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ABSTRACT

Various complex networks in real-world applications are best repre-
sented as a bipartite graph, such as user-product, paper-author, and
actor-movie relations. Motif-based analysis has substantial benefits
for networks and bipartite graphs are no exception. The smallest
non-trivial subgraph in a bipartite graph is a (2, 2)-biclique, also
known as a butterfly. Although butterflies are succinct, they are
limited in capturing the higher-order relations between more than
two nodes from the same node set. One promising structure in this
context is the induced 6-cycle which consists of three nodes on
each node set forming a cycle where each node has exactly two
edges. In this paper, we study the problem of counting induced
6-cycles through parallel algorithms. To the best of our knowledge,
this is the first study on induced 6-cycle counting. We first consider
two adaptations based on previous works for cycle counting in
bipartite networks. Then, we introduce a new approach based on
the node triplets and offer a systematic way to count the induced
6-cycles. Our final algorithm, BatchTripletJoin, is parallelizable
across root nodes and uses minimal global storage to save mem-
ory. Our experimental evaluation on a 52 core machine shows that
BatchTripletJoin is significantly faster than the other algorithms
while being scalable to large graph sizes and number of cores. On a
network with 112M edges, BatchTripletJoin is able to finish the
computation in 78 mins by using 52 threads.
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1 INTRODUCTION

The growing interest in bipartite graphs derives from the applica-
tions which model the relationships between two distinct groups
[8, 14–16, 22]. In a bipartite graph, the node set is divided into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545076

A bipartite network Induced 6-cycle Non-induced 6-cycle

u2

u3

v1

v2

u1

v4u4

v3

u2

u3

v1

v2

u1

v3

u2

u3

v2

v4u4

v3

Figure 1: A toy bipartite network G , an induced 6-cycle in G , and a

non-induced 6-cycle in G . The induced 6-cycle (u1, u2, u3, v1, v2, v3)
consists of exactly six edges and the degree of each node is exactly

2. The non-induced 6-cycle (u2, u3, u4, v2, v3, v4) has an additional

edge, making the degree of two nodes three. The induced 6-cycle

does not include a butterfly whereas the non-induced 6-cycle con-

tains two butterflies:u2, u4, v3, v4 andu3, u4, v2, v4. Both the left and

right projections of an induced or non-induced 6-cycle result in tri-

angles; each node pair is related since they share a neighbor in G .

However, induced 6-cycles are the smallest bipartite structure that

enables such projections.

two disjoint and independent sets U and V such that every edge
connects a node inU to one inV . For example, recommendation net-
works are often represented as a bipartite graph with users as one
node set and items as the other [25]. Bipartite graphs are also used
to model hypergraphs where entities take part in group relations,
such as actor-movie [39], author-paper [27], and company-board
member [31] connections. Despite their representation power, bi-
partite graphs are understudied because most graph algorithms,
including motif analysis, are focused on the traditional unipartite
graphs. One solution is to project bipartite graphs to obtain the
unipartite representation but this comes at a cost of significant in-
formation loss and inflated graph size [7, 34]. Hence, it is essential
to design algorithms that directly work on the bipartite graphs.

Motif-based analysis is shown to have significant benefits for
various graph mining tasks [4, 34, 35]. The smallest non-trivial
motif in a bipartite graph is a butterfly ((2, 2)-biclique), also known
as a four-cycle and a rectangle [32, 38]. Butterflies are shown to be
an effective building block for community structure and used in
various graph mining tasks in bipartite graphs [5, 19, 41]. Sequen-
tial and parallel algorithms are designed for butterfly counting in
offline and online scenarios [11, 32, 33, 37, 38]. However, butter-
flies capture the higher-order relations between only two nodes
from the same node set. Alternative measures also have limited
success, for example a (3, 3)-biclique suffers from the prohibitive
cost of computation [8] and a 3-path (i.e., butterfly minus an edge)
is unable to model cohesion [31]. There is a need to go for larger
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bipartite motifs which canmodel higher-order relations while being
computationally affordable.

One promising structure in this context is the 6-cycle, proposed
by Opsahl [28] to model the triadic closure in bipartite networks. A
6-cycle consists of three nodes on each node set forming a cycle. Re-
cently, Yang et al. introduced algorithms for counting non-induced
6-cycles [40]. While their algorithms are efficient, they ignore the
inducedness constraint which is a key to get more informative
results by avoiding combinatorial explosion. In general, it is well
known that induced motifs (also known as graphlets) are more
useful than non-induced motifs in real-world applications, such as
anomaly detection, but also remain more challenging to compute
[30, 36]. In an induced 6-cycle, each node has exactly two edges.
There is no butterfly (or biclique) since each pair of nodes (from
the same set) shares only one neighbor. An induced 6-cycle relates
three nodes in the same node set to each other by forming a triangle
in the projections with the minimal number of edges (see Figure 1).
In that respect, induced 6-cycles offer a more distilled perspective
than butterflies or bicliques. However, counting induced 6-cycles
is more challenging than non-induced 6-cycles since one has to
account for the lack of certain edges to ensure inducedness.

In this work, we present parallel algorithms to count induced
6-cycles in bipartite graphs. To the best of our knowledge, there
is no prior work on counting induced 6-cycles. Due to the high
computational cost, we use the affordances of shared-memory paral-
lelization for practical runtime performance. We first consider two
previous studies on cycle counting in bipartite networks and adapt
them for parallel induced 6-cycle counting. In particular, we use
the breadth-first search idea from [13] and wedge join technique
from [37]. We show that those approaches have prohibitive time
and space costs, and are therefore not scalable for large bipartite
networks. As a solution, we propose counting induced 6-cycles over
node triplets (three nodes on the same node set). Node triplets offer
a systematic way to count induced 6-cycles in batches, thus avoid-
ing duplicate work and enabling time-space tradeoffs for faster
computation. We further consider space improvements by mini-
mizing global storage and reduction of set intersection/difference
operations when designing the BatchTripletJoin algorithm. In all
our algorithms, we expose embarrassingly parallel computations
in the coarse level and also make use of a preprocessing routine
to assign better workloads for the threads. Preprocessing filters
out the redundant parts of the graph while keeping the induced
6-cycle count the same and performs graph reordering to increase
efficiency. We perform an extensive experimental evaluation on
real-world networks and investigate the runtime and memory us-
age performance of our algorithms along with strong and weak
scalability studies.

Our contributions can be summarized as follows:
• Preprocessing. We consider several techniques to filter and
reorder the graph to speed up the induced 6-cycle counting. These
techniques are applied to all our algorithms.
• Adapting cycle counting algorithms. Since this is the first
study on induced 6-cycle counting, we propose two parallel adap-
tations of prior works on cycle counting to find the total number
of induced 6-cycles.
• Counting by node triplets. We give a new approach based
on counting induced 6-cycles for node triplets. We show the

relationship between node triplets and induced 6-cycles through
a pattern of set operations.
• Improving the runtime and memory usage. We introduce
BatchTripletJoin, an improved space-efficient algorithm for
node triplets that uses reduced set operations.
• Evaluation on real-world networks. We evaluate all our al-
gorithms on various real-world bipartite networks. We compare
the runtime of our algorithms for differing number of cores to
demonstrate high scalability and practical runtimes. On a net-
work with more than half a billion edges, BatchTripletJoin
finishes the computation in 13.2 hours by using 52 threads.
Outline. We present preliminary definitions and notation in

Section 2 and summarize the prior work on motif counting in bipar-
tite networks in Section 3. Then, we give a series of preprocessing
techniques to speed up induced 6-cycle counting in Section 4 and
adaptations of two cycle counting algorithms for induced 6-cycle
counting in Section 5. Next, we present our two main algorithms
based on the use of node triples in Section 6. We give our experi-
mental evaluation in Section 7 and conclusion in Section 8.

2 PRELIMINARIES

We work on a simple and undirected bipartite graphG = (U ,V ,E)
whereU is the set of nodes in the left set, V is the set of nodes in
the right set, and E is the set of edges. The neighbors of a node v is
denoted by N (v). The degree of a node v (|N (v)|) is d(v) and the
average degree of nodes inU andV are ⟨dU ⟩ and ⟨dV ⟩, respectively.
Also, we use ⟨d2U ⟩ to denote the average number of distance-2
neighbors of nodes inU . We denote |U | + |V | asn (number of nodes)
and |E | asm (number of edges). The summation of all elements in a
listX is denoted as sum(X ). For parallel time and space complexities,
we represent the number of processing units as p.

An induced 6-cycle is a set of six nodes u1,u2,u3 ∈ U and
v1,v2,v3 ∈ V and six edges as follows (w.l.o.g):
(i) (u1,v2), (u1,v3), (u2,v1), (u2,v3), (u3,v1), (u3,v2) edges exist;
(ii) (u1,v1), (u2,v2), (u3,v3) edges do not exist.

If only (i) holds, it is a non-induced 6-cycle. In a given bipartite
networkG , we find the total number of instances of induced 6-cycles.
In an induced 6-cycle instance, two vertices are connected if and
only if they are also connected inG . The degree of a node is exactly
two in an induced 6-cycle and at least two in a non-induced 6-cycle.
Figure 1 gives an example for both.

We define a wedge as a 2-path composed of two endpoint ver-
ticesu1,u2 ∈ U and a center vertexv ∈ V with edges (u1,v), (u2,v)
∈ E (we always consider the endpoints in the left set and the center
vertex in the right set). An induced 6-cycle is made up of three
wedges connected to each other in a cyclic way. We useW (x) to
denote the set of wedges where x is the smaller of the two endpoints
(in U ) andW (x ,y) to denote the set of wedges whose endpoints
are x and y. The total number of wedges centered on V is equal to∑
v ∈V

(d (v)
2
)
and denoted by |W |. The averageW (u) for all u ∈ U

is represented as ⟨WU ⟩.

3 RELATEDWORK

In this section, we review various related works on finding motifs
in bipartite networks.
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Algorithm 1: Preprocessing (G)
Input: G = (U ,V ,E): graph
Output: G ′ = (U ′,V ′,E ′): processed graph

1 G ← 2-core of G
2 if |U | > |V | then Swap(U ,V ) // Ensure |U | < |V |
// Sort the nodes in U by inc. count of wedges

3 X ← SortbyWedдeCounts(U )

4 Let x ’s rank R[x] be its index in X

5 parallel foreach u ∈ U do add R[u] toU ′
6 V ′ ← V
// N ′(x ) is the neighbors of node x in G′

// In both loops, neighbors sorted in descending order

7 parallel foreach u ∈ U do

N ′(R[u]) ← Sort({v |(u,v) ∈ E})

8 parallel foreach v ∈ V do

N ′(v) ← Sort({R[u]|(u,v) ∈ E})

9 return G ′

Counting Short Cycles in Bipartite Networks. A cycle in a bi-
partite network is considered to be short if its length k follows
д ≤ k ≤ 2д − 2 where д is the length of the smallest cycle in the
graph. The objective here is to count all non-induced short cycles
in bipartite networks. A message-passing algorithm was proposed
by Karimi and Banihashemi [20] which iteratively passes messages
across a node’s neighbors to count all short cycles within a bipartite
graph. Dehghan and Banihashemi [13] proposed an algorithm to
count short cycles by applying breadth-first search to all nodes in
either the left or right set of a bipartite network.
Butterfly Counting. In this problem, the objective is to count the
number of butterflies in bipartite networks. A butterfly is the small-
est cycle in bipartite networks and has a variety of applications
such as document clustering [14] and link spam detection [16]. The
first work for butterfly counting is by Wang et al. who introduced a
counting scheme which uses the number of wedges containing each
node in the left set to calculate the total butterfly count [38]. Sanei-
Mehri et al. improved upon Wang et al.’s algorithm by computing
the number of wedges for each node in the set with lower runtime
cost [32]. The set with the higher sum of squares of the degrees for
each node is selected. Along with the exact counting algorithms,
they also proposed randomized algorithms which can approximate
the number of butterflies in bipartite networks. In another work,
Sanei-Mehri et al. introduced streaming algorithms to count but-
terflies in graph streams [33]. Shi and Shun [37] recently designed
a parallel butterfly counting algorithm which modified Chiba and
Nishizeki’s wedge retrieval process [11] to enable parallelization.
6-Cycle Counting. The problem of counting 6-cycles in bipartite
networks has only recently been studied for large bipartite net-
works. Yang et al. introduced algorithms to count the number of
non-induced 6-cycles, which they denote as bi-triangles [40]. Their
algorithms are based on combining wedges and super-wedges, with
the former being 2-paths and the latter being 3-paths. They also in-
troduce local 6-cycle counting algorithms which count the number
of 6-cycles containing a specified node or edge. In our work, we
consider induced 6-cycle counting, which is more challenging
and promising for real-world applications.

4 PREPROCESSING

We make use of a generic preprocessing step in all our algorithms
which formats the graph to speed up computations (Section 4).
To speed up the computation for large bipartite graphs, we can
shrink and reformat the graph such that the induced 6-cycle count
stays the same. In Preprocessing, outlined in Algorithm 1, we give
a computation that takes as input a bipartite graph and outputs
another bipartite graph that filters out some parts of the input and
reorders the nodes and neighbor lists. We first update the input
graph to only consider the nodes and edges that are in a 2-core,
which is a maximal connected subgraph in which all nodes have
a degree of at least 2 (line 1). Since all the nodes in an induced
6-cycle have a degree of at least 2, we can simply ignore the nodes
outside the 2-core, thus reducing the size of the graph. Afterwards,
if necessary, we swap the left (U ) and right sets (V ) to ensure that
the left set (U ) has the smaller number of nodes (line 2). We always
parallelize based onU in our counting algorithms, hence making
it the smaller set increases the number of induced 6-cycles that
are processed in batches for each thread. Next, we reorder each
node u ∈ U in increasing order of wedges from u (lines 3 - 5).
The wedge count for a node u is

∑
v ∈N (u) d(v) − 1 (we consider

the wedges where u is an end-point, as defined in Section 2). Note
that Shi and Shun [37] showed that reordering the graph using
approximate degree ordering or degeneracy ordering yields efficient
results and here we consider wedge count based ordering in a
similar spirit. Finally, we sort each neighbor list in descending order
of node ids (lines 7 - 8). This enables linear time set intersection and
difference operations. We evaluate the impact of our techniques
in Preprocessing as well as various node reordering schemes in
Section 7.4.

Time and space complexity. In Preprocessing, core decom-
position (line 1) takesO(m) time [6]. The swapping of left and right
sets (line 2) is O(1) if pointers are swapped instead of the contents
themselves. Finally, reordering the nodes and sorting neighbor
lists in descending order (lines 3-8) takes O(|X | log |X | + m log
m) time where |X | =min(|U |, |V |). Overall, Preprocessing takes
O(m loдm) time. Asymptotically, it never becomes the bottleneck
in any of our counting algorithms. The space complexity for storing
the processed graph and temporary variables is O(n +m).

5 ADAPTING CYCLE COUNTING

Since induced 6-cycle counting has not been studied before, we
start by proposing two adaptations inspired by the previous works
for cycle counting in bipartite networks. The first is a modified
version of breadth-first search to count induced 6-cycles, which
Dehghan and Banihashemi also used to count short cycles [13]
(Section 5.1). The second is based on the parallel wedge retrieval
algorithm proposed by Shi and Shun, which was used for butterfly
counting [37] (Section 5.2).

5.1 Counting by Breadth-First Search

One of the more common methods for finding cycles in a graph
is through breadth-first search (BFS) [13]. The idea is to simply
perform a traversal for a few levels and determine the number of
cycles that the root node takes part in. To count induced 6-cycles, we
introduce the NodeJoin algorithm, outlined in Algorithm 2. Given
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Algorithm 2: NodeJoin (G)
Input: G (U ,V ,E): graph
Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)
2 counts ← [] // |U | values
3 parallel foreach u1 ∈ U do

4 S ← ∅ // Hashmap of node pairs (from U ) to values

5 foreach v2,v3 ∈ N (u1) s.t. v2 > v3 do
6 H ← ∅ // Set of nodes

7 foreach u3 ∈ N (v2)\N (v3) and u3 > u1 do
8 add u3 to H
9 foreach u2 ∈ N (v3)\N (v2) and u2 > u1 do

10 foreach u3 ∈ H do

// S stores the number of v1s (see Fig.

2)

11 if (u2,u3) < S then

12 S[(u2,u3)] ← |N (u2) ∩ N (u3)\N (u1)|
13 counts[u1] ← counts[u1] + S[(u2,u3)]
14 count ← sum(counts) // Parallel reduction

15 return count

a bipartite graph G = (U ,V ,E), NodeJoin counts the induced 6-
cycles by performing a limited BFS from each vertex u ∈ U up until
a depth level of three. Figure 2 illustrates the BFS tree whereu1 ∈ U
is the root node. v2,v3 ∈ V are two of u1’s neighbors, hence put
at level one. In level two, we find a neighbor of v2 which is not
connected to v3, denoted by u3 (and vice versa, denoted by u2). In
the last level, we find a common neighbor of u2 and u3, denoted by
v1, which is not connected to u1.

For each root node u1 ∈ U , the same u2, u3 pair may appear in
multiple induced 6-cycles containing u1. To avoid duplicate pro-
cessing, we use the container S (line 4 in Algorithm 2) to store the
number of nodes in N (u2) ∩ N (u3)\N (u1), which corresponds to
v1s in the last level of the BFS tree (line 12). We also ensure an
ordering such that u3 > u1 and u2 > u1 (lines 7 and 9) to break the
symmetry and thus prevent the duplicate processing of node pairs
from U . Note that the counts list contains the number of induced
6-cycles counted through each vertex; it is not the actual count for
each vertex. The sum of counts gives the total induced 6-cycle count
(line 14). NodeJoin has a coarse-grained parallelism where the root
nodes inU are shared among the threads (line 3).

A significant drawback of NodeJoin is the recomputation of
set intersections across BFS trees. Multiple root nodes u1 may par-
ticipate in an induced 6-cycle with the same u2 and u3 node pair,
resulting in the recomputation of N (u2) ∩ N (u3) (line 12). One so-
lution would be to store each set intersection for all pairs of root
nodes, but it will have prohibitive space usage for large networks.

Time complexity. We express the costs in terms of average
node degrees, ⟨dU ⟩ and ⟨dV ⟩, to enable a tight analysis. There are
|U | iterations performed in total which go over each node u ∈ U
(line 3). The loop in line 5 iterates over node pairs in u1’s neighbor
list, corresponding toO(

( ⟨dU ⟩
2

)
) iterations. The cost of lines 7 and 8

isO(⟨dV ⟩). Lines 9 and 10 takeO(⟨dV ⟩) iterations each, for a total of
O(⟨dV ⟩

2) iterations. Computing the set operations in line 12 takes
O(⟨dU ⟩) time because N (u2) ∩ N (u3)\N (u1) can be computed in

v3

u3 u2

v1

v2

u1
Figure 2: NodeJoin’s BFS tree. The

dotted lines represent the edges

which do not exist. The BFS tree goes

from top to bottom with u1 being

the root node and node v1 at depth

level three. We check for the lack of

the blue edge in line 7 and of the red

edge in line 9 in Algorithm 2.

linear-time by simultaneously going over the neighbor lists of u2,
u3, and u1 (neighbor lists are kept sorted in descending order, see
Section 4). Overall, the total time of NodeJoin is O(|U | ·

( ⟨dU ⟩
2

)
·

(⟨dV ⟩ + ⟨dV ⟩
2 · ⟨dU ⟩)) which is equal toO(m · ⟨dU ⟩2 · ⟨dV ⟩2)O(m · ⟨dU ⟩

2 · ⟨dV ⟩
2)O(m · ⟨dU ⟩

2 · ⟨dV ⟩
2). The

parallel time complexity of NodeJoin is simply O(1/p ·m · ⟨dU ⟩2 ·
⟨dV ⟩

2) since it is embarrassingly parallel.
Space complexity. In addition to the O(m) space taken by the

graph, NodeJoin uses one global container counts (line 2) and
two local containers S (line 4) and H (line 6) per thread to store
various auxiliary information. counts stores |U | values. S stores
O(

( ⟨dV ⟩
2

)
) values which in the worst case can be O(|U |2). H stores

up to |U | nodes. Therefore, the space complexity of NodeJoin is
O(m + p · (|U | + |U |2 + |U |) = O(p · |U |2). Note that in practice we
observe that this is a loose bound and the actual memory footprint
is much smaller (see Section 7.3).

5.2 Counting by Wedges

An alternative way to count induced 6-cycles is by aggregating
wedges. Since induced 6-cycles are composed of three overlapping
wedges (see Figure 3), we can reduce the cost of computation by
operating on wedges rather than nodes. Shi and Shun proposed to
use (and store) wedges for counting butterflies [37]. We can count
induced 6-cycles using a similar wedge retrieval technique while
taking advantage of the patterns associated with inducedness.

We describe our wedge based counting algorithmWedgeJoin
in Algorithm 3.WedgeJoin simply goes over triples of wedges and
counts the ones that form an induced 6-cycle. Wedge retrieval (lines
2-6) is based off of Shi and Shun’s [37] algorithm and enables the
parallel processing of wedges. The parallel containerW allows for
fast access of wedges based on endpoints. Unlike their algorithm,
we only find wedges with endpoints inU instead of the entire node
set. In our implementation,W is a list of all the wedges in the graph
such that each wedge consists of two nodes from U (endpoints)
and one node fromV (center). We partitionW based on the smaller
endpoint (u1) and sort each partition with respect to the larger
endpoint (u2). For all nodes u1 ∈ U ,W enables the retrieval of all
wedges with endpoints u1,u2 and center v3 such that u1 < u2.

WedgeJoin finds cycles of wedges (u1,v3,u2), (u2,v1,u3), and
(u1,v2,u3) such that u1 < u2 < u3. Line 8 (in Algorithm 3) iterates
over all blue wedges (u1,v3,u2) and line 10 iterates over all green
wedges (u2,v1,u3) (Figure 3). The lack of edges (u1,v1), (u2,v2), and
(u3,v3) is needed to satisfy the inducedness (the dashed black edges
in Figure 3). To ensure that the blue and green wedge pair satisfy
the inducedness constraint, we first check for the nonexistence
of (u1,v1) and (u3,v3) in line 13. Afterwards, we traverse all red
wedges (u1,v2,u3) (Figure 3) in line 15. Finally, we check for the
last unwanted edge (u2,v2) in line 17 and increment the induced
6-cycle count of the blue wedge.
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Algorithm 3:WedgeJoin (G)
Input: G (U ,V ,E): graph
Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)
2 W ← ∅ // Parallel container of wedges

3 parallel foreach u1 ∈ U do

4 foreach v3 ∈ N (u1) do
5 foreach u2 ∈ N (v3) s.t. u2 > u1 do
6 add (u1,v3,u2) toW (sorted by endpoints)
7 counts ← [] // |W | values
8 parallel foreachw1 ∈W do

9 (u1,v3,u2) ← w1 // Blue wedge in Fig. 3; u1 < u2
10 foreachw2 ∈W (u2) do
11 (u2,v1,u3) ← w2 // Green wedge in Fig. 3;

u2 < u3
12 // Speedup #1: If v3 ∈ N (u3), skip all the

successive wedges with the same endpoints;

also no need to check v3 < N (u3) for such

wedges

13 if v1 < N (u1) and v3 < N (u3) then
14 // Speedup #2: Reuse the count below for all

the successive green wedges with the same

pair of endpoints

15 foreachw3 ∈W (u1,u3) do
16 (u1,v2,u3) ← w3 // Red wedge in Fig. 3

17 if v2 < N (u2) then counts[w1]++
18 count ← sum(counts) // Parallel reduction

19 return count

We have two speedups for faster computation, mentioned in
lines 12 and 14. In the first speedup, we aim to skip the processing
of some green wedges with particular endpoints. Note that inW ,
the wedges with the same smaller-endpoint (u1) are sorted with
respect to their larger-endpoint (u2). This means that while going
over the green wedges (w2) in line 10, where u2 is the smaller-
endpoint, we may encounter successive green wedges with the
same pair of endpoints, u2 and u3 (where the center point (v1) from
V is different). In that case, ifv3 ∈ N (u3) happens to be true, we can
skip processing all such successive green wedges with endpoints
u2,u3 because the (u3,v3) edge violates the inducedness condition.
We can do this by simply keeping a flag and temporary variable to
remember the larger-endpoint (u3) from the last processed green
wedge. This way we do not check whether v3 < N (u3) again and
again. More importantly, if v3 ∈ N (u3), we skip processing all the
green wedges with the same pair of endpoints u2,u3 . In the second
speedup, we again take advantage of the successive green wedges
with the same pair of endpoints. We perform the computation in
lines 15 to 17 once for aw1,w2 pair and reuse the induced 6-cycle
count for all successive w1,w ′2 pairs where w2 and w ′2 share the
same endpoints. We use both speedups in our implementation.

WedgeJoin computes the true count of induced 6-cycles by
finding three wedges where: (1) Nodes on the left are unique:

Lines 9 and 11 enforce uniqueness by establishing an ordering
u1 < u2 < u3; (2) Nodes on the right are unique: Each node on
right is the center of a traversed wedge (lines 9, 11, and 16) which

v3

u2

u3

v1

v2

u1
Figure 3: A cycle of three wedges

(red, blue, and green) and the lack of

any other edge are needed to form

an induced 6-cycle. The dashed edges

must be nonexistent; including any

of those would make the 6-cycle non-

induced.

contain two endpoints—through the inducedness checks in lines 13
and 17, we prove uniqueness by checking if a pair of endpoints from
all three traversed wedges connects to multiple nodes on right; (3)
The six induced edges exist (the blue, green, and red edges in
Figure 3): Since all nodes are unique, each traversed wedge (lines 8,
10, and 15) contains two of the induced edges; (4) The three non-
induced edges do not exist (the dashed black edges in Figure 3):
We have explicit conditions on lines 13 and 17 corresponding to
the three inducedness checks. Finally, since we go over all triples
of wedges, all the induced 6-cycles are counted.

Time complexity.Wedge retrieval (lines 2-6) traverses over all
wedges which have endpoints inU and takesO(|U | · ⟨dU ⟩ · ⟨dV ⟩) =
O(m · ⟨dV ⟩) time. Starting in line 8, we iterate over all the wedges,
taking O(m · ⟨dV ⟩) iterations. The loop on line 10 finds the wedges
where a node u ∈ U is the smaller endpoint, which corresponds
to O(⟨WU ⟩) iterations. We find the third wedge in line 15, which
takes O(⟨dU ⟩) iterations. Line 17 simply takes O(1) time. Overall,
WedgeJoin takesO(m · ⟨dV ⟩+m · ⟨dV ⟩ · ⟨WU ⟩ · ⟨dU ⟩)which is equal
toO(m · ⟨dV ⟩ · ⟨WU ⟩ · ⟨dU ⟩)O(m · ⟨dV ⟩ · ⟨WU ⟩ · ⟨dU ⟩)O(m · ⟨dV ⟩ · ⟨WU ⟩ · ⟨dU ⟩) time (divided by p when parallelized).
Comparing with NodeJoin, which has O(m · ⟨dU ⟩2 · ⟨dV ⟩2) time,
whether ⟨WU ⟩ is smaller than ⟨dU ⟩ · ⟨dV ⟩ determines if WedgeJoin
is faster than NodeJoin. However, as we see in Section 7, even
in real-world networks where ⟨WU ⟩ is larger than ⟨dU ⟩ · ⟨dV ⟩,
the constant time speedups implemented in WedgeJoin causes
WedgeJoin to run significantly faster than NodeJoin.

Space complexity. The global containers counts (line 7) andW
(line 2) takes space equivalent to the number of wedges, which is
much more than theO(m) space required for the graph. Each wedge
takes O(1) space and there are O(|W |) wedges in total, which also
corresponds to the total space complexity of WedgeJoin.

6 NODE TRIPLETS FOR FASTER COUNTING

In this section, we propose a new technique that considers node
triplets to count the induced 6-cycles. We define a node triplet to be
a grouping of three unique nodes such that all nodes are in the same
set (U or V ) and there exists a 4-path connecting the three nodes.
Inspired by Yang et al.’s approach for non-induced 6-cycles [40], we
derive a formula to find the number of induced 6-cycles for a given
node triplet and compute the total count by going over all node
triplets. The formula lets us systematically avoid the duplicate work
and engage in time-space tradeoffs for faster computation. We first
introduce the TripletJoin algorithm in Section 6.1 which simply
applies the formula for all node triplets and also stores the set of
common neighbors for fast computation. Then, we present our
final algorithm, BatchTripletJoin, in Section 6.2 which improves
TripletJoin by storing common neighbors more efficiently and
reducing set operations.
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Algorithm 4: TripletJoin (G)
Input: G (U ,V ,E): graph
Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)
2 counts ← [] // |U | values
// For each node pair in U , common neighbors stored in

S
3 S ← ∅ ∗ |U | // |U | hashmaps of nodes to sets

4 parallel foreach u1 ∈ U do

5 foreach vj ∈ N (u1) do
6 foreach ui ∈ N (vj ) s.t. ui > u1 do
7 add vj to S[u1][ui ]
8 parallel foreach u1 ∈ U do

9 H ← ∅ // Distance-2 neighbors of u1 with greater

id

10 foreach vj ∈ N (u1) do
11 foreach ui ∈ N (vj ) s.t. ui > u1 do
12 add ui to H
13 foreach u2,u3 ∈ H s.t. u3 > u2 do
14 if u3 ∈ S[u2].keySet() then
15 counts[u1] ← counts[u1] + (|S[u1][u2]\N (u3)|) ·

(|S[u1][u3]\N (u2)|) · (|S[u2][u3]\N (u1)|)
16 count ← sum(counts) // Parallel reduction

17 return count

6.1 Counting by Node Triplets

Node triplets offer a systematic way to count the induced 6-cycles.
Given that there are exactly six edges in an induced 6-cycle and no
two nodes share more than one neighbor, we can derive a formula
to find the number of induced 6-cycles for a given node triplet:

Theorem 1. Given a bipartite network G = (U ,V ,E) and three
unique nodes u1, u2, and u3 ∈ U , the number of induced 6-cycles
containing the node triplet (u1,u2,u3) is:

|N (u1) ∩ N (u2)\N (u3)| · |N (u1) ∩ N (u3)\N (u2)|·

|N (u2) ∩ N (u3)\N (u1)|
(1)

Proof. Let unique nodes v1, v2, and v3 ∈ V be in an induced 6-
cycle withu1,u2, andu3 as depicted in the induced 6-cycle of Figure
3. The difference between a 6-cycle and an induced 6-cycle is that,
in an induced 6-cycle, neither of v1, v2, and v3 can be a common
neighbor of all three nodes u1, u2, and u3. Therefore, the number
of induced 6-cycles containing u1, u2, u3, v1, and v3 is the number
of possible v2s which are neighbors of u1 and u3 but not u2. This
can be represented as |N (u1)∩N (u3)\N (u2)|. Likewise, the number
of possible v1s and v3s are |N (u2) ∩ N (u3)\N (u1)| and |N (u1) ∩
N (u2)\N (u3)|, respectively. The sets of {N (u1) ∩ N (u2)\N (u3)},
{N (u1) ∩ N (u3)\N (u2)}, and {N (u2) ∩ N (u3)\N (u1)} are mutually
exclusive. Therefore, multiplying the size of these three sets gives
the number of induced 6-cycles for the node triplet u1,u2,u3. □

Algorithm 4 outlines the TripletJoin algorithm. Given a bipar-
tite graph G = (U ,V ,E), TripletJoin computes the number of
participating induced 6-cycles for all node triplets ofU and returns
the total sum. TripletJoin processes at most

( |U |
3
)
node triplets,

of which many may share multiple nodes, such as the same pair

of nodes u1,u2 ∈ U . This may cause serious recomputation of
N (u1) ∩ N (u2), which corresponds to a significant runtime cost.
Therefore, we store the common neighbors of node pairs in U , i.e.,
N (u1)∩N (u2) ∀u1,u2 ∈ U , in container S (lines 3-7). Then, for each
u1, we use a containerH (line 9) to store all its distance-2 neighbors
which are greater than itself. Afterwards, we obtain node triplets
by iterating over unique node pairs in H and compute the induced
6-cycle count of each by Theorem 1 (line 15). This process of finding
node triplets avoids going over all

( |U |
3
)
triplets by only processing

the three nodes which form a 4-path (lines 10- 12: u1-vx -u2 and
u1-vy -u3 for arbitraryvx andvy ). Such node triplets are more likely
to be a part of an induced 6-cycle when compared to an arbitrary
node triplet inU .

Time complexity. Lines 4-7 iterate through all wedges of the
graph, which takes O(|W |) time. Then, for each node inU (line 8),
we find its distance-2 neighbors (lines 9-12), takingO(m · ⟨dV ⟩) time
in total. Line 13 traverses through pairs of distance-2 neighbors,
which takes, on average, O(

( ⟨d2U ⟩
2

)
) time. Line 15 does a compu-

tation based on Theorem 1, which takes an average of O(⟨dU ⟩)
time. Therefore, TripletJoin has a time complexity of O(|W | +
|U | ·

( ⟨d2U ⟩
2

)
· ⟨dU ⟩) = O(m · ⟨d2U ⟩2)O(m · ⟨d2U ⟩2)O(m · ⟨d2U ⟩2). As we see in Section 7, the

time complexity of TripletJoin is typically much smaller than
both NodeJoin (O(m · ⟨dU ⟩2 · ⟨dV ⟩2)) andWedgeJoin (O(m · ⟨dV ⟩ ·
⟨WU ⟩ · ⟨dU ⟩)) because the number of distance-2 neighbors of a node
is often much less than the number of wedges it has. The parallel
time complexity of TripletJoin is O(1/p ·m · ⟨d2U ⟩2) since it is
embarrassingly parallel.

Space complexity. In addition to the O(m) space required for
the graph and the O(|U |) space required for the container counts
(line 2), TripletJoin involves storing wedges (line 3) in the global
scope, which takes O(|W |) space and determines the total space
complexity. Note that the local storage of distance-2 neighbors of a
nodeu ∈ U (line 9) only takesO(p · ⟨d2U ⟩) space, which is surpassed
by the global storage of wedges and thus does not increase the total
space complexity.

6.2 Faster Triplet Counting with Less Space

Herewe consider three orthogonal improvements on top of TripletJoin
for a more time and space efficient algorithm.

Storing size of intersections. By globally storing wedges in
WedgeJoin and set intersections in TripletJoin, we are able to
solve the recomputation issue of wedges and set intersections, re-
spectively. However, for large graphs, the space required for this
storage is prohibitive and may exceed the amount of available mem-
ory. To reduce the memory usage, we can make a more efficient use
of global storage across loop iterations and local storage within loop
iterations. Since local storage is temporary, its memory is freed (and
thus can be reallocated) after each iteration, unlike global storage.
Compared to TripletJoin, which stores the set intersections in
global storage, we can only store the sizes of set intersections glob-
ally (not the sets) and use local storage only for the set intersections
which directly relate to the associated loop iteration.

Reduced set operations. Another improvement is about the
computation of induced 6-cycle counts for a node triple. In an
induced 6-cycle, each node v ∈ V has exactly two edges. We can
use this to improve upon Theorem 1 by eliminating the need for the
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Algorithm 5: BatchTripletJoin (G)
Input: G (U ,V ,E): graph
Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)
2 counts ← [] // |U | values
// For each node pair in U , # of common neighbors

stored in S
3 S ← ∅ ∗ |U | // |U | hashmaps of nodes to values

4 parallel foreach u1 ∈ U do

5 foreach vj ∈ N (u1) do
6 foreach ui ∈ N (vj ) s.t. ui > u1 do
7 S[u1][ui ] ← S[u1][ui ] + 1
8 parallel foreach u1 ∈ U do

9 H ← ∅ // Hashmap of nodes to node sets

10 foreach vj ∈ N (u1) do
11 foreach ui ∈ N (v) s.t. ui > u1 do
12 add vj to H [ui ]
13 foreach u2,u3 ∈ H .keySet() s.t. u3 > u2 do
14 if u3 ∈ S[u2].keySet() then
15 x ← |H [u2] ∩ H [u3]|
16 counts[u1] ← counts[u1]+

(|H [u2]| − x) · (|H [u3]| − x) · (S[u2][u3] − x)
17 count ← sum(counts) // Parallel reduction

18 return count

set difference operation, reducing the number of computations. As
shown in Theorem 2, we can instead subtract the number of nodes
which are connected to all three nodes in a node triplet. Therefore,
instead of computing three O(|V |) set difference computations, we
can simply compute one O(|V |) set intersection computation.

Theorem 2. Given a bipartite networkG = (U ,V ,E), three unique
nodes u1,u2,u3 ∈ U , and x = |N (u1) ∩ N (u2) ∩ N (u3)|, the number
of induced 6-cycles containing the node triplet is:

(|N (u1) ∩ N (u2)| − x) · (|N (u1) ∩ N (u3)| − x)·

(|N (u2) ∩ N (u3)| − x)
(2)

Proof. Given a setX , |X | − |X ∩A| = |X\A|. Therefore, |N (u1)∩
N (u2)| − x is equivalent to |N (u1) ∩ N (u2)\N (u3)| in Theorem 1.
As such, Theorem 2 is correct by the same reasoning as Theorem
1. □

We consider the improvements above in BatchTripletJoin, out-
lined in Algorithm 5, which reduces the number of computations
and is more efficient than TripletJoin in terms of memory usage.
In lines 4-7, we compute and globally store the sizes of the set
intersections between the neighbor lists for all u1,ui node pairs.
Afterwards, we iterate through all u1s (line 8) and store the non-
empty set intersections between the neighbor lists of u1 and all
ui ∈ U s.t. ui > u1 (lines 9-12). Finally, we count the number of
induced 6-cycles associated with each node triplet {u1,u2,u3} by
Theorem 2 (line 16) and return the sum of all the counts. In our
implementation, we force the compiler to vectorize the inner loops
and it gave a slight improvement on the largest networks.

Time complexity. BatchTripletJoin features three orthogo-
nal improvements over TripletJoin but the time complexity does

Table 1: Statistics of the real-world bipartite networks used in the

experiments. I6C stands for number of induced 6-cycles.

Networks |U | |V | m I6C
DBLP (DB) 4,000,150 1,425,813 10,002,631 5.10 x 107
Github (GI) 56,555 123,345 440,237 1.37 x 1011
IMDB (IM) 1,232,031 419,661 5,596,667 2.01 x 1010
Kindle (KI) 1,406,890 430,530 3,205,467 5.20 x 109
Twitter (TW) 175,214 530,418 1,890,661 5.58 x 1011
Movielens (ML) 69,878 10,677 10,000,054 1.69 x 1017
Reuters (RE) 781,265 283,911 60,569,726 9.91 x 1018
LiveJournal (LJ) 3,201,203 7,489,073 112,307,385 2.10 x 1018

not change. Efficient usage of memory and reduction of set oper-
ations (line 16) only offer constant time speedup and thus does
not affect the overall time complexity. Overall, the total time com-
plexity of BatchTripletJoin is equal to TripletJoin, which is
O(m · ⟨d2U ⟩2)O(m · ⟨d2U ⟩2)O(m · ⟨d2U ⟩2).

Space complexity. BatchTripletJoin utilizes three global stor-
age containers - one for storing the graph, one for the container
counts (line 2), and one for the container S (line 3) - and one local
container H (line 9). Storing the graph requires O(m) space and
counts uses O(|U |) space to store |U | values. S stores the size of
the non-empty intersections of the neighbor lists of node pairs in
U for which the space complexity is O(|U | · ⟨d2U ⟩). Note that in
real-world networks, this is significantly smaller than the number
of wedges, as we also show numerically in Section 7. The local
container H stores edges and thus takesO(p ·m) space. In total, the
space complexity of BatchTripletJoin is O(|U | · ⟨d2U ⟩).

7 EXPERIMENTS

In this section, we evaluate our algorithms in Section 6 as well as
the adaptations in Section 5 on real-world datasets from Konect [21]
and ICON [3]. For brevity, we use NJ (NodeJoin),WJ (WedgeJoin),
TJ (TripletJoin), and BTJ (BatchTripletJoin). Table 1 gives broad
statistics of the datasets.

DBLP is the graph of authors and their papers [24]. Github con-
nects users with their projects [9]. IMDB contains actors and the
movies they played in [1]. Kindle is the network of books and the
users who rated those books [18]. Twitter contains Twitter users
and the tags they mentioned in their tweets [12]. Movielens is a
network of users and the movies they rate [17]. Reuters contains
story-word inclusions in Reuters news [23]. LiveJournal is the
network of users and their group memberships [26].

We give the statistics of our real-world datasets after Preprocess-
ing and the computed time complexities of our algorithms in Table
Net. |U | |V | m ⟨WU ⟩ ⟨d2U ⟩ NJ WJ TJ
DB 644K 1.92M 5.89M 12.5 5.67 4.67 x 109 2.07 x 109 1.90 x 108
GI 22.9K 34.3K 335K 1,423 813 6.83 x 109 6.80 x 1010 2.21 x 1011
IM 350K 497K 4.80M 347 282 8.41 x 1010 2.20 x 1011 3.81 x 1011
KI 198K 370K 2.01M 231 201 6.20 x 109 2.58 x 1010 8.14 x 1010
TW 129K 138K 1.46M 161 117 2.07 x 1010 2.80 x 1010 1.99 x 1010
ML 10.6K 69.9K 10.0M 222,291 4,589 1.83 x 1017 3.01 x 1017 2.11 x 1014
RE 169K 781K 60.5M 20,920 899 4.65 x 1016 3.51 x 1016 4.88 x 1013
LJ 2.19M 2.98M 107M 1,983 581 3.28 x 1014 3.71 x 1014 3.61 x 1013

Table 2: Statistics of the networks after Preprocessing. For Node-

Join (O (m · ⟨dU ⟩2 · ⟨dV ⟩2)),WedgeJoin (O (m · ⟨dV ⟩ · ⟨WU ⟩ · ⟨dU ⟩)),
and TripletJoin (O (m · ⟨d2U ⟩2)), we give the numerical values for

their time complexities and highlight the best in bold. Note that

BatchTripletJoin has the same time complexity as TripletJoin.
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Table 3: Runtime (in seconds) when using 1 and 52 threads.

"−" denotes >24 hours. RS denotes the relative speedup of

BatchTripletJoin over the second best algorithm on 52 threads.

1 thread 52 threads
Net. NJ WJ TJ BTJ NJ WJ TJ BTJ RS

DB 15.5 8.87 7.78 4.88 3.00 2.30 2.72 1.65 1.39
GI 2,818 1,989 1,976 421 78.6 52.3 58.9 9.75 5.37
KI 1,167 782 795 224 31.9 21.0 41.2 6.30 3.34
IM 5,138 2,913 2,027 689 144 77.1 75.4 18.7 4.04
TW 1,615 524 226 81.7 43.6 13.7 9.82 2.47 3.98
ML − − − 43,850 − − 4,991 890 5.61
RE − − − 85,229 − − 12,822 1,890 6.78
LJ − − − − − − 30,035 4,682 6.42

2. TripletJoin (BatchTripletJoin) has the best time complexity
for five of eight datasets.

All experiments are performed on a Linux operating system run-
ning on a machine with Intel Xeon Gold processor at 2.1 GHz and
1125GB DDR4 memory. The processor contains 4 sockets with
each having 13 cores for a total of 52 cores. We implemented
our algorithms in C++ with Intel TBB 2020.2 [29] and OpenMP
4.5 [10] and compiled using GCC 10.2.0 at the -O3 level. Our
implementation of all the algorithms is available at https:

//tinyurl.com/par6cycle-code.We terminated the computation
if it took more than 24 hours to finish, denoted by “-” in the results.
We also denote the computations that go out of memory by “OOM”.

We first consider the strong scaling performance of our algo-
rithms in Section 7.1. Then, we analyze the weak scaling behavior
in Section 7.2. Next, we look at the memory usage in Section 7.3.
Lastly, we examine the impact of Preprocessing and how different
choices translate to improvements in runtime in Section 7.4.

7.1 Strong Scaling Experiments

Here we provide the strong scaling experiments for all algorithms.
Table 3 shows our runtime experiments on real-world networks us-
ing 1 and 52 threads.We also show the speedup of BatchTripletJoin
compared to the second best algorithm in terms of runtime on 52
threads. NodeJoin and WedgeJoin are not able to finish computa-
tion even with 52 threads on the three largest networks: Movielens,
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Figure 4: Speedup of BatchTripletJoin for strong scaling experi-

ments on 2, 4, 8, 16, 32, and 52 threads when compared to a single

thread. We also show the ideal speedup as a dotted line.

Reuters, and LiveJournal. The runtimes for WedgeJoin are typ-
ically better than NodeJoin as suggested by the numerical calcu-
lation of time complexities in Table 2. For TripletJoin, the three
largest networks timed out on a single thread but was completed on
52 threads. BatchTripletJoin has the best sequential and parallel
runtimes. The only configuration where it could not finish the com-
putation in 24 hours is the sequential run on LiveJournal. On the
largest networkwith 112M edges (LiveJournal),BatchTripletJoin
is able to finish the computation in 78 mins by using 52 threads. It
is 6.4× faster than the next best algorithm, TripletJoin.

In Figure 4, we plot the speedup of BatchTripletJoin on 2, 4, 8,
16, 32, and 52 threads. To show the speedup on LiveJournal, we
ran BatchTripletJoin until completion, which took approximately
47.4 hours with a single thread. Comparing 52 threads to a single
thread, there is approximately a 3x speedup for DBLP, 33x speedup
for Twitter, 36x speedup for Kindle, IMDB, and LiveJournal, 44x
speedup for Github and Reuters, and a 49x speedup for Movielens.
DBLP, the network with the smallest induced 6-cycle count, does
not scale after 8 threads. The larger networks, such as Movielens,
Reuters, and LiveJournal, do not have a significant decline in scal-
ability when using 52 threads, suggesting that they would continue
scaling for even larger number of threads. Github, Movielens, and
Reuters achieved the highest speedup due to their large induced
6-cycle counts in relation to graph size (Table 1), indicating a dense
induced 6-cycle structure. With the speedup numbers consistently
over 32x on 52 threads for the networks with the largest induced
6-cycle counts, BatchTripletJoin exhibits strong scalability.
7.2 Weak Scaling Experiments

Here we provide the weak scaling experiments for all algorithms.
For weak scaling, we consider x duplicates of the original net-
work when running on x number of threads. Runtime results on
52 threads for Github, Kindle, IMDB, Twitter, and Movielens are
shown in Table 4. All the algorithms timed out in 24 hours for
Reuters and LiveJournal on 52 threads. Also, DBLP achieved poor
weak scaling results since Preprocessing accounts for over 90%
of the time spent (more details in Table 6). BatchTripletJoin is
the only algorithm that could compute the duplicated Movielens
network, which has 520M edges, in under 24 hours (13.2 hours).
WedgeJoin was unable to process the weak scaling experiments
on 52 threads for Kindle, IMDB, and Movielens due to prohibi-
tive space complexity. BatchTripletJoin outperforms the other
algorithms significantly in terms of runtime.

We plotted the weak scaling behavior of BatchTripletJoin on
2, 4, 8, 16, 32, and 52 threads in Figure 5. We computed the ratio of
runtime using x threads on the duplicated network to the sequential
runtime on the original network. BatchTripletJoin performs best
on the networks with the highest proportion of induced 6-cycles
to graph size, Github and Movielens. Having approximately 60%

Alg. GI* KI* IM* TW* ML*
NJ 4,152 1,695 7,534 2,429 −

WJ 2,845 OOM OOM 850 OOM
TJ 3,264 2,352 3,529 573 −

BTJ 512 357 1,084 129 47,530
Table 4: Runtime (in seconds) of our algorithms on 52 duplicates

of the original dataset using 52 threads. "−" denotes >24 hours and

"OOM" means the computation run out of memory.

https://tinyurl.com/par6cycle-code
https://tinyurl.com/par6cycle-code
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Figure 5: Efficiency of BatchTripletJoin for weak scaling experi-

ments on 2, 4, 8, 16, 32, and 52 threads when compared to a single

thread. We also show the ideal efficiency (= 1.0) as a dotted line.

efficiency or better even when the graph is 52 times the size of the
original, BatchTripletJoin can be considered to be scalable in
terms of weak scaling although there is room for improvement.
Table 5: Memory used (in gigabytes). "−" indicates that the experi-

ment timed out after 24 hours.

Alg. DB GI KI IM TW ML RE LJ

NJ 0.54 1.54 0.69 1.52 0.56 - - -
WJ 0.70 0.67 1.10 2.68 0.51 - - -
TJ 0.71 1.64 3.47 8.53 1.39 17.1 32.6 125
BTJ 1.64 0.45 1.15 2.36 0.65 3.44 14.1 36.7

7.3 Memory Experiments

Here we give the memory usage results. We used the system activity
reporter utility (SAR) and run it in the background during the
computation. We measure the amount of used space in our machine
every second and report the maximum amount used in Table 5.
Unlike the other algorithms, NodeJoin does not use any global
storage across parallel threads, and thus typically requires the least
memory. BatchTripletJoin has a significantly smaller memory
footprint than TripletJoin thanks to globally storing the sizes of
set intersections instead of the entire set. This is also in line with
the space complexities of the algorithms.

7.4 Analyzing the Preprocessing

We analyze the impact of the various techniques used in Prepro-
cessing for the best performing algorithm BatchTripletJoin. As
seen in Table 2, which lists the size and statistics of the graphs after
preprocessing, there is a significant reduction in graph sizes which
directly impacts the runtime of the algorithms.

We first look at how much time Preprocessing takes. Table
6 shows the proportion of runtime spent on Preprocessing for
BatchTripletJoin on 52 threads. For DBLP, the dataset with the
smallest number of induced 6-cycles, the majority of the time was
spent on Preprocessing. Note that DBLP is the second largest net-
work in terms of node count and has the third highest number of
edges, so applying Preprocessing on the nodes and edges takes a
significant amount of time compared to traversing the relatively
small number of induced 6-cycles. This is the opposite for all the
other networks - Preprocessing takes minimal time compared
to the rest of the computation. It is even negligible for the three

Table 6: Fraction of runtime spent on Preprocessing for

BatchTripletJoin on 52 threads.

DB GI KI IM TW ML RE LJ

0.918 0.003 0.055 0.021 0.058 <0.001 0.001 0.002

Table 7: Ablation study for the three techniques in Preprocessing.

Runtime results (in seconds) for BatchTripletJoin on 52 threads

(best in bold). "−" denotes >24 hours.

Omission DB GI KI IM TW ML RE LJ

None 1.65 9.75 6.30 18.7 2.47 890 1,890 4,682

2-Core 2.39 10.9 8.11 18.6 1,809 943 2,059 −

Node Set Swaps 10.8 10.1 22.9 6.67 1,630 − − −

Node Reordering 1.50 11.7 8.04 20.6 3.86 967 5,189 50,109
largest networks - Movielens, Reuters, and LiveJournal. Pre-
processing is the most useful when there is a significant number
of induced 6-cycles in the graph, which is true for most networks
in our dataset. Handling the networks with low induced 6-cycle
density remains a challenge, as exemplified by DBLP.

Next, we perform an ablation study for the three techniques in
Preprocessing. Table 7 shows the runtime on 52 threads when a
section of Preprocessing is skipped. Applying all the techniques
(denoted by “None”) achieves the best result for six of the eight
networks, including the three largest (Movielens, Reuters, and
LiveJournal). With larger networks, the runtime savings from
each Preprocessing section is more significant, in particular 2-
core filtering and swapping node sets provide drastic gains.

Lastly, we check the impact of different node ranking choices.
In line 3 of Preprocessing, we perform increasing wedge ordering
on U . To test its performance compared to other ordering schemes,
we conduct experiments using degree, degeneracy, and wedge or-
derings. Degree ordering ranks the nodes based on their degrees.
Degeneracy ordering is an ordering of vertices given by repeatedly
finding and removing vertices of smallest degree, also known as
ordering by core numbers. Wedge ordering uses the number of
2-paths from each node. Table 8 shows the runtime with 52 threads
on the decreasing and increasing versions of each of those ordering
schemes. We have also included the runtime when no ordering is
implemented, denoted as “None”, to measure the impact of node
ordering on speed. The increasing versions of each ordering scheme
typically outperform the decreasing versions. In the increasing ver-
sions, the amount of work (i.e., number of induced 6-cycles) is more
evenly distributed across parallel threads, preventing the runtime of
one thread to dominate over the others. For example, in increasing
degree ordering, the highest degree node is likely to participate in

Degree Degeneracy Wedge
Net. None Dec Inc Dec Inc Dec Inc
DB 1.50 1.64 1.65 2.91 2.60 1.63 1.65
GI 11.7 10.9 10.7 10.7 10.9 10.5 9.75

KI 8.04 7.77 6.87 8.18 7.33 7.66 6.30

IM 20.6 21.0 18.8 22.6 20.5 21.0 18.7

TW 3.86 7.30 2.58 5.29 4.40 7.33 2.47

ML 967 909 932 968 989 879 890
RE 5,189 16,406 2,644 3,231 3,097 12,219 1,890

LJ 50,109 − 5,085 23,572 17,074 − 4,682

Table 8: Runtime (in seconds) for different orderings for

BatchTripletJoin on 52 threads (best in bold). We show the

decreasing and increasing variants for each. "−" denotes >24 hours.
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more induced 6-cycles compared to a lower degree node. Since we
process induced 6-cycles based on the node with minimum id and
higher degree nodes are assigned a higher id, we process a lower
proportion of induced 6-cycles for higher degree nodes in their
parallel threads (and vice versa). Comparing individual ordering
schemes, increasing wedge ordering outperforms the other order-
ing schemes in six of eight networks, including the two largest
networks (Reuters and LiveJournal), which is why we consider
it as the default ordering in Preprocessing.

8 CONCLUSION AND FUTUREWORK

We introduced efficient and scalable parallel algorithms to count
induced 6-cycles in bipartite networks. To the best of our knowl-
edge, this is the first inquiry in induced 6-cycle counting. Experi-
ments on real-world bipartite networks show that our best algo-
rithm, BatchTripletJoin, is highly parallelizable in relation to the
number of processors and enables practical computation for large
networks with up to half a billion edges; on the 52 times scaled
Movielens network with a total of 520M edges, BatchTripletJoin
finishes the computation in 13.2 hours by using 52 threads.

Although BatchTripletJoin exhibits strong performance, it is
unable to compute some large networks in under 24 hours with
52 threads, such as the 52 times scaled Reuters and LiveJournal
networks (3B-5B edges). It also shows poor scalability when the
network has relatively few induced 6-cycles, as in the DBLP network.
As a future work, we will investigate scaling our algorithm to
larger networks with billions of edges. We will also extend our
methods to handle the networks with low induced 6-cycle counts.
One interesting question in this context is how quickly one can
terminate the computation if the graph has no induced 6-cycles.
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