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Abstract. In network analysis, one of the most important structures
is the k-core: the maximal set of nodes such that each node in the k-
core has at least k neighbors within the core. Recently, the notion of the
skeletal k-core– a minimal subgraph that preserves the core structure
of the graph– has attracted attention. However, the literature to date
has contained only a biased greedy heuristic for sampling skeletal cores,
which resulted in a skewed analysis of the network. In this work, we
introduce a novel MCMC algorithm for sampling skeletal cores uniformly
at random, as well as a novel algorithm for estimating the size of the space
of skeletal k-cores, which, as we show, is important for understanding the
core resilience of the network. With these algorithms, we demonstrate
the relationship between resilience of the network and the core structure
of the graph and suggest fast heuristics for evaluating graph structure
from a skeletal cores perspective. We show that the normalized number of
skeletal cores in the graph correlates with the resilience of k-core towards
edge deletion attacks.
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1 Introduction

Within the machine learning and network science literature, the study of dense
subgraphs has received a great deal of attention. Examples of such structures
include cliques [18], k-clubs [21] and k-trusses [7]. Of particular interest is the k-
core, which plays a role in applications such as community detection [19,22],
influence maximization [11], visualization [3,12], anomaly detection [26] and
understanding network topology [3,27]. A network’s k-core is defined as the
maximal subgraph of the network such that every node in the subgraph has at
least k neighbours also in the subgraph [24]. The core number of a node is the
highest value of k for which that node belongs to a k-core.

k-cores have a history of being studied in the context of network resilience [17,
20]. To understand the structural properties of k-cores and their effect on
resilience, the concept of the skeletal core was proposed [16]. The skeletal core
of a graph is defined as a minimal subgraph that preserves the core number of
each node. Skeletal cores can be seen as a “backbone” of the k-core structure of
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the graph, and so play an important role in the structure of the network. While
useful for applications such as speeding up community detection, they are crucial
in the context of analyzing the network’s resilience or robustness [16]. To this
end, understanding the space of skeletal cores can provide valuable insight into
the graph structure: understanding when a network’s core structure will change,
requires understanding when it remains the same.

However, because skeletal cores are a new concept, there are a number of
important open problems surrounding them. For instance, the literature contains
only a single greedy heuristic for identifying a single skeletal core, and it is not
known how to sample skeletal cores of a network uniformly at random, which
fundamentally limits the understanding of how skeletal cores are distributed
and how they affect the core structure. Relatedly, it is also not known how to
estimate the number of skeletal cores to which an edge belongs, making it difficult
to gauge the importance of an edge with respect to the overall core structure of
the network. Without solving these problems, one cannot properly understand
the effect of a network’s skeletal core structure on the resilience of the network.

In our work, we first introduce a novel MCMC (Markov Chain Monte Carlo)
algorithm for sampling skeletal k-cores uniformly at random and a corresponding
algorithm for estimating the number of skeletal cores in the graph. We then use
these algorithms to study the relationship between the space of skeletal cores
and the robustness of complex networks. We suggest practical heuristics for the
estimation of the probability of a given edge being part of a skeletal core and
experimentally validate these heuristics with respect to the ground truth.

Our main contributions are as follows:

1. We provide a novel MCMC algorithm for sampling skeletal cores of the graph
uniformly at random.

2. We suggest heuristics that can be used to estimate the likelihood of an edge
being part of a skeletal core and evaluate them experimentally.

3. We provide a novel algorithm for the estimation of the size of the skeletal core
space and experimentally demonstrate the relationship between the number
of skeletal cores in the graph and the core resilience of the network.

4. We demonstrate how the proposed algorithms can be used to identify
moments of fundamental change of the k-core structure during a process of
edge deletion.

2 Related Work

First introduced by Seidman in 1983 [24], the k-core of a graph G = (V,E) is
defined as the maximal connected subgraph such that any node in the subgraph
has a degree at least k. k-cores are an important part of network analysis, and
have been used for many tasks, including community detection [19], speedups of
the graph algorithms [22], influence maximization [11], anomaly detection [26],
prediction of protein functions [2], and others. k-cores have also been used to
gain deeper insight into a graph structure, including through visualization [12].
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A skeletal core of a graph G is defined as a minimal subgraph H of G such
that all nodes in H have the same core number as in G [16]. The literature
contains a greedy algorithm (discussed in more detail in Sect. 4.2) for generating
a single skeletal k-core for the given graph and suggests several applications for
skeletal cores [16]. However, the greedy algorithm for finding skeletal cores does
not sample uniformly at random from the whole space of skeletal cores, and so
may lead to bias in analysis. Moreover, because graphs may have many skeletal
cores, simply generating one such skeletal core may not provide sufficient insight
into the graph structure. The estimation of the expected properties of skeletal
cores (e.g. expected size of skeletal core or expected overlap between skeletal
cores) is a more useful tool for graph analysis, but it requires the ability to
sample cores uniformly at random.

Skeletal cores are particularly important to the robustness of networks. While
network robustness can be defined in many ways [8,10], of relevance to this work
is the resilience of a graph’s k-core structure against changes in the graph struc-
ture. k-core numbers are used as a way to quantify connectedness and importance
of the nodes in the network, and core structure can be used to study the local
density of the graphs. As such, it is important to estimate how these properties
may be affected if the graph is changed: for example, how do random communi-
cations failures in a communications network affect overall connectivity?

The core resilience measure was suggested to measure the propensity of nodes
to change core number when edges from the graph are dropped [17], and the
impact of noise and sampling process on the k-core of a graph has been stud-
ied [1]. Understanding when changes in the graph structure happen during some
processes (e.g. edge removal/addition) has been a long-standing research topic in
network science. Examples include research on changes in random networks [9],
including the emergence of k-cores in the random graphs [23] and dynamics of
the k-core during edge removal in the random graphs [13].

3 Background

Here, we introduce concepts necessary for the presentation of our work.

3.1 k-Cores

The k-core is defined as a maximal subgraph for which any node in the subgraph
is connected to at least k neighbours in subgraph. A node’s core number is the
maximum value k such that the node belongs to a k-core. The core numbers of a
graph can be obtained using a ‘peeling’ k-core decomposition technique, which
runs in O(|E|) time [4].

3.2 Core Strength

Core strength was introduced in [17]. The core strength of a node u provides an
upper bound on the number of edges to same or higher-shell neighbors that can
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be removed from the node without it decreasing its core number. The proposed
MCMC algorithm (Sect. 4.1) uses core strength to identify transitions; and the
greedy estimator algorithm from Sect. 4.2 uses it for estimating the number of
skeletal cores.

Formally the core strength of u is defined as CS(u) = |N≥(u)| − K(u) + 1,
where N≥ is the set of neighbours of u with a core number greater than or equal
to that of u (i.e., those that support u’s core number) and K(u) denotes the core
number of u.1

3.3 Core Valid Subgraph and Skeletal k-Core

A Core Valid Subgraph CV S of a graph G = (V,E) is defined as a spanning
subgraph of G such that all nodes in G have the same k-core number in CV S
as they do in G [16]. In other words, CV S preserves the core structure of G.

A skeletal k-core is defined as a minimal CV S: i.e., one for which removal
of any edge would lead to at least one node decreasing its core number [16]. Of
interest in the context of our work is the greedy algorithm for finding a single
skeletal core [16]. This algorithm serves to identify the starting state for the
MCMC algorithm in Sect. 4.2, and can be summarized as follows:

1. Identify a set of edges of G such that any edge in the set can be removed
without k-core numbers decreasing. Denote this set as R.

2. Select one of the edges e ∈ R and remove it from the G.
3. Recompute R and repeat 1-3, until R = ∅.
4. Return G as a skeletal core.

3.4 Core Resilience

Core resilience was proposed in [17] to measure the robustness of a network’s
k-core structure against random edge removal. It provides a way to compare
the estimated ability of the core structure of different networks to withstand
changes (for example, due to failure of the communication channels between
nodes or because of network evolution). Consider two graphs: G = (V,E) and
G′ = (V,E′), where G′ is a subgraph of G formed by randomly deleting p%
of the edges from G. Denote the top r% of the nodes with the highest k-
core numbers in G as Vr. The resilience R(p)

r of G can then be defined as:
R(p)

r = τb({((K(u,G), (K(u,G′)), u ∈ Vr}), where K(u,G) denotes the core
number of node u in graph G, and τb denotes the expected Kendall-Tau rank
correlation [14] between the two rankings (other rank correlations may be used).
R(p1,p2)

r is defined as the mean core resilience as the percentage of dropped edges

changes from p1 to p2 [17]: R(p1,p2)
r =

∫ p2
p1

R(x)
r (G)dx

p2−p1
. We use core resilience in our

1 Note that this sometimes overestimates the desired value, as loss of an edge (u, v) can
trigger reductions in core numbers of other nodes, and thus lower the core number of
other neighbors of u; however, computing the exact value is more computationally
intensive.
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experimental analysis to show the relationship between skeletal cores and the
robustness of the graph.

4 Algorithms to Explore the Space of Skeletal Cores

Here, we introduce an MCMC-based algorithm for sampling skeletal cores u.a.r.,
and then demonstrate how to estimate the number of skeletal cores in a graph.

Exploring the space of skeletal cores in unbiased way is useful for different
applications. Let‘s consider the scenario of the pandemic of a contagious virus
which spreads through the network of personal interactions. As was shown by
the research of COVID-19 [25], k-cores of high complexity are known to sustain
an outbreak even if the network becomes partially disconnected; thus, estimation
of which edges are most important for the k-core could be useful to minimize
the spread of the disease. While skeletal cores of the personal interaction net-
work provide important insight regarding these edges, application of previously
suggested greedy algorithm will provide a biased sample of the skeletal cores,
leading to the non-optimal decision-making. Similarly, for the opposite problem
of maintaining the k-core structure, a skewed sample of skeletal cores is undesir-
able. The proposed MCMC algorithm does not suffer from this drawback, and
is guaranteed to provide unbiased sampling.

The proposed MCMC algorithm uses the notion of core strength [17]
(described in Sect. 3.2) to identify transitions between different skeletal k-cores.

In our experimental analysis, we show that the core resilience of a graph is
strongly correlated with its skeletal core properties.

4.1 Sampling Skeletal Cores Uniformly at Random

In this section, we describe an MCMC algorithm for sampling skeletal k-cores
uniformly at random. At a high level, the proposed method is described as
following: First, begin from any skeletal core T0 (for example, one obtained by
the greedy algorithm in [16]). This skeletal core is the initial state of a Markov
Chain M . Next, randomly transform T0 into another skeletal core T1, or stay at
T0, with probabilities of D/Dmax and 1 − D/Dmax correspondingly, where D
stands for the number of possible transformations from the current state. Dmax

needs to be bigger than any possible number of transitions from one state. This
is equivalent to conducting a random walk over M . Repeat the procedure until
the process converges to the stationary distribution. If transition probabilities
are defined correctly, this stationary distribution will be an uniform distribution
over the space of skeletal cores. Once the stationary distribution is reached,
return the current skeletal core.

The key idea behind the proposed algorithm is to correctly transition between
skeletal cores of the graph. When at a skeletal core T , no edge can be deleted from
T without affecting core numbers (because T is skeletal), unless another edge
(or edges) is added to compensate. When these replacement edges are added,
this may necessitate further removal of edges to ensure that the new subgraph
is still skeletal. We consider only allowed transitions that go up to two steps in
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any direction, and we show in the proof that this is enough to reach any skeletal
core, while limiting the number of possible transitions at each step.

More formally, the proposed algorithm consists of the following steps:

1. Begin from some skeletal core T0 of the original graph G = (V,E). T0 can
be obtained from the original graph by using a greedy algorithm, like that
proposed in [16], or in any alternative way.

2. Initialize the set of possible transitions R0 = ∅.
3. Denote the current skeletal core as T . To identify possible transitions, iterate

over all edges (u, v) ∈ T and generate all skeletal cores that can be obtained
from T by removal of an edge (u, v), followed by the addition of an edge
(u, i) ∈ G\T or an edge (v, j) ∈ G\T (or both) and corresponding removal of
(i, p) ∈ T and/or (j, k) ∈ T , if needed. Add these transitions to R.

4. Similarly, for all edges (u, v) ∈ G\T , generate all skeletal cores, that can be
obtained from T by addition of (u, v), the removal of (u, i) ∈ T or (v, j) ∈ T
(or both), and corresponding addition of (i, p) ∈ G\T and/or (j, k) ∈ G\T .
Add these transitions to R.

5. Select one of the transitions from R uniformly at random or stay at T with
probability 1 − D/Dmax, where Dmax needs to be bigger than any possible
number of transitions from one state. Dmax can be bounded in several ways
- for example, it‘s trivial to show that Dmax ≤ |E| ∗ d4m, where dm is the
highest degree in the graph.2

6. Repeat steps 2–5 until the Markov Chain converges. Convergence can be
identified in several ways [6]. One simple example could be running several
instances of Markovian chains and comparing their outputs.

7. Return the current skeletal core.

The running time for this algorithm is high. In each iteration, the algorithm
iterates over all edges and considers O(d4m) possible transitions for every edge
in the worst-case scenario. Hence, the running time for one step is O(|E| ∗ d4m).
The overall running time of the proposed algorithm depends primarily on the
mixing time of the Markov chain M . While we do not propose proof that M is
rapidly mixing, experiments suggest that the stationary distribution is reached
relatively fast in most cases. Nonetheless, the main disadvantage of the algorithm
is running time, which makes it prohibitively expensive to run on big graphs.

In the next section, we discuss how properties of the space of skeletal cores
can be estimated more quickly.

Theorem 1. The described MCMC algorithm will sample skeletal cores u.a.r.

Due to space constraints, the proof of the theorem can be found in the extended
version of this paper.3. In the proof, we show that space of skeletal cores is
connected and that transitions between adjacent states are symmetric.

2 Experimentally this bound proved to be very loose, which may reduce the rate of
convergence.

3 Extended version and source code are available at https://github.com/honcharov-
danylo/extended skeletal.

https://github.com/honcharov-danylo/extended_skeletal
https://github.com/honcharov-danylo/extended_skeletal
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def estimator(G = (V,E) : Graph,K : HashTable):
R = ∅; c = 0; d = 1
repeat

CS = getCoreStrength(G)
R = {(u, v) ∈ E : (CS[u] > 1 ∧ CS[v] > 1)∨
∨(CS[u] > 1 ∧ K(u) < K(v))) ∨ (CS[v] > 1 ∧ K(v) < K(u)))}
d∗ = |R|; c+ = 1

until R! = ∅
return d/c!

def estimate size(G = (V,E) : Graph,K : HashTable,N : int):
S = List() ; W = List()
for i = 0; i < N ; i++ do

S.add(estimator(G,K))
end
return AV G(S)

Algorithm 1: Number of skeletal cores in the graph

4.2 Estimating the Number of Skeletal Cores

Analyzing the properties of the skeletal cores is important for many applications.
For instance, the k-core can be seen as a form of the equilibrium in a game-
theoretic model [5]; and, correspondingly, the skeletal core can be seen as the
minimal edge-induced subgraph that maintains this equilibrium. The question
of what this subgraph looks on average is crucial for understanding the network
as a whole. Another example could be using the average size of skeletal cores to
find the “breaking point” of the k-core structure, as shown in Sect. 5.4.

Because the MCMC algorithm is computationally expensive, here we suggest
an alternative approach for the estimation of the expected properties of skeletal
cores. We provide an algorithm that provides the expected number of skeletal
k-cores in the graph, and explain how it can be used to estimate properties of
skeletal cores (e.g. average size) without relying on the MCMC approach. An
outline of the algorithm can be found in Algorithm 1, further referred to as the
GE-algorithm. The algorithm takes a graph and k-core numbers of all nodes as
input and returns the expected number of skeletal cores in the graph.

The idea behind the algorithm is as follows: first, “unravel” the DAG H,
formed by transitions of the greedy heuristic for finding a single skeletal core [16]
(discussed in Sect. 3.3) to the tree and count its leaves, adjusting our estimate for
overcounting caused by such “unravelling”. To improve the estimate, we repeat
the process n times and use Davg as the final estimate.

4.3 Proof of the Algorithm Correctness

Theorem 2. Algorithm 1 returns the expected number of skeletal k-cores in the
graph.

Proof. Denote the original input graph as G. Use a greedy algorithm, (see
Sect. 3.3) to obtain a single skeletal core S from G. Next, create a new graph H,
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where nodes denote graphs that can be obtained during the process above and
directed edges denote transitions between these graphs in the greedy algorithm.
It can be shown that the greedy algorithm is capable of producing every skeletal
core in the graph. H is directed and acyclic, because an edge from u ∈ H to
v ∈ H requires that v is a subgraph of u in G. Nodes without out-edges are
skeletal cores of G (by definition). The root of H is G itself. Next, modify H by
“unravelling” the DAG to a tree by making copies of all nodes that have more
than one parent. Denote the resulting graph as Hm.

Because Hm is a tree, obtaining the expected number of terminal nodes
(leaves) in Hm could be done easily with the algorithm suggested by Knuth [15]
for the estimation of the space of the backtracking tree. This algorithm initializes
a counter D with 1 at the root of the tree (which denotes the original graph G)
and performs a random walk down the tree, multiplying D by the out-degree
of every node on the path, until it reaches a leaf. When a leaf is reached, the
counter will contain the expected number of the leaves in the graph [15].

However, the skeletal cores (leaves) in Hm may be copied (and counted)
several times. As edges removed from G to obtain any skeletal core Si may have
been removed in any order, there are Ai! ways to reach Si from G in H, where
Ai is the number of edges removed from G to obtain Si. As any of these paths
will lead to a unique copy of the skeletal core Si in Hm, we know that Si will be
counted Ai! times in Hm. Dividing the estimate by Ai! accounts for this.

Theorem 3. The running time of Algorithm 1 is O(|E|).

Proof. First, consider the running time of the function estimator. To compute
core strength, the function requires O(|E|) time in the first iteration. For subse-
quent iterations, core strength values can be updated in O(1) after every edge
deletion (as at most two values of Core Strength will be affected). Identifying
a set of edges R takes O(|E|) time the first time, but we can update it quickly
if the selected data structure allows us to quickly access and remove edges with
one known endpoint. One example of such a data structure could be a hashmap
with nodes as keys and edges from R as values. The function estimate size takes
O(k|E|) time, where k is the number of samples. Assuming that k is a small fixed
constant with k << |E|, the overall running time of the algorithm is O(|E|).

4.4 Estimation of Expected Properties of Skeletal Core

We can use a modified version of Algorithm 1 to obtain the expected properties
of skeletal cores in the graph. Suppose that we want to get the expected value
of property P of the skeletal core (e.g., the number of edges or average degree).

Denote P (Si) as the value of P for the core Si and define C =
∑

Si∈S P (Si).
C is the sum of P of all skeletal cores in the space S. Assign 0 as the cost of any
node in the H which is non-terminal (i.e., not a skeletal core), and assign P (Si)
as the cost of the skeletal core Si.

In this case, an expected estimate of total cost C for one Monte Carlo search
will be P (Si)∗D [15], and over multiple experiments it will be C =

∑n
i=0 P (Si)∗

Di/n. The expected value of P will then be E[P ] = C/Davg = P (Si)∗Di/Davg.
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4.5 Normalized Number of Skeletal Cores

It is useful to introduce a notion of skeletal core density, which allows one to have
a sense of the number of skeletal cores that a graph has relative to its size. To
this end, we introduce a novel metric of a normalized number of skeletal k-cores.
Denoting the expected size of the space of skeletal cores as eest and the expected
number of edges in the skeletal core as sexp, we define the normalized number
of skeletal cores in the graph as en = log(eest)/log(

( |E|
sexp

)
). The denominator

represents the logarithm of the total number of possible subgraphs in G that
have sexp edges.

5 Experiments and Analysis

In this section, we demonstrate the relationship between skeletal k-cores and
core resilience; and show how skeletal cores can be used to analyze the “breaking
point” of the k-core structure.

5.1 Datasets

Networks used in our experiments are listed in Table 1. We compare networks
from different domains: AS denotes networks from autonomous systems; P2P
stands for peer-to-peer, BIO indicates graphs from bioinformatics; CA denotes
co-authorship networks; INF is used for infrastructure-related graphs; CO
denotes collaboration networks; SOC indicates social networks; TECH stands
for technological networks; WEB is used for internet network; EMAIL indicates
email networks; MISC denotes networks that do not fall into the categories
above.

5.2 Algorithm Validation

Before using the proposed algorithms to perform network analysis, we demon-
strate that they are effective at the desired objectives.

First, we show that the MCMC sampling algorithm reaches its stationary
distribution quickly. Any MCMC algorithm needs several steps before conver-
gence. While we do not provide theoretical proof that Markovian chain defined
by the suggested algorithm is rapidly mixing, experiments demonstrate fast con-
vergence of the algorithm. To show the speed of convergence of the algorithm
experimentally, we perform a sampling of skeletal cores for a different number
of steps, setting the number of steps to be equal to the fixed fractions of the
number of edges in the original graph.

Intuitively, after convergence, the distribution of the properties of skeletal
cores is stable. In Fig. 1, the distribution of sizes of skeletal cores is plotted for
a different number of steps of the algorithm. Due to the lack of space, we show



302 D. Honcharov et al.

Table 1. Datasets. |V | denotes number of nodes, |E| denotes number of edges, kmax

denotes highest k-core. † denotes SNAP as a source of the network, ‡ stands for Net-
workRepository, § stands for KONECT, §§ stands for Netzschleuder.

Type Network |V | |E| kmax Type Network |V | |E| kmax

AS auto as19990111† 549 1249 11 CO arena jazz‡ 198 2742 29

auto as19980318† 3455 6168 10 SOC wiki‡ 889 2914 9

auto as19971108† 3015 5156 9 hamsterer‡ 2426 16630 24

oregon010331† 10670 22002 17 musae facebook† 22470 170823 56

P2P gnutella08† 6301 20777 10 musae git† 37700 289003 34

BIO dmela‡ 7393 25569 11 TECH tech routers‡ 2113 6632 15

protein‡ 1870 2203 5 whois‡ 7476 56943 88

CA erdos‡ 5094 7515 7 tech pgp‡ 10680 24316 31

netscience§ 1464 2744 19 WEB webspam‡ 4767 37375 35

ca-HepPh‡ 12008 118521 238 EMAIL email enron† 36692 183831 43

ca grq† 4158 13422 43 email EuAll† 265214 364481 37

INF openflights‡ 2939 15677 28 MISC moreno innovation§ 245 927 6

inf-power‡ 4941 6594 5 norwegian(net1m)§§ 1421 3855 11

moreno oz‡ 217 2345 14

plots only for 3 networks. For higher number of steps, the distributions of skeletal
k-core sizes look very similar, which suggests convergence.4

As was seen in Sect. 4.4, we can compute the expected values of properties
of skeletal cores. To test this algorithm, we compare these estimated properties
to the average properties of skeletal cores sampled uniformly at random using
MCMC algorithm. Due to space limitations, we perform only an estimation of
the expected number of edges in the skeletal cores for selected graphs.

Results can be seen in Table 2. We compute Eavg as a simple average over
sizes of skeletal cores, sampled with the greedy algorithm from [16], Eexp is the
expected value over skeletal cores (method from Sect. 4.4), and Eu is obtained
by sampling skeletal cores uniformly at random with the MCMC algorithm. Our
goal is to show that Eexp is closer to Eu than Eavg is to Eu. Indeed, for most
graphs, the suggested expected estimate is much closer to Eu, the ground truth
obtained from the MCMC algorithm (and for the two networks where it is not
closer, the difference is very small).

5.3 Skeletal Core Analysis

Here, we experimentally validate the theoretical results of the GE-algorithm to
estimate the number of skeletal cores, as presented in Sect. 4.2. For every graph,
we sample 50 skeletal cores and compute the normalized number of skeletal cores
as shown in Sect. 4.5. Results are plotted against core resilience R(0,50)

50 in Fig. 2.
(Core resilience is computed as described in Sect. 3.4.)

4 Such convergence diagnostics for MCMC methods don‘t guarantee convergence, and
should be seen as a type of statistical analysis [6].
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Fig. 1. Distribution of size of skeletal cores, sampled with a different number of steps
of MCMC (number of steps are set up as fixed fractions of the number of edges in the
graph). Colors denote the number of transitions made by the algorithm until a sample
was taken. (Color figure online)

Table 2. Expected number of edges in skeletal cores. Eavg is simple average over
skeletal cores, sampled with a greedy algorithm, Eexp is the expected value over skeletal
cores (method from Sect. 4.4), Eu is obtained by MCMC algorithm.

Network Eavg Eexp Eu

auto as19971108 4717.13 4724.53 4722.28

auto as19980318 5649.84 5648.00 5655.04

auto as19990111 1130.45 1128.28 1131.47

GrQc 11926.69 11936.83 11953.45

netscience 2628.29 2629.01 2630.30

norwegian 3657.30 3657.82 3660.14

wiki 2464.67 2466.16 2470.61

erdos 6864.28 6870.62 6877.34

protein 1816.31 1817.76 1821.81

inf-power 5286.41 5288.73 5314.86

Fig. 2. Normalized number of skeletal cores vs Core Resilience
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There is a very strong correlation between the two measures. The greater
the density of skeletal cores, the higher core resilience is. This suggests a clear
reason why certain networks have high core resilience: the core numbers of nodes
are supported in many different ways. The only outlier is the moreno innovation
network, discussed below.

Relationships between different skeletal cores of the graph (e.g. overlap) can
provide further insight into the network’s robustness. One example can be found
in Fig. 3. The moreno innovation network has many edges that belong only
to a fraction of skeletal cores of the network. In other words, there are many
edges that can be useful to skeletal cores, but are not always necessary. This
property explains the reason for an unusually high number of skeletal cores
in this graph, as was seen in Fig. 2, because these edges might support a higher
number of skeletal cores comparatively to other networks. This suggests a smaller
overlap between different skeletal cores, and so when edges are randomly deleted
destruction of many skeletal cores is more likely.

Fig. 3. Fraction of skeletal cores to which each edge belongs. Results were obtained
by sampling 200 skeletal cores with MCMC. We ignore edges for which at least one
endpoint has a core strength of 1, as they belong to all skeletal cores.moreno innovation
has a high normalized number of skeletal cores, but low core resilience; protein and
norwegian networks have a low number of skeletal cores and low core resilience.

Estimating the Probability of an Edge Belonging to a Random Skeletal
k-Core. The likelihood that an edge is part of an arbitrary skeletal core can be
used for visualizations of skeletal cores or evaluation of the “centralization” of
the core structure [16]. As our work is the first that can estimate this likelihood
in an unbiased way, we compare against heuristics introduced by [16], which we
denote as the Centralized Skeletal Score (CSS) heuristics.

In our proposed heuristics, we approximate the probability that an edge
connected to a node u ∈ V will be part of a random skeletal core. Denote the
number of edges that can be removed from node u without dropping the k-core
number of any node as:

ω(u) = |{v ∈ N(u) : K(v) > K(u) ∨ (K(u) = K(v) ∧ CS[v] (= 1)}|. (1)
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Fig. 4. Comparison of the heuristics. y-axis denotes the heuristics value for the edge,
x-axis denotes the proportion of skeletal cores that the edge belongs to (MCMC sam-
ple). CSS-heuristics are shown on the top row, ρ-heuristics on the bottom. ρ-heuristics
outperform the competition.

Similarly, define the number of edges that cannot be removed from u and
must be present in every skeletal core:

γ(u) = |{v ∈ N(u) : K(v) = K(u) ∧ CS[v] = 1}|. (2)

In a skeletal core, u will have at least K(u) neighbours, so we need to select
at least K(u) − γ(u) nodes from ω(u) for the skeletal core. Thus, for node u:

ρ(u) =

{
max(K(u)−γ(u)

ω(u) , 0) if ω(u) (= 0
1 if ω(u) = 0

(3)

For an edge (u, v) ∈ E we define heuristics as:

ρ((u, v)) =






max(ρ(u), ρ(v)) if K[u] = K[v]
ρ(u) if K[u] < K[v]
ρ(v) if K[u] > K[v]

(4)

We refer to these heuristics as “ρ-heuristics”. In Fig. 4, heuristics from [16] and
the proposed ρ-heuristics are plotted against the ground truth, as estimated with
the MCMC algorithm. The correlation between ρ-heuristics and ground truth is
significantly higher as compared to the earlier CSS heuristics.

5.4 Identifying the “Breaking Point” of the k-Core Structure

The normalized number of skeletal cores from Sect. 5.2 can be interpreted as
the “density” of the skeletal cores amongst subgraphs obtained by removal of
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Fig. 5. Skeletal cores and “breaking point” of the network. x-axis denotes number of
edges removed, left y-axis denotes the core resilience of the network for a certain per-
centage of removed edges, and the right y-axis denotes the gradient of Core Resilience.
After the destruction of skeletal cores (red line), the gradient of Core Resilience (green
line) flattens, indicating a fundamental loss of k-core structure. (Color figure online)

approximately |E| − sexp edges uniformly at random. If we remove edges past
this point, the graph will have fewer edges than the expected size of skeletal
cores, thus, edges will be unable to support the k-core.

In Fig. 5, we see that the average size of the skeletal core provides a good
estimate of when the k-core structure disappears during a random edge removal
process. Before the number of deleted edges equals the size of the average skeletal
core (red line), core resilience (blue line) drops rapidly; but after that point, it
shows a roughly linear decrease (as seen by the gradient, in green, flattening).
One explanation is that prior to this point, a single edge deletion can cause a
cascade in which many nodes drop their core number. After this point, the core
structure is essentially destroyed, and such cascades of are unlikely.

6 Conclusion

In this paper, we introduced an MCMC algorithm for sampling skeletal cores
uniformly at random as well as an algorithm for estimating the expected number
of skeletal cores and their properties. We demonstrated the relationship between
skeletal core structure and the core resilience of the graph, suggested a heuristic
to estimate the likelihood of an edge being part of a skeletal core, and showed that
skeletal cores can be used to find the “breaking point” of the k-core structure.
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9. Erdős, P., Rényi, A., et al.: On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci 5(1), 17–60 (1960)

10. Freitas, S., et al.: Graph vulnerability and robustness: a survey. IEEE Trans.
Knowl. Data Eng. 35(6), 5915–5934 (2022)

11. Al-garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spread-
ers in online social networks using interaction weighted k-core decomposition
method. Physica A: Stat. Mech. Appl. 468, 278–288 (2017)

12. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decompo-
sition: mapping the global structure of graphs. In: Proceedings of the 26th Inter-
national Conference on World Wide Web, pp. 1441–1450 (2017)

13. Iwata, M., Sasa, S.: Dynamics of k-core percolation in a random graph. J. Phys.
A Math. Theor. 42(7), 075005 (2009)

14. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93
(1938)

15. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput.
29(129), 122–136 (1975)

16. Laishram, R., Soundarajan, S.: On finding and analyzing the backbone of the k-
core structure of a graph. In: 2022 IEEE International Conference on Data Mining
(ICDM), pp. 1017–1022. IEEE (2022)

17. Laishram, R., et al.: Measuring and improving the core resilience of networks. In:
Proceedings of the 2018 World Wide Web Conference, pp. 609–618 (2018)

18. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949)

19. Malvestio, I., Cardillo, A., Masuda, N.: Interplay between k-core and community
structure in complex networks. Sci. Rep. 10(1), 1–12 (2020)

20. Medya, S., Ma, T., Silva, A., Singh, A.: A game theoretic approach for core
resilience. In: International Joint Conferences on Artificial Intelligence Organiza-
tion (2020)

https://doi.org/10.1007/978-3-642-40988-2_35
https://doi.org/10.1007/978-3-642-40988-2_35
http://arxiv.org/abs/1311.5064


308 D. Honcharov et al.

21. Mokken, R.J., et al.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
22. Peng, C., Kolda, T.G., Pinar, A.: Accelerating community detection by using k-

core subgraphs. arXiv preprint arXiv:1403.2226 (2014)
23. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giantk-core in a ran-

dom graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)
24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287

(1983)
25. Serafino, M., et al.: Superspreading k-cores at the center of COVID-19 pandemic

persistence. medRxiv (2020)
26. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Corescope: graph mining using k-core

analysis–patterns, anomalies and algorithms. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 469–478. IEEE (2016)

27. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition
to analyze the static structure of large-scale software systems. J. Supercomput. 53,
352–369 (2010)

http://arxiv.org/abs/1403.2226

