
changes without running the incremental algorithm.
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Lemma 5. For a node u such that K(u,G) = |∆>(u,G)|, adding a new edge
(u, v) s.t. K(v,G) > K(u,G) will increment K(u), i.e., K(u,G ∪ (u, v)) =
K(u,G) + 1.

Lemma 6. For two non-neighbor nodes u and v, (u, v) /∈ E, such that
K(u,G) = K(v,G) = k, if |∆>(u,G)| = K(u,G) and |∆>(v,G)| = K(v,G),
then adding a new edge (u, v) will increment K(u) and K(v).

Lemma 7. Consider a node u ∈ G such that |∆>(u,G)| = K(u,G) − 1. Say
u has a neighbor w for which K(u,G) = K(w,G) and |∆>(w,G)| = K(w,G).
Adding a new edge (u, v) such that K(v,G) > K(u,G) will increment K(u) and
K(w).

4.2.2 Insertion Strength Algorithm
We use the above lemmas (Lemma 5 to Lemma 7) to design ISC (Insertion
Strength Computation) algorithm which creates the insertion dependency graph
by determining the changes in the core numbers (pseudocode is in [19]). We
start by computing the k-cores by [8]. We consider the edges of Gic, which is
given, to build the dependency graph of insertion. To construct the Gid, we check
whether each edge e ∈ Gic can be handled by the lemmas given in Sect. 4.2.1. If
the conditions in any of the lemmas are satisfied, we can readily determine the
dependency graph and tell if inserting the new edge (u, v) will change the K(u)
and/orK(v). If the edge does not fit to any of the lemmas, we use the incremental
core decomposition algorithm [33] to determine the new core numbers. For each
of the cases, if there is any increase in K(u) and/or K(v), we update the Gid

by inserting directed edges based on the core number changes. At the end, we
calculate and return the insertion strength measures of each node u ∈ G by using
the Gid.

Time and Space Complexity. In the worst case, incremental core decom-
position algorithm [33], which takes O(|E|), is run for each edge in Gic. There
is O(b · |V |) edges in Gic where b is a constant. In total, the time complex-
ity is O(|V | · |E|). However, this is a loose bound as we show runtime results
in Sect. 5. In addition to graph (O(|E|)), we store |∆>(u,G)| values (O(|V |))
and ISID, ISOD values (O(|V |)). Overall space complexity is O(|E|).
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Table 2. Statistics for the networks (first two columns) and runtime results for edge
removal and edge insertion (in seconds). %Gain denotes the savings how much less

edges are processed by our algorithm than the naive approach for edge removal. |Eic|
|E|

denotes the ratio of the number of edges in the insertion candidate graph to the actual
graph. Sp. is the speedup of our algorithms against the naive approaches.

Removal Insertion

Graph |V | |E| % Gain Naive (s) RSC (s) Sp. |Eic|
|E| Naive (s) ISC (s) Sp.

as19971108 3015 5156 50.2 % 4.88 2.93 1.67× 2.79 1.10 0.75 1.46×
as19990309 4759 8896 54.4 % 12.38 6.35 1.95× 2.58 1.70 1.31 1.30×
bio-dmela 7393 25569 79.4 % 56.96 12.85 4.43× 1.40 38.26 26.60 1.44×
ca-CondMat 21363 91286 89.0 % 575.82 67.19 8.57× 1.11 475.15 377.32 1.26×
ca-Erdos992 5094 7515 39.1 % 10.93 7.47 1.46× 3.11 7.48 5.23 1.43×
ca-GrQc 4158 13422 84.4 % 17.82 3.47 5.14× 1.39 32.41 26.66 1.22×
inf-openflights 2939 15677 86.8 % 15.67 2.49 6.29× 0.90 2.64 2.28 1.16×
inf-power 4941 6594 63.8 % 9.36 3.96 2.36× 2.76 504.87 486.43 1.04×
jazz 198 2742 97.8 % 0.43 0.06 7.17× 0.35 1.00 0.94 1.06×
p2p-Gnutella08 6301 20777 80.3 % 40.83 8.99 4.54× 1.45 951.50 918.05 1.04×
p2p-Gnutella09 8114 26013 78.8 % 63.81 14.51 4.40× 1.49 769.12 713.63 1.08×
soc-hamsterster 2426 16630 93.6 % 13.03 1.27 10.26× 0.72 4.82 4.22 1.14×
soc-wiki-Vote 889 2914 81.2 % 0.88 0.29 3.03× 1.46 1.45 1.09 1.33×
tech-routers-rf 2113 6632 77.8 % 4.26 1.30 3.28× 1.50 2.46 1.98 1.25×
tech-WHOIS 7476 56943 89.9 % 128.82 14.51 8.88× 0.65 6.59 5.60 1.18×
USAir97 332 2461 91.2 % 0.28 0.08 3.50× 0.65 0.12 0.09 1.46×
web-spam 4767 37375 91.5 % 52.48 5.28 9.94× 0.63 7.05 5.17 1.36×

5 Experimental Evaluation

We conduct experiments on real-world networks of various types and sizes to
evaluate the efficiency and effectiveness of our node-strength measures. Table 2
(first three columns) shows the statistics of the networks, obtained from SNAP1

and Network Repository2. All experiments are performed on a Linux operat-
ing system (v. 3.10.0-1127) running on a machine with Intel(R) Xeon(R) Gold
6130 CPU processor at 2.10GHz with 192 GB memory. We implemented our
algorithms in Python 3.6.8. Our implementation is publicly available3.

Since we consider random edge selections to construct Gic and calculate ISID

and ISOD, we repeat insertion experiments 10 times to account for randomness
and report the average strength measure for each node. Note that the standard
deviation in those computations is quite low, e.g., in inf-openflights graph,
the standard deviation is less than .18 for most nodes where more than half of
the nodes have zero (or close to zero) standard deviation (details are in [19]).

1 http://snap.stanford.edu/.
2 http://networkrepository.com/.
3 https://github.com/erdemUB/ECMLPKDD23.

http://snap.stanford.edu/
http://networkrepository.com/
https://github.com/erdemUB/ECMLPKDD23
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5.1 Runtime Results

We first compare the runtime performances of our RSC and ISC algorithms
against the naive strategy which simply runs incremental core decomposition
algorithms for each edge removal and edge insertion. One important note is
that the three approaches (Subcore, Purecore, and Traversal) proposed in [32]
give different behaviors in our removal and insertion experiments. Although the
Traversal algorithm is shown to be the best in [32] for both single edge removal
and insertion, we observe that the Subcore algorithm can be made faster for
edge insertion in our experiments. The key is to precompute all the subcores in
each k-core and reuse when handling edge insertions. We use this pre-calculation
technique and Subcore algorithm in our edge insertion experiments, whereas the
Traversal algorithm is used in our edge removal experiments.

Table 2 gives the results. For the edge removal, we are able to remove 78.2%
less edges, on average, when compared to the naive approach (fourth column
in Table 2). This translates to 5.11× faster runtime on average. For edge inser-
tion, our algorithm well utilizes the lemmas in Sect. 4.2.1 and gives 1.25× faster
computation when compared to the naive approach.

5.2 Finding Critical Edges

Here, we compare our node resilience measures to several baselines for finding
critical edges in edge removal and insertion scenarios. We use four baselines:
Random, Core Number, Degree, Core Strength. Each method identifies a lim-
ited number (c) of critical edges to maximize the impact on the core numbers
of affected nodes. For Random, we repeat experiments 50 times and take the
average. For Core Number, Degree, and Core Strength; the score of each edge
is determined by the sum of its end points’ values and c edges with the highest
score are considered. We assess each method by the percentage of nodes affected,
F , (decreased or increased from the initial core number) by the removal or inser-
tion of the budget number of edges. For all experiments, we vary the budget (c)
from 50 to 1000 and evaluate our results. For better visualization, we show the
results from budget 600 to 1000 in Fig. 3(c) and Fig. 3(d).

5.2.1 Edge Removal Experiments.
We use RSID and RSOD to select c critical edges to remove from the graph. For
our measures, the score of each edge is set as the sum of its endpoints’ RSID or
RSOD values. For RSID, we choose c edges with the lowest scores as a node with
lower RSID is more likely to change its core number on edge removal, whereas,
for RSOD, we select c edges with the highest score as a node with larger RSOD

affect other nodes’ core numbers more. We also pay attention to not selecting no
more than one edge from any KAES(S), as removing any edges in KAES(S)
produces the same core vector for a k-corona S by Lemma 4. For Random, we
choose c random edges from the graph. Figure 3 (top row) shows the results
for four graphs (results for other graphs are in [19]). Both RSID and RSOD

outperform the baselines. RSID is slightly better than RSOD in some graphs
and significantly better in a few.
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Fig. 3. Finding critical edges by our methods and baselines for edge removal (top row)
and edge insertion (bottom row).

5.2.2 Edge Insertion Experiments
We use ISOD and ISID to select c critical edges to insert to the graph. We
first consider all the non-neighbor node pairs who share at least two common
neighbors, called as candidate set, and then select a subset of size c edges of
the candidate set by using the baselines or our methods. When inserting an
edge (u, v), if core number of both u and v increased by a previous insertion,
we skip this edge. For our measures, we define the score of each candidate edge
(u, v) as max(ISID(u), ISID(v)) (likewise for ISOD), then select the c edges
with lowest scores to insert. Here, we consider maximum endpoint strength as
the edge score, unlike the edge removal case where we considered sum, to keep
the scores more regularized because the space of edge insertions is larger and can
yield very large edge scores if the sum is applied. We choose the edges with the
lowest score as they are the least resilient for incrementing core numbers. For
Random, we choose c random edges from the candidate set. Figure 3 (bottom
row) gives the results for four networks (rest are in [19]). Overall, ISID and
ISOD consistently outperform the baselines.

We also define a simple variant of our measures to handle the clique-like
structures in which core numbers are difficult to increase. We consider the
propagation effect of neighbor nodes by summing up the strength of a node
with its neighbors’ strengths. We define Neighbor Sum variants as IS∗

ID(u) =
ISID(u) +

∑
v∈N(u) ISID(v) (likewise for IS∗

OD). As above we define the score
of each candidate edge the maximum strength of its endpoints and then select
the c edges with the lowest scores to insert. As shown in Fig. 3 (bottom row),
IS∗

ID and IS∗
OD significantly outperform all the other methods in ca-CondMat,

which is a co-authorship network formed by cliques of authors on a paper.

5.3 Identifying Influential Spreaders

In this section, we consider the problem of identifying influential spreaders in
the SIR model. We use our node resilience measures as well as three baselines
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to choose 20% nodes in a given graph as the initially infected node set. For our
measures (RSID, RSOD, ISID, ISOD), we choose the node with largest strength
from the highest k-shell, then do the same for the next highest shell ((k − 1)-
shell), and so on until the 1-shell. Then we repeat this process until 20% of
the nodes are chosen. Ties are broken randomly. As the highest strength nodes
are more resilient upon graph changes, they are more important for influence
maximization than others. Regarding the baselines, we choose the methods that
rely on core numbers—the k-shell strategy [20], the IKS method [39], and the
Core Strength measure (the nodes with the largest values)—to select the 20%
initially infected node set. To ensure a smooth transmission in the SIR model,
we fix S→I probability µ = 0.01 and set the value of I→R probability β to be a
little bit bigger than βmin = 〈k〉/〈k2〉 [12], where 〈k〉 and 〈k2〉 are the first and
the second moment of the degree distribution, as done in [39] (exact β values are
in [19]). For each method, we run the model 50 times and take the average. We
consider the percentage of affected nodes at time t, denoted as S(t), to evaluate
the spreading effect of the initially infected node set.

Fig. 4. Identifying influential spreaders by our measures and baselines.

Figure 4 shows S(t) as a function of t ∈ [0, 15] for four networks (results
for other graphs are in [19]). As t increases, S(t) rises and eventually reaches a
steady value. Overall, our node strength measures outperform the k-shell and
IKS strategies. Core Strength measure shows superior performance than some
of our measures but RSOD consistently outperforms all the methods. The reason
for this behavior is that the nodes with large RSID do not always have large
core numbers whereas the nodes with large RSOD are consistently in highest
k-cores.

6 Conclusions and Future Work

In this paper, we studied the problem of node-based core resilience upon edge
removals and edge insertions. We first showed that the Core Strength [22] does
not correctly capture the core resilience of a node upon edge removals. Then we
introduced the concept of dependency graph to capture the impact of neighbor
nodes (for removal) and probable future neighbor nodes (for insertion) on the
core number of a given node. We defined node strengths in dependency graphs
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based on in- and out-degrees and introduced efficient heuristics to compute those.
Experiments show that our heuristics are faster than the naive approaches and
our strength measures outperform the existing baselines on two key applications,
finding critical edges and identifying influential spreaders. For future work, we
plan to speed up the computation of insertion strength measures and also con-
sider more realistic scenarios to construct the Gic4.
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