
Betweenness Centrality on GPUs and Heterogeneous
Architectures

Ahmet Erdem Sarıyüce1,2, Kamer Kaya1, Erik Saule1, Ümit V. Çatalyürek1,3

Depts. 1Biomedical Informatics, 2Computer Science and Engineering, 3Electrical and Computer Engineering
The Ohio State University

Email:{aerdem,esaule,kamer,umit}@bmi.osu.edu

ABSTRACT
The betweenness centrality metric has always been intrigu-
ing for graph analyses and used in various applications. Yet,
it is one of the most computationally expensive kernels in
graph mining. In this work, we investigate a set of tech-
niques to make the betweenness centrality computations faster
on GPUs as well as on heterogeneous CPU/GPU architec-
tures. Our techniques are based on virtualization of the ver-
tices with high degree, strided access to adjacency lists, re-
moval of the vertices with degree 1, and graph ordering. By
combining these techniques within a fine-grain parallelism,
we reduced the computation time on GPUs significantly for
a set of social networks. On CPUs, which can usually have
access to a large amount of memory, we used a coarse-grain
parallelism. We showed that heterogeneous computing, i.e.,
using both architectures at the same time, is a promising
solution for betweenness centrality. Experimental results
show that the proposed techniques can be a great arsenal
to reduce the centrality computation time for networks. In
particular, it reduces the computation time of a 234 million
edges graph from more than 4 months to less than 12 days.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms; C.1.2 [Processor Architectures]: Multipro-
cessors—Parallel processors]; C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Heterogeneous (hybrid)
systems

General Terms
Algorithms, Performance

Keywords
Betweenness, heterogeneous computing, shared memory par-
allelism, GPUs, virtual vertices, graph compression

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-6 March 16 2013, Houston, TX, USA
Copyright 2013 ACM 978-1-4503-2017-7/13/03 ...$15.00.

1. INTRODUCTION
Centrality metrics, such as betweenness and closeness,

quantify how central a node is in a network. They have
been used successfully to carry analyses for various purposes
such as structural analysis of knowledge networks [16, 19],
power grid contingency analysis [8], quantifying importance
in social networks [13], analysis of covert networks [10] and
decision/action networks [4], and even for finding the best
store locations in cities [17]. Several works which have been
conducted to compute these metrics rapidly exist in the lit-
erature. The algorithm with the best asymptotic complexity
to compute centrality metrics [2] is believed to be asymptot-
ically optimal [9]. Research have focused on either approxi-
mation algorithms for computing centrality metrics [3, 6, 15]
or on high performance computing techniques [12, 20]. It is
common to find large social networks, and we are always in
a quest for better techniques and algorithms which help us
to cope with today’s large graphs.

Although betweenness centrality (BC) has been proved to
be successful for network analysis, computing the centrality
scores of all the nodes in a network is expensive. Brandes
proposed an algorithm for computing BC with O(nm) and
O(nm+n2 logn) time complexity and O(n+m) space com-
plexity for unweighted and weighted networks, respectively,
where n is the number of nodes in the network and m is
the number of node-node interactions in the network [2].
Brandes’ algorithm is currently the best algorithm for BC
computations and it is unlikely that general algorithms with
better asymptotic complexity can be designed [9]. However,
it is not fast enough to handle Facebook’s billion or Twitter’s
200 million users.

To the best of our knowledge there are two main ap-
proaches to compute BC on GPUs: the vertex-based ap-
proach which assigns a single thread to a vertex [20, 7],
and the edge-based one which assigns a single thread to an
edge [7]. Although the former uses comparably less memory
and perform well for almost-regular graphs with less degree
variance, as Jia et al. showed, the edge-based approach can
improve the GPU throughput with better load balancing
especially for scale-free networks [7].

In this work, we investigate a set of novel techniques to
make BC computations faster with CUDA on GPUs and
heterogeneous CPU/GPU architectures. Our contributions
are multifold: we first reduced the memory usage of Shi and
Zhang’s [20] and Jia et al.’s [7] implementations by remov-
ing redundant arrays of size n2 and m, respectively, which
were being used to hold predecessors during graph traver-
sals. We show that, by virtualizing the vertices with high

76

degree, we can solve the imbalance problem of the vertex-
based approach and keep the memory usage lower than the
edge-based approach. We further reorganize the memory
accesses of the virtual vertices to obtain a better coalescing.
On the structural side, we compress the graph by iteratively
removing degree-1 vertices on GPUs, a technique proposed
in [1, 18]. We experimentally show that combining all these
techniques and using a heterogeneous CPU/GPU architec-
ture can make the BC computations much faster for social
graphs. The source code for all the techniques is available1.

The rest of the paper is organized as follows: In Section 2,
we give the notation we used in the paper and a description
of Brandes’ algorithm. Section 3 describes the virtualization
technique we used on GPUs. The degree-1 graph reduction
technique is explained in Section 4. Section 5 gives the re-
sults of the experiments, and Section 6 concludes the paper.

2. BACKGROUND
Let G = (V,E) be a network modeled as a simple graph

with n = |V | vertices and m = |E| edges where each node is
represented by a vertex in V , and a node-node interaction is
represented by an edge in E. Let Γ(v) be the set of vertices
which are connected to v. A vertex v is a degree-1 vertex if
and only if |Γ(v)| = 1.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and
E′ ⊆ E. A path is a sequence of vertices such that there
exists an edge between consecutive vertices. A path between
two vertices s and t is denoted by s ; t. Two vertices
u, v ∈ V are connected if there is a path from u to v. If all
vertex pairs are connected we say that G is connected. If G
is not connected, then it is disconnected and each maximal
connected subgraph of G is a connected component, or a
component, of G.

2.1 Betweenness Centrality
Given a connected graphG, let σst be the number of short-

est paths from a source s ∈ V to a target t ∈ V . Let σst(v)
be the number of such s; t paths passing through a vertex
v ∈ V , v 6= s, t. Let the pair dependency of v to s, t pair be

the fraction ∆st(v) = σst(v)
σst

. The betweenness centrality of
v is defined by

bc[v] =
∑

s6=v 6=t∈V

∆st(v). (1)

Since there are O(n2) pairs in V , one needs O(n3) opera-
tions to compute bc[v] for all v ∈ V by using Equation (1).
Brandes reduced this complexity and proposed an O(mn)
algorithm for unweighted networks [2]. The algorithm is
based on the accumulation of pair dependencies over target
vertices. After accumulation, the dependency of v to s ∈ V
is

∆s(v) =
∑
t∈V

∆st(v). (2)

Let Ps(u) be the set of u’s predecessors on the shortest
paths from s to all vertices in V . That is,

Ps(u) = {v ∈ V : (v, u) ∈ E, ds(u) = ds(v) + 1}

where ds(u) and ds(v) are the shortest distances from s to
u and v, respectively. Ps defines the shortest paths graph

1http://bmi.osu.edu/hpc/software/gpuBC

rooted in s. Brandes observed that the accumulated depen-
dency values can be computed recursively:

∆s(v) =
∑

u:v∈Ps(u)

σsv
σsu
× (1 + ∆s(u)) (3)

To compute ∆s(v) for all v ∈ V \ {s}, Brandes’ algo-
rithm uses a two-phase approach: First, a breadth first
search (BFS) is initiated from s to compute σsv and Ps(v)
for each v. Then, in a back propagation phase, ∆s(v) is
computed for all v ∈ V in a bottom-up manner by using
Equation (3). In this work, we use the same algorithm but
restructure the recursion to reduce the number of arithmetic
operations. Let

δs(v) =
1 + ∆s(v)

σsv

=
1

σsv
+

∆s(v)

σsv

=
1

σsv
+

∑
u:v∈Ps(u)

1 + ∆s(u)

σsu

=
1

σsv
+

∑
u:v∈Ps(u)

δs(u). (4)

In Algorithm 1, we first compute δs(v) for each v ∈ V and
then update the BC value by using

∆s(v) = σsv × δs(v)− 1 (5)

to satisfy Equation (1) and Equation (2).
In the first phase, the algorithm computes σ[v] for v ∈ V

which is the number of shortest paths from the source vertex
s to v. In addition, the predecessors of v on these shortest
paths are stored in P[v]. To compute Equation (4) in the
second phase, the algorithm initiates δ[v] with 1

σ[v]
for each

v ∈ V (line 3 of Algorithm 1). Then it adds δ[w] to δ[v]
for each successor w of v (line 4 of Algorithm 1). And it
increases the BC score of v by (δ[v] × σ[v] − 1) (line 5 of
Algorithm 1) as required by Equation (5).

Each phase of Algorithm 1 considers all the edges at most
once, taking O(m + n) time. The phases are repeated for
each source vertex. The overall complexity is O(mn).

There are two parallelization options for BC: coarse- and
fine-grain. In coarse-grain parallelism, the loop at line 1 of
Algorithm 1 is shared among threads, i.e., the contribution
of each source is computed by a single thread. With this
approach, each thread must use its own memory for bc, σ,
δ, P, and d to avoid read/write conflicts. But the threads
work independently from each other and there is no other
synchronization overhead. In fine-grain parallelism, a BFS
is concurrently executed by multiple threads. Although this
approach uses a single copy of each array, synchronization
is not free since the conflicts need to be resolved. Further-
more, sparsity and other irregularities in the graph such as
pattern and degree distribution can damage load balance
and cache locality. Hence, it may be better to investigate
and employ coarse-grain parallelism on devices with large
cache and memory such as CPUs, whereas a fine-grain par-
allelization is usually the better option with restricted mem-
ory devices such as GPUs, especially when the graphs are
large. However, algorithms for sparse matrices and graphs
are known to be memory bound. Hence, the speedups one
can achieve with GPUs is less than that of algorithms with
dense and regular data.

77

http://bmi.osu.edu/hpc/software/gpuBC

Algorithm 1: Sequential BC

Data: G = (V,E)
bc[v]← 0, ∀v ∈ V

1 for each s ∈ V do
S ← empty stack, Q← empty queue
P[v]← empty list, σ[v]← 0, d[v]← −1, ∀v ∈ V
Q.push(s), σ[s]← 1, d[s]← 0
.Forward phase: BFS from s
while Q is not empty do

v ← Q.pop(), S.push(v)
for all w ∈ Γ(v) do

if d[w] < 0 then
Q.push(w)
d[w]← d[v] + 1

if d[w] = d[v] + 1 then
2 σ[w]← σ[w] + σ[v]

P[w].push(v)
.Backward phase: Back propagation

3 δ[v]← 1
σ[v]

, ∀v ∈ V
while S is not empty do

w ← S.pop()
for v ∈ P[w] do

4 δ[v]← δ[v] + δ[w]
.Update bc values by using Equation (5)
for v ∈ V do

if v 6= s then
5 bc[v]← bc[v] + (δ[v]× σ[v]− 1)

return bc

3. BETWEENNESS CENTRALITY ON GPU
As mentioned above, there are two existing studies on

computing betweenness centrality by using GPUs. In the
first one, Shi and Zhang developed a software package gpu-
fan2 to do biological network analysis [20]. Later, Jia et al.
compared vertex- and edge-based techniques on GPUs for
BC computations [7]. Both of these works employ a fine-
grain parallelism: all threads work concurrently while exe-
cuting a single, level-synchronized BFS. That is all the fron-
tier vertices at current level ` must be processed before the
vertices at level `+1. And for each level, the algorithms ini-
tiate a GPU kernel to visit the vertices/edges on that level.
The difference between the vertex- and edge-based paral-
lelism arises from the implementation of a forward/backward-
step and the corresponding graph storage scheme. To ease
the memory accesses, the former uses the compressed sparse
row (CSR) format, and the latter uses the coordinate (COO)
format for graph storage. Figures 1(b) and 1(c) show these
storage schemes for a toy graph with 10 vertices and 17 edges
as given in Figure 1(a).

3.1 Vertex-based parallelism
In vertex-based parallelism, all the edges of a single ver-

tex are processed by a single thread. The pseudocode of the
forward and backward phases of the vertex-based approach
are given in Algorithm 2. Let u be a frontier vertex at level `
and v be one of its neighbors. There can be three cases for v:
if d[v] = −1 then v is unvisited before and will be a frontier
vertex in level `+1. In this case, the kernel understands that
the next frontier will not be empty and sets cont to true.
It also increases σ[v] by σ[u], since all shortest paths from
the source vertex to u will be a prefix of at least one short-
est path from s to v (line 4 of Algorithm 2). This operation
must be atomic since there can be other threads concurrently

2http://bioinfo.vanderbilt.edu/gpu-fan/

(a) A toy graph G

(b) CSR representation of G

(c) COO representation of G

(d) Virtual-CSR representation of G

(e) Stride-CSR representation of G

Figure 1: A toy graph G with 10 vertices and 17
edges (a), its CSR representation (b), its COO rep-
resentation (c), its virtual-CSR representation (d),
and stride-CSR representation (e). In the figures, n
is the number of vertices, n′ is the number of virtual
vertices, and m is the number of edges. For virtual-
ization in (c) and (d), mdeg = 4 is used. The memory
usage of each representation is given in terms of the
number of entries it has.

trying to update σ[v]. Hence, in vertex-based parallelism
a single atomic operation per successor-predecessor edge is
necessary. If v has been visited before, it can be either at
level ` or `−1. In the latter case, the kernel sets u as one of
the predecessors of v, i.e., Pv[u]← 1. To store the predeces-
sor information, P, Shi and Zhang used an n × n-bit array.
Considering the size of real-world networks and graphs and
the amount of memory available on modern GPUs, this is
not practical even for mid-size networks. The n2 storage is
actually an overkill since a successor-predecessor relation-
ship can be established only by an edge and there are only

78

http://bioinfo.vanderbilt.edu/gpu-fan/

m � n2 of them. To store the same information, Jia et al.
used an array of size m. For an edge e ∈ E, indexed as
in the order of CSR adj array, they set P[e] to 1 if e is a
successor-predecessor edge and leave it 0, otherwise.

Let u be a vertex at level `, when u is being processed in
the backward-step kernel, it gathers all δ[v]s from its succes-
sor vertices, i.e., all v ∈ V such that Pv[u] = 1. As Figure 1
shows, the vertex-based approach requires n+m+1 memory
in total to store the graph. Here and in the rest of the paper,
the memory usage of each graph representation is given in
terms of the number of entries it contains.

Algorithm 2: Vertex: vertex-based parallel BC

· · ·
`← 0
.Forward phase
while cont = true do

cont← false
.Forward-step kernel
for each u ∈ V in parallel do

1 if d[u] = ` then
2 for each v ∈ Γ(u) do
3 if d[v] = −1 then

d[v]← `+ 1, cont← true
else if d[v] = `− 1 then Pv [u]← 1

4 if d[v] = `+ 1 then σ[v]
atomic← σ[v] + σ[u]

`← `+ 1
· · ·
.Backward phase
while ` > 1 do

`← `− 1
.Backward-step kernel
for each u ∈ V in parallel do

if d[u] = ` then
5 for each v ∈ Γ(u) do
6 if Pv [u] = 1 then δ[u]← δ[u] + δ[v]
.Update bc values by using Equation (5)
· · ·

3.2 Edge-based parallelism
A scale-free network is a network whose degree distribu-

tion follows a power law, at least asymptotically. That is
there are many vertices with a degree that is lower than av-
erage, and there are some with very high degrees, yielding
a very skewed degree distribution. Social networks we have
today fit to this definition. And others such as collabora-
tion networks, semantic networks, and protein-protein in-
teraction networks also do. In a GPU, the threads in a
warp run at the same time and must wait for each other to
finish. When the variance of the degrees is high and vertex-
based parallelism is used, a warp’s threads most likely have
an imbalanced load distribution. Edge-based parallelism is
proposed to cope with this problem and as our experimental
results show, it performs much better on scale-free graphs.
The pseudocode of the forward and backward phases of the
edge-based approach are given in Algorithm 3 in which dif-
ferent edges of the same vertex will be processed by different
threads. The algorithm uses the COO format (as shown in
Figure 1) in order to have an easy access to individual edges.

Processing a neighbor in the forward phase is similar to
that of the vertex-based approach (lines 3–4 of Algorithm 2).
But the number of times the line 1s executed in Algorithms 2
and 3 is different. Since there are n vertices and m edges,
the number of memory accesses due to this line is more in
the edge-based approach. However, for social networks, m

is in the order of O(n), and most of these memory accesses
will be coalesced since, as shown in Figure 1(c), the next
value in is array is either the same or one more.

Although the updates in the backward-phase of the vertex-
based approach are handled without using atomic instruc-
tions, in edge-based parallelism, when Pv[u] = 1 for an edge
(u, v) which is currently being processed, the update oper-
ation on δ[u] must be atomic. Because, there can be other
successor-predecessor edges (u, v′) ∈ E being processed con-
currently by other threads. In total, two atomic operations
per successor-predecessor relationship are needed in edge-
based parallelism. Hence, the edge-based approach uses
both more memory and more atomic operations than the
vertex-based one. But it benefits from better memory coa-
lescing and better load distribution.

Algorithm 3: Edge: edge-based parallel BC

· · ·
`← 0
.Forward phase
while cont = true do

cont← false
.Forward-step kernel

for each (u, v) ∈ E in parallel do
1 if d[u] = ` then

· · · .same as vertex-based forward step

`← `+ 1
· · ·
.Backward phase
while ` > 1 do

`← `− 1
.Backward-step kernel

for each (u, v) ∈ E in parallel do
if d[u] = ` then

2 if Pv [u] = 1 then δ[u]
atomic← δ[u] + δ[v]

.Update bc values by using Equation (5)
· · ·

3.3 Vertex virtualization for BC
The vertex-based parallelism suffers from load balancing,

and the edge-based parallelism uses more memory and more
atomic operations. Here, we propose a vertex virtualization
technique to alleviate both of these problems at the same
time. The technique replaces the high-degree vertices with
a number of virtual vertices each having at most mdeg (max-
imum degree) edges and uses

n′ =
∑
v∈V

⌈
|Γ(v)|
mdeg

⌉
virtual vertices in the modified graph storage scheme. The
value of mdeg can be chosen by the user. In our preliminary
experiments, we have experimented with various mdeg val-
ues (2, 4, and 8), and the results were close to each other
but 4 was just slightly better, hence in our experiments we
used this value.

Figure 1(d) shows the virtual-CSR representation for the
toy graph in Figure 1(a) after virtualization with mdeg = 4.
There are three arrays: vmap maps the virtual vertices to real
vertices in V , vptrs is similar to the ptrs in CSR and each
entry shows the first neighbor of the corresponding virtual
vertex in adjs which is the same as the one in the traditional
CSR.

The pseudocode of the forward and backward phases of
the virtualization-based approach are given in Algorithm 4.

79

Algorithm 4: Virtual: BC with virtual vertices

· · ·
`← 0
.Forward phase
while cont = true do

cont← false
.Forward-step kernel
for each virtual vertex uvir in parallel do

u← vmap[uvir]
if d[u] = ` then

1 for each v ∈ Γvir(uvir) do
2 if d[v] = −1 then

d[v]← `+ 1, cont← true

3 if d[v] = `+ 1 then σ[v]
atomic← σ[v] + σ[u]

`← `+ 1
· · ·
.Backward phase
while ` > 1 do

`← `− 1
.Backward-step kernel
for each virtual vertex uvir in parallel do

u← vmap[uvir]
if d[u] = ` then

sum← 0
4 for each v ∈ Γ(u) do
5 if d[v] = `+ 1 then sum← sum+ δ[v]

6 δ[u]
atomic← δ[u] + sum

.Update bc values by using Equation (5)
· · ·

In the forward phase, each thread processes the edges of a
virtual vertex uvir. The real vertex u is reached via vmap

and σ[u] is used to update the number of shortest paths to
neighbors of uvir. In the backward phase, a similar approach
is used.

Notice that Algorithm 4 does not store the predecessor-

successor edges. Instead it checks if d[v]
?
= d[u]+1 to decide

whether an edge (u, v) is a predecessor-successor edge or
not. Our preliminary experiments showed no significant dif-
ference in runtime between storing the predecessor-successor
information or using the distances. Therefore, we chose not
to store it in any of our GPU implementations since we can
save a significant amount of memory.

There are four main advantages of virtual-CSR over the
other representatives:

1. When mdeg is small, e.g., 4, the load imbalance among
the threads in a warp will not be as troublesome as the
one in traditional CSR.

2. Only the threads which are processing the frontier ver-
tices are active during a forward/backward step in the
vertex-based approach. Hence, the idle threads need to
wait others. In virtual-CSR, the virtual vertices which
represent the same vertex v ∈ V are labeled consec-
utively and probably, they will be in the same warp.
Hence, when v is in the frontier, all its virtual vertices
in the virtual-CSR will be frontier too. This probably
will increase the average ratio of the number of active
vertices in a warp.

3. As shown in Algorithm 3, the updates on δ in the back-
ward phase must be atomic when the edge-based par-
allelism is used. The number of such atomic operations
is equal to the number of predecessor-successor edges
in E. Usually, a high fraction of the edges are such

edges in practice. With virtualization, the number of
atomic operations in the backward phase is reduced to
n′ (line 6 of Algorithm 4) since the all the updates are
computed and stored in a local variable sum (line 5 of
Algorithm 4).

4. In total, the virtual-CSR storage uses 2n′+m+1 mem-
ory. We can assume that n′ is in the order of m/mdeg.
Hence, compared with the edge-based approach, when
mdeg = 4, this saves an amount of memory of approx-
imately m/2.

3.3.1 Stride-CSR representation
As we will experimentally show, the virtual-CSR repre-

sentation is effective and efficient. But it can be further
improved by reorganizing the memory accesses to adjs. As
mentioned above, the virtual vertices are consecutively la-
beled and the threads processing them will probably be in
the same warp. Each such thread accesses a continuous part
of adjs of size at most mdeg. It means that the threads in a
warp access adjs in a regularly spaced fashion over a range
of warpsize ×mdeg. Such accesses are unlikely to be coa-
lesced.

The stride-CSR representation (shown in Figure 1(e)) al-
lows better coalescing. In addition to original CSR arrays
ptrs and adjs, it needs three additional arrays: vmap is
the same mapping array used in virtual-CSR, offset shows
the virtual vertex number within the real vertex, and nvir

shows the number of virtual vertices for each vertex in V .
By using this additional information we distribute the edges
of v to its virtual vertices in a round robin fashion. Hence,
the memory accesses by consecutive threads, which process
these virtual vertices, will also be consecutive and better
coalesced. Although it uses more memory, experimental re-
sults show that the memory access scheme of stride-CSR is
superior to that of virtual-CSR for many graphs. From now
on, we will call the version of the code that uses stride-CSR
as Stride.

4. COMPRESSING THE GRAPH FOR BC
Brandes’ algorithm relies on the shortest path graph rooted

on a given source of the graph. Two different sources can
expose almost the same shortest path graph. And in some
cases, it is possible to exploit this and other structures by
considering both of them simultaneously [1, 18].

In particular, we are interested in removing vertices with
exactly one neighbor, i.e., degree-1 vertices. Let u ∈ V be
such a vertex with a neighbor v ∈ V . If u lies on a shortest
path in G, it must be one of the endpoints. Hence, BC of
u is 0. However, the vertex can not be just removed since
δsu(w) is not necessarily equal to 0 for all w ∈ V . All of the
shortest paths that go to u must be through v; indicating
that δsu(w) = δsv(w), for all w 6= v ∈ V . Notice that the
expression is not correct for w = v since δsv(v) = 0 and
δsu(v) = 1: the shortest path to v does not go through
v (but the paths to u go through v). Because the graph
is undirected, a similar relation holds between δus(w) and
δvs(w).

We introduce the reach array, which indicates that ver-
tex w represents reach[w] vertices (including itself). The
difference in the BC computation only changes two lines of
Algorithm 1. The initialization of δ[v] values (line 3 of Al-
gorithm 1) should be multiplied by reach[v] to account for

80

shortest paths going to vertices represented by v. The incre-
ment to bc[w] (line 5 of Algorithm 1) should be multiplied
by reach[s] to account for shortest paths going from vertices
represented by s.

All the values of reach[w] are initialized to 1. When a
degree-1 vertex u connected to vertex v is detected, reach[v]
is incremented by reach[u] and u is removed from the graph.
This operation can be applied iteratively in order to remove
all the “terminal trees” in the graph. When u is removed
from the graph, the BC values of u and v need to be up-
dated to take into account paths that come from vertices
represented by u to v (or through v) according to the fol-
lowing formulas:

bc[u]+ =(reach[u]− 1) ∗ (|V | − reach[u]) (6)

bc[v]+ =(|V | − reach[u]− 1) ∗ reach[u] (7)

All the proofs and details can be found in [18].

4.1 Implementation on GPU
The modifications to the BC kernels are minor and are

omitted. We only discuss in this section how the prepro-
cessing in implemented in GPU within CUDA.

__global__ void rm_deg1(int* xadj, int* adj, int* tadj, int n,
 float* bc, int* reach, bool *cont, int* deg)
{
 int u = blockIdx.x * blockDim.x + threadIdx.x;

 if (u < n) {
 if (deg[u] == 1) {
 int vminr = n - reach[u];
 bc[u] += (reach[u] - 1) * vminr;
 *cont = true;
 deg[u] = 0;

 int end = xadj[u + 1];
 for (int p = xadj[u]; p < end; p++) {
 int v = adj[p];
 if (v != -1) {
 adj[p] = -1;
 adj[tadj[p]] = -1;

 atomicAdd(bc + v, reach[u] * (vminr - 1));
 atomicAdd(reach + v, reach[u]);
 atomicAdd(deg + v, -1);
 break;
 }
 }
 }
 }
}

Figure 2: CUDA kernel for degree-1 vertices identi-
fication and removal.

The identification and removal of degree-1 vertices is per-
formed by calling the CUDA kernel in Figure 2. Since a call
to the kernel might uncover new degree-1 vertices, the kernel
is called iteratively until no more vertices are removed (i.e.,
until ∗cont is false). One thread per vertex is used and all
the threads that do not operate on a vertex u whose degree
is 1 terminates immediately. This operation is performed in
constant time by keeping track of the degrees of the vertices
explicitly. Then, the thread adjusts the bc value of the de-
gree one vertex and sets its degree to 0. The thread then
searches for the vertex v, it is attached to. The edge that
connect u to v is set to −1 to deactivate it. Notice that in
the CSR representation, that each undirected edge appears
as two directed edge, one in the neighbors of u and one in the
neighbors of v. Finally, 3 atomic operations are performed

to update bc[v], reach[v] and the degree of v. Notice that
because the degree of v is updated last, no race condition is
possible due to the non atomic access to bc[u].

Once there are no more degree-1 vertices in the graph, the
adjacency list of the graph is compacted on the CPU.

5. EXPERIMENTS
The experimental studies were carried out on the compute

nodes of our in-house cluster. Each node is equipped with
two Intel Xeon E5520 CPU clocked at 2.27Ghz and 48GB of
memory, split across the two NUMA domains. Each CPU is
a quad-core and HyperThreading is enabled. Each core has
its own 32kB L1 cache and 256kB L2 cache. The 4 cores on
a CPU share a 8MB L3 cache. Each node is also equipped
with an NVIDIA Tesla C2050 with usable 2.6GB of global
memory. C2050 is equipped with 14 multiprocessors which
contains 32 CUDA cores each, for a total of 448 CUDA cores.
The CUDA cores are clocked at 1.15GHz and the memory
is clocked at 1.5GHz. ECC is enabled.

On the software side, the node runs 64-bit CentOS with
Linux 2.6.32-71.el6. All the codes are compiled with GCC
4.4.4 and CUDA 4.2.9 with the -O2 optimization flag and
-arch sm 20. We have carefully implemented all the algo-
rithms using C. To have a base-line comparison, we tried to
run gpu-fan [20] on our test set. Due to the high memory
usage of this work, we could run it on the smallest graph we
have in our experiment set, and its execution time, was even
much slower than our carefully optimized CPU code, hence
we did not include the results here.

To test the algorithms, we extracted graphs from the SNAP
dataset3. We selected 8 of the largest social network graphs
that will fit on our GPUs. Directed graphs were made undi-
rected and the largest connected component is extracted.
The list of graphs and the properties of the largest com-
ponents that are used in our experiments can be found in
Table 1. Table also lists the properties of the component af-
ter degree-1 reduction. The distribution of the degrees can
be seen in Figure 3.

All the results presented in this section are total applica-
tion time from the moment where the graph is fully loaded
in the main memory of the machine to the moment where
the final BC values are available on the main memory of the
node. In particular, the time excludes reading the graph
from the hard drive; but it includes all the transformations
performed on the graph (such as ordering, reduction and
format conversion) and it includes all the communications
between the host and the device. Since the computations
can be extremely long (months), we measured the time for a
given number of sources/BFSs and extrapolated linearly to
the runtime for all the graph, paying attention to take prop-
erly into account the constant one-time overheads of the
application. Depending on the speed of the configuration,
we run one thousand, ten thousand, or hundred thousand
sources which provide a runtime large enough to smoothen
any system fluctuations. The runtime of single source proved
to be very stable, allowing us to make a meaningful extrap-
olation. Table 2 displays the sequential execution times of
BC computations, as well as various parallel configurations.
These results, and more, will be discussed in more detailed
in following subsections.

3http://snap.stanford.edu/data/index.html

81

http://snap.stanford.edu/data/index.html

Original Reduced
Graph |V | |E| avg |Γ(v)| max |Γ(v)| |V | |E| avg |Γ(v)| max |Γ(v)|
amazon0601 403,364 4,886,622 12.1 2,752 390,915 4,861,724 12.4 2,750
com-orkut 3,072,441 234,370,166 76.2 33,313 3,004,647 234,234,578 77.9 33,275
loc-gowalla 196,591 1,900,654 9.6 14,730 142,670 1,792,812 12.5 14,730
soc-LiveJournal 4,843,953 85,691,368 17.6 20,333 3,740,572 83,484,606 22.3 20,329
soc-sign-epinions 119,130 1,408,534 11.8 3,558 59,288 1,288,850 21.7 3,461
web-Google 855,802 8,582,704 10.0 6,332 703,942 8,278,984 11.7 6,292
web-NotreDame 325,729 2,180,216 6.6 10,721 159,683 1,848,124 11.5 10,721
wiki-Talk 2,388,953 9,313,364 3.8 100,029 622,986 5,781,430 9.2 46,241

Table 1: Properties of the largest component of the graph in our dataset before and after degree-1 reduction.

CPU 1 thread CPU 8 threads GPU stride Heterogeneous
Graph deg1 + ord deg1 + ord stride deg1 + ord
amazon0601 46,297 5,883 4,535 2,321
com-orkut 10,862,615 2,204,789 2,016,763 1,077,391
loc-gowalla 6,278 533 598 290
soc-LiveJournal 10,614,646 1,197,589 858,735 515,524
soc-sign-epinions 2,269 118 169 78
web-Google 157,920 9,652 8,912 4,678
web-NotreDame 6,847 304 824 234
wiki-Talk 465,755 13,426 7,167 4,456

Table 2: Total execution time of betweenness centrality on various configurations (in seconds).

 0.01

 0.1

 1

 1 10 100 1000

P
ro

b
a
b

ili
ty

Degree

amazon0601
com-orkut

loc-gowalla
soc-LiveJournal

soc-sign-epinions
web-Google

web-NotreDame
wiki-Talk

(a) Original

 0.01

 0.1

 1

 1 10 100 1000

P
ro

b
a
b

ili
ty

Degree

amazon0601
com-orkut

loc-gowalla
soc-LiveJournal

soc-sign-epinions
web-Google

web-NotreDame
wiki-Talk

(b) Reduced

Figure 3: Cumulative density functions of the vertex degrees of the test graphs.

5.1 GPU implementations
We first present the comparison of the four GPU imple-

mentations on the original graphs in Figure 4. The results
are presented in terms of speedups compared to a sequential
CPU implementation (see Table 2). On these graphs, there
is a clear ranking of the four implementations, vertex-based
parallelism (Vertex) is typically slower than edge-based
parallelism (Edge). And both of these existing methods
were outperformed by the two methods proposed in this pa-
per, that are based on virtual vertices (Virtual) and strided
memory accesses (Stride).

Vertex can be more than 5 times slower than Edge (e.g.,
on loc-gowalla and wiki-Talk). Stride is never slower than
Virtual, (it is just about 3% faster on amazon0601, web-
Google, and web-NotreDame) and it can be up to 17% faster
(on soc-livejournal) thanks to better memory coalescing. On
average, Stride is 1.6 times faster than Edge and 3.7 times
faster than Vertex.

From Figure 4 it might look like the performance of the
GPU implementations are particularly bad on web-NotreDame.
Remember that these are speedups relative to a sequen-

tial CPU. Figure 5 displays the absolute performance ex-
pressed in number of edges processed per second (computed
as |V ||E|/runtime) for both CPU and GPU (Stride) codes.
The performance of the GPU Stride on web-NotreDame is
similar to the one achieved on other graphs. However, the se-
quential CPU implementation is significantly more efficient
on that particular graph, most likely due to structure of the
graph and ordering of the vertices that yield more cache-
friendly execution, and hence the lower speedup values.

5.2 Graph modifications
We now consider the impact of the reduction of the graph

by removing degree-1 vertices. We also consider the impact
of ordering the graph. We order the graph with respect to
a queue ordering in a single BFS computed from an arbi-
trary vertex. This is similar to the Reverse Cuthill-McKee
ordering which is popular in the context of sparse linear al-
gebra [5]. Intuitively, such an ordering put vertices at the
same level together. Since the graph is traversed in a level-
by-level fashion (but not rooted in the same source), the
ordering should improve the percentage of active threads in

82

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	

Sp
ee
du

p	
w
rt
	 C
PU

	 1
	 th

re
ad
	

GPU	 vertex	
GPU	 edge	
GPU	 virtual	
GPU	 stride	

Figure 4: Comparison of GPU implementations.

0.0E+00	

2.0E+07	

4.0E+07	

6.0E+07	

8.0E+07	

1.0E+08	

1.2E+08	

1.4E+08	

am
az
on

06
01

	
co
m
-‐o
rk
ut
	

lo
c-‐
go
w
al
la
	

so
c-‐
Li
ve
Jo
ur
na
l	

so
c-‐
sig

n-‐
ep

in
io
ns
	

w
eb

-‐G
oo

gl
e	

w
eb

-‐N
ot
re
Da

m
e	

w
ik
i-‐T

al
k	

GPU	

0.0E+00	

2.0E+06	

4.0E+06	

6.0E+06	

8.0E+06	

1.0E+07	

1.2E+07	

1.4E+07	

1.6E+07	

1.8E+07	

am
az
on

06
01

	
co
m
-‐o
rk
ut
	

lo
c-‐
go
w
al
la
	

so
c-‐
Li
ve
Jo
ur
na
l	

so
c-‐
sig

n-‐
ep

in
io
ns
	

w
eb

-‐G
oo

gl
e	

w
eb

-‐N
ot
re
Da

m
e	

w
ik
i-‐T

al
k	

TE
PS
	

CPU	 1	 thread	

Figure 5: Absolute performance for sequential CPU
and GPU stride expressed in Traversed Edge Per
Second (TEPS)

a warp, the number of completely empty blocks, and mini-
mize the overhead due to thread divergence.

Figure 6(a) shows the impact for the sequential CPU case.
In the CPU, graph reduction has almost no impact on com-
orkut but it brings a 7-fold improvement on wiki-Talk. On
average, graph reduction brings a 2-fold improvement. Graph
ordering brings barely any improvement on two graphs, but
it brings a 53% improvement on web-google. When graph
reduction and ordering combined, total graph modifications
bring up to 7.6-fold improvement, with an average of 2.21.

Figure 6(b) shows the impact of the graph manipulation
for GPU Stride implementation. The behavior is similar to
the one observed on the CPU. The most notable difference
is that ordering harms performance on soc-sign-epinions and
wiki-Talk. Though, it brought a 35% improvement on web-
Google.

Note that there are two sources of improvement that spurs
from graph reduction. First, since there are less vertices,
there are less source to execute. Second, the graph is smaller
which makes each source faster.

5.3 Heterogeneous execution
In the last set of experiments, we evaluated performance

of using CPU alone, GPU alone, and using CPU and GPU
together for BC computation. Figure 7 shows the perfor-
mance obtained by using only CPUs (8 CPU threads), us-
ing only GPU (proposed two methods Virtual and Stride
presented) and using both the CPUs and the GPU at the
same time (labeled as “Heterogeneous”). Notice that in the
later (heterogeneous) case, we utilize only 7 threads on the
CPU to dedicate one core to drive the GPU.

The source based parallelism used on the CPU shows an
average parallel speedup of 6 which indicates that the par-
allel CPU implementation, even though not linear, is fairly
efficient. (Figure 7 shows an average speedup of 13, but there
is a factor of 2.2 which comes from graph modifications and
not parallelism.)

The GPU Stride implementation reaches higher perfor-
mance than the parallel CPU implementation in 5 graphs
(amazon0601, com-orkut, soc-LiveJournal, web-Google, and
wiki-Talk), while the CPU implementation obtains higher
performance on 3 graphs (web-Google, soc-sign-epinions and
loc-gowalla). If one computes geometric mean, on average
the parallel CPU implementation and the GPU implemen-
tation reach the same performance (less than 1% difference
in the average). This indicates that the correct choice be-
tween CPU and GPU for betweenness centrality is strongly
input dependent which makes a heterogeneous collaboration
between CPU and GPU important.

Using both the CPU and the GPU allows to reach the
highest performance in all the graphs of our dataset. It
improves the best mono-device performance by a factor a
1.29 on web-NotreDame where the performance of the CPU
and GPU are the most different and by a factor of 1.95 on
amazon0601 where the performance of both the CPU and
GPU are the most similar.

6. CONCLUSION AND FUTURE WORK
In this work, we investigated a set of techniques to speed

up the betweenness centrality computation on GPUs and
CPU/GPU heterogeneous architectures. Our techniques in-
clude leveraging the topological properties of graph, i.e.,
compressing by removing degree-1 vertices, as well as utiliz-
ing the architectures efficiently. We provided four different
GPU algorithms and compared them experimentally. Com-
bining all the techniques yield a 104 speedup on a large social
network. Our techniques in GPU algorithms can be applied
to shortest-path algorithms, and compression techniques we
provided can be used to speed-up graph algorithms with
similar objectives with betweenness centrality.

The efficiency of our GPU implementation depends on the
diameters of the graphs. In the worst case, the diameter can
be n and the total work will be quadratic on the number of
vertices. Social networks, in general, obey the smallworld
phenomenon and their diameters are small. As a future
work, we plan to investigate faster betweenness centrality
computation techniques on graphs with large diameters by
existing [11, 14] and novel techniques. Also, we plan to
incorporate further graph compression techniques [18] to be
used in heterogeneous architectures. Apart from that, we are
planning to make more detailed analysis on proposed GPU
algorithms on social networks with different characteristics,
like diameter, density and degree distribution.

83

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	
Sp
ee
du

p	
w
rt
	 C
PU

	 1
	 th

re
ad
	

CPU	 +	 deg1	

CPU	 +	 deg1	 +	 ord	

(a) CPU

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

Sp
ee
du

p	
w
rt
	 G
PU

	 st
rid

e	

GPU	 stride	 +	 deg1	

GPU	 stride	 +	 deg1	 +	 ord	

(b) GPU

Figure 6: Impact of degree-1 reduction and graph ordering

0	

20	

40	

60	

80	

100	

120	

Sp
ee
du

p	
w
rt
	 C
PU

	 1
	 th

re
ad
	

CPU	 8	 threads	 +	 deg1	 +	 ord	
GPU	 virtual	 +	 deg1	 +	 ord	
GPU	 stride	 +	 deg1	 +	 ord	
Heterogenous	 virtual	 +	 deg1	 +	 ord	
Heteregenous	 stride	 +	 deg1	 +	 ord	

Figure 7: Comparison of CPU only, GPU only and
heterogeneous execution.

Acknowledgement
This work was partially supported by the NSF grants CNS-
0643969, OCI-0904809 OCI-0904802, and OCI-1246001.

7. REFERENCES
[1] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres.

Fast exact computation of betweenness centrality in
social networks. In Proceedings of International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM), 2012.

[2] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology,
25(2):163–177, 2001.

[3] S. Y. Chan, I. X. Y. Leung, and P. Liò. Fast centrality
approximation in modular networks. In Proceeding of
the ACM First International Workshop on Complex

Networks Meet Information and Knowledge
Management (CIKM-CNIKM), pages 31–38, 2009.

[4] Ö. Şimşek and A. G. Barto. Skill characterization
based on betweenness. In Proceedings of Neural
Information Processing Systems (NIPS), 2008.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proc. ACM national
conference, 1969.

[6] D. Eppstein and J. Wang. Fast approximation of
centrality. In Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 228–229, 2001.

[7] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C.
Hart. Edge vs. node parallelism for graph centrality
metrics. In GPU Computing Gems: Jade Edition.
Morgan Kaufmann, 2011.

[8] S. Jin, Z. Huang, Y. Chen, D. G. Chavarŕıa-Miranda,
J. Feo, and P. C. Wong. A novel application of parallel
betweenness centrality to power grid contingency
analysis. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS),
pages 1–7, 2010.

[9] S. Kintali. Betweenness centrality : Algorithms and
lower bounds. CoRR, abs/0809.1906, 2008.

[10] V. Krebs. Mapping networks of terrorist cells.
Connections, 24, 2002.

[11] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu
implementation of breadth-first search. In Proceedings
of the 47th Design Automation Conference, DAC ’10,
pages 52–55, New York, NY, USA, 2010. ACM.

[12] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. G. Chavarŕıa-Miranda. A faster parallel algorithm
and efficient multithreaded implementations for
evaluating betweenness centrality on massive datasets.
In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2009.

[13] E. L. Merrer and G. Trédan. Centralities: Capturing
the fuzzy notion of importance in social graphs. In
Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems (SNS), 2009.

84

[14] D. Merrill, M. Garland, and A. Grimshaw. Scalable
gpu graph traversal. In Proceedings of the 17th ACM
SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128,
New York, NY, USA, 2012. ACM.

[15] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of
closeness centrality for large-scale social networks. In
Proceedings of the 2nd annual international workshop
on Frontiers in Algorithmics (FAW), pages 186–195,
2008.

[16] M. C. Pham and R. Klamma. The structure of the
computer science knowledge network. In Proceedings
of International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 2010.

[17] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo,
S. Scellato, V. Iacoviello, and M. R. Street centrality
and densities of retail and services in Bologna, Italy.
Environment and Planning B: Planning and Design,
36(3):450–465, 2009.

[18] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V.
Çatalyürek. Shattering and compressing networks for
betweenness centrality. In SIAM Data Mining
Conference (SDM), 2013.

[19] X. Shi, J. Leskovec, and D. A. McFarland. Citing for
high impact. In Proceedings of the Joint Conference
on Digital Library (JCDL), 2010.

[20] Z. Shi and B. Zhang. Fast network centrality analysis
using GPUs. BMC Bioinformatics, 12:149, 2011.

85

	Introduction
	Background
	Betweenness Centrality

	Betweenness Centrality on GPU
	Vertex-based parallelism
	Edge-based parallelism
	Vertex virtualization for BC
	Stride-CSR representation

	Compressing the Graph for BC
	Implementation on GPU

	Experiments
	GPU implementations
	Graph modifications
	Heterogeneous execution

	Conclusion and Future Work
	References

