
J. Parallel Distrib. Comput. 76 (2015) 106–119
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Regularizing graph centrality computations
Ahmet Erdem Sarıyüce a,b,∗, Erik Saule d, Kamer Kaya a, Ümit V. Çatalyürek a,c

a Department of Biomedical Informatics, The Ohio State University, United States
b Department of Computer Science and Engineering, The Ohio State University, United States
c Department of Electrical and Computer Engineering, The Ohio State University, United States
d Department of Computer Science, University of North Carolina at Charlotte, United States

h i g h l i g h t s

• We propose parallel algorithms to compute centrality on accelerators.
• We apply multiple breadth-first search operations simultaneously.
• Vectorization is applied to make the closeness computation faster.
• All the algorithms and techniques are experimentally validated.
• We get better performance than the best existing centrality computation solutions.

a r t i c l e i n f o

Article history:
Received 27 March 2014
Received in revised form
27 July 2014
Accepted 29 July 2014
Available online 7 August 2014

Keywords:
Betweenness centrality
Closeness centrality
BFS
CPU
GPU
Intel Xeon Phi
Vectorization

a b s t r a c t

Centralitymetrics such as betweenness and closeness have been used to identify important nodes in a net-
work. However, it takes days to months on a high-end workstation to compute the centrality of today’s
networks. Themain reasons are the size and the irregular structure of these networks.While today’s com-
puting units excel at processing dense and regular data, their performance is questionable when the data
is sparse. In this work, we show how centrality computations can be regularized to reach higher perfor-
mance. For betweenness centrality, we deviate from the traditional fine-grain approach by allowing aGPU
to execute multiple BFSs at the same time. Furthermore, we exploit hardware and software vectorization
to compute closeness centrality values on CPUs, GPUs and Intel Xeon Phi. Experiments show that only by
reengineering the algorithms andwithout using additional hardware, the proposed techniques can speed
up the centrality computations significantly: an improvement of a factor 5.9 on CPU architectures, 70.4
on GPU architectures and 21.0 on Intel Xeon Phi.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The centrality metrics play an important role in network and
graph analysis since they are related with several concepts such
as reachability, importance, influence, and power [31,12,18,23,29].
Betweenness and closeness (BC and CC) are two such metrics.
However, the complexity of the best algorithms to compute them
is unbearable for today’s large-scale networks: for unweightednet-
works, it is O(nm) where n is the number of vertices and m is the
number of edges in the corresponding graph [5]. For weighted net-
works, the complexity is more, O(nm + n2 log n). Although this

∗ Correspondence to: 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH
43210, United States.

E-mail addresses: sariyuce.1@osu.edu (A.E. Sarıyüce), esaule@uncc.edu
(E. Saule), kamer@bmi.osu.edu (K. Kaya), umit@bmi.osu.edu (Ü.V. Çatalyürek).

http://dx.doi.org/10.1016/j.jpdc.2014.07.006
0743-7315/© 2014 Elsevier Inc. All rights reserved.
already makes the problem hard even for medium-scale graphs,
considering million- and even billion-scale ones, it is clear that we
need efficient high performance computing (HPC) techniques.

There are several GPU-based algorithms and parallelization
techniques for computing betweenness [11,24,29,22] and close-
ness [11,29] centrality. However, as we will show in this paper,
since these techniques process only a single graph traversal at a
time and employ pure fine-grain parallelism, they cannot fully uti-
lize the GPU and reach the device’s peak performance. In addi-
tion to these studies, parallel breadth-first search (BFS), which is
the main building block to compute closeness centrality values,
has been widely studied on shared-memory systems such as GPUs
[10,15,19] and Intel Xeon Phi [27]. Since these works focus on the
parallelization of a single BFS, their natural extension to CC will
yield the iterative execution of a fine-grain parallel CC kernel re-
sponsible from a single graph traversal. In this work, we propose

http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.07.006&domain=pdf
mailto:sariyuce.1@osu.edu
mailto:esaule@uncc.edu
mailto:kamer@bmi.osu.edu
mailto:umit@bmi.osu.edu
http://dx.doi.org/10.1016/j.jpdc.2014.07.006

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 107
novel and efficient algorithms and techniques to compute be-
tweenness centrality on GPU and closeness centrality on GPU and
Intel Xeon Phi. Althoughwe agree that fine-grain parallelism is still
necessary due to thememory restriction of the cutting-edgemany-
core architectures at hand, we leverage the potential of the hard-
ware by enabling a hybrid coarse/fine-grain parallelism technique
that executes multiple simultaneous BFSs.

Althoughmany of the existing techniques leverage parallel pro-
cessing, one of the most common parallelism available in almost
all of today’s recent processors, namely instruction parallelism via
vectorization, is often overlooked due to nature of the sparse graph
kernels. Graph computations are notorious for having irregular
memory access pattern, and hence for many kernels that require
a single graph traversal, the available vectorization support, which
is a great arsenal to increase the performance, is usually considered
not very effective. It can still be used, for a small benefit, at the ex-
pense of some preprocessing that involves partitioning, ordering
and/or use of alternative data structures. To exploit its full poten-
tial and enable it for simultaneous graph traversal approach, we
provide an ad-hoc CC formulation based on bitwise operations and
propose hardware and software vectorization for that formulation
on cutting-edge hardware. Our approach for closeness centrality
serves as an example to show how vectorization can be utilized for
graph kernels that require multiple BFS traversals. As a result, we
experimentally show that compared to the existing solutions, the
proposed techniques can be significantly faster while computing
exact betweenness and closeness centrality values, on the same
device, i.e., without using an additional hardware resource. Fur-
thermore, the proposed techniques can also be used to compute
approximate BC and CC values for which the graph traversals are
only initiated from a subset of vertices.

The rest of the paper is organized as follows: Section 2 presents
the background information including the notation we used in the
paper, basic sequential algorithms, and a summary of the exist-
ing parallelization approaches including accelerator-based algo-
rithms for betweenness and closeness centrality. The proposed
parallelization algorithms and techniques are explained in Sec-
tion 3 and their performance is evaluated in Section 4. Section 5
concludes the paper.

2. Notation and background

Let G = (V , E) be a simple undirected, unweighted graphmod-
eling a network where each node is represented by a vertex in V ,
and an interaction between two nodes is represented by a single
edge in E. Let n be the number of vertices, m be the number of
edges, and adj(v) be the set of vertices interacting with v.

A path is a sequence of vertices such that there exists an edge be-
tween consecutive vertices. If there is a path from u ∈ V to v ∈ V ,
and hence from v to u, we say that u and v are connected. The short-
est path distance between these vertices is denoted by dst(u, v). If
u = v then dst(u, v) = 0. The graphG is connected if all vertex pairs
are connected. Otherwise,G is disconnected. A graphG′ = (V ′, E ′) is
a subgraph ofG if V ′ ⊆ V and E ′ ⊆ E. Eachmaximal connected sub-
graph of G is a connected component, or simply a component, of G.

2.1. Betweenness centrality

Let G = (V , E) be a connected graph. Let σst be the number of
shortest paths from a source s ∈ V to a target t ∈ V , and σst(v)
be the number of such s-t paths passing through a vertex v ∈ V ,
v ≠ s, t . Let δst(v) = σst (v)

σst
, the fraction of the shortest s-t paths

passing through v among all shortest s-t paths. The betweenness
centrality of v is defined by

bcent[v] =

s≠v≠t∈V

δst(v). (1)
To compute bcent[v] for all v ∈ V , Brandes proposed an al-
gorithm that is based on the accumulation of pair dependencies
over target vertices [5]. After accumulation, the dependency of v
to s ∈ V is

δs(v) =

t∈V

δst(v). (2)

Let preds(u) be the set of u’s predecessors on the shortest paths
from s to all vertices in V . That is,

preds(u) = {v ∈ V : (v, u) ∈ E, dst(s, u) = dst(s, v)+ 1}.

Hence, preds defines the shortest path graph rooted in s. Brandes
observed that the accumulated dependency values can be com-
puted recursively:

δs(v) =

u:v∈preds(u)

σsv

σsu
× (1+ δs(u)) . (3)

Brandes’ algorithm, which is given in Algorithm 1, computes
δs(v) for all v ∈ V \ {s} by using a two-phase approach: First, a
breadth first search (BFS) is initiated from s to compute σsv and
preds(v) for each v: in this forward phase, the algorithm computes
σ [v] for v ∈ V which is the number of shortest paths from the
source vertex s to v. In addition, the predecessors of v on these
shortest paths are stored in pred[v]. Then, in a backward phase,
δs(v) is computed for all v ∈ V in a bottom-upmanner by using (3).

For undirected graphs, each phase of Algorithm 1 processes all
the edges at most once, taking O(m + n) time. The phases are
repeated for each source vertex. The overall complexity of SeqBC is
O(mn). Currently, it is asymptotically the fastest known sequential
algorithm to compute BC.

Algorithm 1: SeqBC(G = (V , E))
1 for all v ∈ V do
2 bcent[v] ← 0
3 for each s ∈ V do
4 stack← ∅, queue← ∅
5 queue.push(s), dst[s] ← 0, σ [s] ← 1
6 for all v ∈ V \ {s} do
7 dst[v] ← ∞, pred[v] ← ∅, σ [v] ← 0

◃Forward Phase
8 while queue is not empty do
9 v← queue.pop(), stack.push(v)

10 for all w ∈ adj(v) do
11 if dst[w] < 0 then
12 dst[w] ← dst[v] + 1
13 queue.push(w)
14 if dst[w] = dst[v] + 1 then
15 σ [w] ← σ [w] + σ [v]
16 pred[w].push(v)

◃Backward Phase
17 for all v ∈ V do
18 δ[v] ← 0
19 while stack is not empty do
20 w← stack.pop()
21 for v ∈ pred[w] do
22 δ[v] ← δ[v] + σ [v]

σ [w]
(1+ δ[w])

23 if w ≠ s then
24 bcent[w] ← bcent[w] + δ[w]

25 return bcent

108 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
2.2. Closeness centrality

Given a graph G, the closeness centrality of u can be defined as

ccent[u] =

v∈V :

dstG(u,v)≠∞

1
dstG(u, v)

. (4)

If u cannot reach any vertex in the graph ccent[u] = 0. Please
note that, in the literature, an alternative of this formulation
exists where summation is in the denominator (instead of in front
of the fraction). The proposed techniques would work for both
formulation. But for the sake of simplicity, we use the one above.
Nevertheless, both require the shortest path distances between all
vertex pairs.

Algorithm 2: SeqCC(G = (V , E))

1 for each u ∈ V do
2 ccent[u] ← 0
3 for each s ∈ V do
4 queue← ∅
5 for all v ∈ V \ {s} do
6 dst[v] ← ∞

7 queue.push(s), dst[s] ← 0
8 while queue is not empty do
9 v← queue.pop()

10 for all w ∈ adj(v) do
11 if dst[w] = ∞ then
12 dst[w] ← dst[v] + 1
13 queue.push(w)
14 ccent[s] ← ccent[s] + 1

dst[w]

15 return ccent

Algorithm 2, SeqCC, computes the closeness centrality values
in G. For each vertex s ∈ V , the algorithm initiates a breadth-first
search (BFS) from s, computes the distances to the other vertices,
and accumulates to ccent[s]. (Notice that, for undirected graphs,
as the ones discussed here, one could also accumulate to ccent[w]
instead of ccent[s], since dstG(s, w) = dstG(w, s).) Since a BFS
takes O(m + n) time, and n BFSs are required in total, the com-
plexity follows.

SeqCC visits the vertices in a top-down manner, i.e., the ver-
tices with distance ℓ are processed to visit distance ℓ+ 1 vertices.
Another way to do the same is processing the adjacency lists of
the unvisited vertices and set their distance to ℓ + 1 if they have
a neighbor at level ℓ. This bottom-up variant is clearly expensive
at first but it can be much cheaper for large ℓ values since there
are much less unvisited vertices remaining. Beamer et al. used this
observation to obtain a significantly faster direction-optimized BFS
implementation by using the cheaper version at each BFS level [3].
In this work, we do the same within the CPU closeness centrality
implementation that we use as one of the baselines in our experi-
ments.

2.3. Parallelism for network centrality

The centrality computations can be parallelized in two ways:
coarse- and fine-grain. In coarse-grain parallelism, the BFSs are
shared among the threads, i.e., a shortest-path graph is constructed
by a single thread. Hence, the threads need to work with separate
memory regions in SeqCC and SeqBC, e.g., σ , δ, pred, queue, stack,
and d. In fine-grain parallelism, a BFS is concurrently executed by
multiple threads. Ligra [30] and SNAP [2] are two state-of-the-art
shared-memory graph processing frameworks, both make use of
fine-grain parallelism for BC computation and will serve as base-
line for our BC parallelization techniques. In fine-grain parallelism,
although the memory footprint is less, compared to the coarse-
grain parallelism, concurrency can bring a significant overhead due
to the necessity of (relatively) expensive tools such as atomic oper-
ations and conflict resolution. That being said, for devices with re-
strictedmemory and large potential for concurrent execution, such
as GPUs, a fine-grain parallelism is usually necessary.

There are existing studies on computing closeness and be-
tweenness centrality using GPUs; Shi and Zhang developed a
software package to do biological network analysis [29]. Later,
various parallelism techniques on GPUs for BC and CC compu-
tations are experimented by Jia et al. [11]. Concurrently, Pande
and Bader studied computing BC of small-world networks on a
GPU [22]. Recently, Sarıyüce et al. used a modified graph stor-
age scheme to obtain better speedups compared to existing solu-
tions [24]. Apart from the centrality computation, Merrill et al. [19]
propose different fine-grain parallelization techniques for BFS
computation,which is a building block for BC andCC computations,
and prove to be the fastest solution on GPU architectures. All these
studies employ a pure fine-grain parallelism and level-synchronized
BFSs. That is, while traversing the graph, the algorithms initiate a
GPU kernel for each level ℓ to visit the vertices/edges on that level
and find the vertices on level ℓ + 1. One interesting work which
combines fine-grain and coarse-grain parallelism is [20]. Although
we use the same combination, in [20], a queue-based implemen-
tation is employed and hence the number of simultaneous BFSs is
limited due to the contention in the queue. Ourwork alleviates this
problem by not employing a queue.

Another recent work on betweenness centrality computation
investigates the edge and node parallelism on dynamic between-
ness centrality computation [17]. In a preliminary version of this
paper, we introduced vectorization support for efficient closeness
centrality computation [25]. Other than that, to the best of our
knowledge, there is no prior work on computing centrality using
hardware and/or software vectorization.

In an earlier work, we had presented an early evaluation of the
scalability of several variants of BFS algorithmon Intel Xeon Phi co-
processor using a pre-production card in which we had presented
a re-engineered shared queue data structure for many-core archi-
tectures [27]. In another study, we had also investigated the per-
formance of SpMV on Intel Xeon Phi coprocessor architecture, and
show that memory latency, not memory bandwidth, creates a bot-
tleneck for SpMV on Intel Xeon Phi [28].

A similar problem to centrality computation is all-pairs short-
est path computation. There are several studies on GPU-based par-
allelization of this problem [13,16,21]. A shared memory cache
efficient GPU implementation to solve transitive closure and the
all-pairs shortest-path problem on directed graphs for large
datasets is proposed in [13]. Their solution is able to handle graph
sizes that are larger than the DRAM memory of available on the
GPU. Matsumoto et al. [16] proposed a blocked algorithm for all-
pairs shortest path problem to be used in a hybrid CPU–GPU sys-
tem where the communication between CPU and GPU is mini-
mized. In [21], authors present an algorithm to accelerate the all-
pairs shortest path computation onGPUs by solvingmultiple single
source shortest path problems at a time, allowing to efficiently ac-
cess graph data by sharing the data between processing elements
in the GPU. In our work, we focus on faster GPU parallelization of
betweenness and closeness centrality computation on unweighted
graph which have more regularity than the all-pairs shortest path
computation allowing finer synchronization and optimization.

2.3.1. Graph storage schemes and parallelization

Many sparse matrix and graph algorithms such as sparse
matrix–vector multiplication (SpMV) and BFS are known to be

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 109
(a)

(b)

Fig. 1. (a) Vertex-, edge-, and virtual-vertex-based parallelization for centrality
computation and the distribution of work to GPU threads which are shown with
different colors. ∆ = 3 for virtual-vertex-based parallelization. (b) The graph
structure with virtual vertices.

memory bound. Hence, the speedup one can achieve with a GPU
significantly depends on to the irregularities in the graph such as
the connectivity pattern and degree distribution which can signifi-
cantly damage load balancing andmemory coalescing. Thus, itmay
be beneficial to store the graph in the most suitable format that
yields a better regularization of computation and memory usage,
hence a better performance.

There are three parallelization techniques that have been
used and experimented for closeness and betweenness centrality
computations; vertex-based [11,29], edge-based [11], and virtual-
vertex-based [24]. The difference between these techniques is
the granularity of the parallelism which impacts both load
balancing and the need for synchronization. One of the common
storage format for graphs is compressed adjacency list, where
the adjacency lists of the vertices are stored consecutively with a
secondary pointer array that keeps the start/end pointers which
require (m+n+1) values in total. Another commonly used format
stores the endpoints of each edge individually, hence 2m values are
required. To ease the memory accesses, vertex-based parallelism
uses the former and each thread processes an adjacency list at
each kernel execution throughout a level-synchronized BFS. On the
other hand, the edge-based parallelism uses the latter and each
thread processes only a single edge.

As Jia et al. shows, the vertex-based parallelism on GPU suf-
fers from load balancing especially for the graphs with skewed
degree distributions [11]. On the other hand, the edge-based par-
allelism usesmorememory andmore atomic operations. For some
irregular/graph applications with skewed work distributions, hy-
brid execution schemes, that splits the work required by each task
(vertices in graph context), have been used in many application
domains. Çatalyürek and Aykanat [8] proposed one of the first
methods that directly optimizes such decomposition for irregular
computations. In the graph analysis context, Yoo et al. [33] uses a
similar approach to partition the edges of vertices to scale BFS com-
putations on BlueGene/L. PowerGraph [9] also uses similar vertex
splitting idea (called vertex-cut in their system) to reduce commu-
nication in their framework. In our earlier work on centrality com-
putation in GPU [24], we proposed a simpler degree-based vertex
splitting method called virtual-vertex-based parallelism.

Simply speaking, virtual-vertex-based parallelism replaces a
problematic, high-degree vertex u with n∆(u) = ⌈adj(u)/∆⌉ vir-
tual vertices each having at most ∆ edges. That is n∆(u) threads
are responsible from processing the edges of a vertex u; and these
threads have the same amount of work which improves the load
balance. Fig. 1 summarizes how the threads process the edges in
vertex-, edge-, and virtual-vertex-based parallelization for central-
ity computation. In the figure, different threads are shown with
different colors and ∆ = 3 is used. One can see that the load
is imbalanced when vertex-based parallelism is used. The load is
balanced using edge-based parallelism but the granularity of the
computation is very fine which increases the synchronization cost
(number of atomic operations). Using virtual vertices, each thread
has a more balanced amount of work and overall less synchroniza-
tion (atomic operations) are required. More details are available
in [24].

For betweenness centrality, we use virtual-vertex parallelism
on GPU since it performed better than the other techniques in our
preliminary experiments [24]. We will use n∆ for the number of
virtual vertices and adj∆(u∗) to denote the adjacency list of the
arbitrary virtual vertexu∗ for an original vertexu inG. For closeness
centrality, where we use hardware/software vectorization, we
will use the compressed adjacency list format and vertex-based
parallelism, since with vectorization multiple simultaneous BFSs,
the load balancing problem is resolved almost automatically as we
will describe later.

3. Faster network centrality

Surprisingly, all the existing algorithms proposed for between-
ness and closeness centrality prefer a pure fine-grain parallelism
that employs an iterative execution of a kernel responsible from a
single parallel graph traversal. This approach makes sense for ac-
celerators, since they arememory restricted especially considering
the size of today’s large scale networks. Hence, a coarse-grain ap-
proach inwhich each thread executes a single BFS is unfeasible, and
fine-grain BFSs are almost necessary for the device. Yet, an imme-
diate question still needs to be answered: why only one fine-grain
BFS at a time? We believe that there is no valid answer. Further-
more, as we will show, doing otherwise can significantly enhance
the BC and CC performancewithout using any additional hardware
resource or one with different characteristics.

3.1. A more regular and denser betweenness centrality kernel on GPU

For GPU-based BC,we propose a novel parallelization technique
which employs simultaneous BFSs where each thread is respon-
sible for processing a (virtual) vertex in a single BFS. On a GPU,
there are several ways to do that including manually partitioning
the threads for the BFSs or using concurrent streams. In this work,
we use interleaved BFSs to achieve a bettermemory access pattern.

As stated above, all the existing studies that focus on parallel
centrality computations employ level-synchronized BFSs: the ℓth
kernel execution is responsible from the ℓth level of the BFS, visits
the vertices on it, and processes the corresponding adjacency lists
to find the vertices in the ℓ + 1th level to update their distance
information. Note that there are at most L such kernel executions
where L is the diameter of the shortest path graph, i.e., the longest
distance from the BFS source to a vertex in G. However, the
adjacency list of a specific (virtual) vertex uwill be processed only
in one of these L kernel executions. For the other L− 1 executions,
the thread responsible for vertex u (u∗) in that BFS may be forced
to wait for another thread in the same warp.

Algorithm 3 shows the baseline GPU implementation for the
forward phase of Brandes’ betweenness centrality algorithm that
starts from level ℓ = 1 and ends at ℓ = L when no new vertex is
visited in the previous kernel execution (the backward phase starts
with level ℓ = L and stops at ℓ = 1, and has a similar structure). As
described above, this baseline may not utilize the warps efficiently
especially for the networks with a large diameter. In fact, the
virtual-vertex parallelism solves this problem up to some level
when the degrees in the network are considerably larger than

110 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
(a) (b)

Fig. 2. A toy example given to show the uncoalesced and coalesced memory access patterns of the virtual-vertex-based scheme (left) and the proposed approach (right)
respectively. On the left, three memory transactions are required whereas on the right a single transaction is sufficient (assuming the virtual vertex u1 is on the same level
in all the BFSs).
Algorithm 3: VirBC (G = (V , E))
1 · · ·

2 ℓ← 0
◃Forward phase

3 visited←true
4 while visited =true do
5 visited← false

◃Forward-step kernel
6 for each thread t in parallel do
7 if t ≤ n∆ then
8 u∗ ← t ◃virtual vertex
9 u← the vertex in G corresponding to u∗

10 if dst[u] = ℓ then
11 for each v ∈ adj∆(u∗) do
12 if dst[v] = ∞ then
13 dst[v] ← ℓ+ 1, visited← true

14 if dst[v] = ℓ+ 1 then
15 σ [v]←σ [v] + σ [u] ◃atomic

16 ℓ← ℓ+ 1
17 · · ·

◃Backward phase
18 · · ·

∆, where ∆ is the maximum number of edges a vertex can be
connected. In this case, the consecutive threads will be responsible
for the virtual vertices u∗ each having ∆ edges and coming from
the same origin vertex u. Hence, the threads responsible from
these virtual vertices will perform essentially the same amount
of operation at the same time independently from the BFS source.
Since there is less thread divergence, the warps, so the device, will
be utilized more effectively.

Using virtual vertices is not a ‘‘be all and end all’’ solution
to accelerate BC on a GPU. As we will show in the experiments,
the performance it yields is not close the peak performance of
the device for many cases. There are several reasons for this low
performance: first, when the average degree in the network is low,
whichmay be the case formany sparse networks, its impact on the
execution scheme is minimal and considering its overhead, it can
be even negative. Furthermore, virtual-vertex-based parallelism
does not regularize the uncoalesced memory access pattern which
is usually the most important problem of the memory-bounded
GPU-based algorithms on sparse matrices, graphs, and networks.

In a GPU, the threads in half-warps coordinate global memory
accesses into a single transaction. If these accesses are uncoalesced
(coalesced to many memory blocks), the required information is
transferred via multiple 32B, 64B, and 128B transactions which
drastically reduce the performance. Consider the toy example in
Fig. 2(a), where 4 consecutive threads in the same warp (and
in the same half-warp) visit their virtual vertices and process
the first (neighbor) vertices in the corresponding adjacency lists.
Since these adjacency lists are different, the memory locations the
threads access, e.g., dst[.], can be in different blocks. Considering
how level-synchronized BFSs work, 3 transactions are required for
the coordinated memory access in Fig. 2(a).

The key idea in this paper is deviating from the pure fine-grain,
single-BFS parallelism to a hybrid, coarse/fine-grain parallelism
with a motivation to regularize memory access patterns by em-
ploying multiple BFSs in batches. For GPU-based BC, we aim for
sets of consecutive threads that process a (virtual) vertex simulta-
neously for multiple BFSs. That way the memory access patterns
will gain some regularity in BC kernels which, typically, a single
parallel BFS lacks.

Algorithm 4: VirBC-Multi (G = (V , E))
◃B: number of BFSs performed in a batch

1 · · ·

2 ℓ← 0
◃Forward phase

3 visited← true
4 while visited = true do
5 visited← false

◃Forward-step kernel
6 for each thread t in parallel do
7 if t ≤ B × n∆ then
8 u∗ ← ⌈ t

B
⌉ ◃virtual vertex

9 b← t mod B ◃BFS id
10 u← the vertex in G corresponding to u∗
11 ωu ← u×B + b
12 if dst[ωu] = ℓ then
13 for each v ∈ adj∆(u∗) do
14 ωv ← v ×B + b
15 if dst[ωv] = ∞ then
16 dst[ωv] ← ℓ+ 1, visited← true

17 if dst[ωv] = ℓ+ 1 then
18 σ [ωu] ← σ [ωv] + σ [ωu] ◃atomic

19 ℓ← ℓ+ 1
20 · · ·

◃Backward phase
21 · · ·

Let B be the number of BFSs in a batch. One can execute a ker-
nel with B × n∆ threads where the ith BFS is executed by the n∆

threads starting from the thread (i − 1) × n∆. However, this only
handles thework in less kernel callswithout regularizing themem-
ory accesses. For this reason, we employ interleaved BFSs. Algo-
rithm 4 implements the idea for the forward phase of BC. Its most
important difference from Algorithm 3 lies within the memory ac-
cesses to the arrays dst[.] and σ [.]: in VirBC, the neighbor ver-
tex ids have a very high impact in the locality of memory accesses
by consecutive threads. Since they can be different, the blocks that
need to be accessed by a half-warp can be at various places of the
memory. On the other hand, in VirBC-Multi, the memory index
ωv computed for a vertex/BFS pair will differ only by one for two
consecutive threads processing the same virtual vertex. Hence, B

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 111
consecutive threads will access consecutive memory locations and
a single transaction may be sufficient for the coordinated memory
access as Fig. 2(b) shows for our toy example. In Algorithm 4, the
arrays dst[.] and σ [.] are of lengthB×n. Hence, except the graph
G, thememory footprint ofVirBC-Multi isB times larger than that
of VirBCwhich is one of the drawbacks of our solution. That being
said, a small B would be sufficient to increase the performance as
the experiments will show.

We are aware that a vertex will not appear exactly in the same
level for all B BFSs in a batch. Hence, although B consecutive
threads are responsible from the same (virtual) vertex, it is not
guaranteed that all these threads will process the adjacency lists in
the same kernel execution. But even in the original virtual-vertex-
based scheme with a single BFS execution, such a guarantee was
there only for the consecutive virtual vertices generated from the
same original vertex. For the warps processing such vertices, our
modification on the parallelism can be considered as a trade-off of
warp utilization (occupancy) and the ratio of coalesced memory
accesses. On the other hand, for the warps which already process
the original vertices with degree ∆ or less, the utilization will
probably not be harmed. Furthermore, recent studies show that
most of the vertices in G appear only in the middle levels of any
BFS for the networks with small-world properties, which typically
includes social networks [3,26]. Thus the proposed scheme can
even increase the warp occupancy.

The overhead of the proposed technique increases when the
maximum level L for the BFSs fluctuates, i.e., when the variance
of their distribution is high. If this is the case the BFSs in a pack
that are already completed will stay in the process andwait for the
one in the pack with the highest L value. Fortunately, the real-life
networks exhibit small-world network characteristics and have
small diameters, hence L does not fluctuate for the BFSs.

3.2. Amore regular and denser closeness centrality kernel on GPU and
Intel Xeon Phi

Having irregular memory access and computation that prevent
a proper vectorization is a common problem of sparse kernels. The
most emblematic sparse computation is certainly the multiplica-
tion of a sparse matrix by a dense vector (SpMV). In SpMV, the
problem of improving vector-register (also called SIMD register)
utilization and regularizing thememory access patternwas deeply
studied and methods such as register blocking [7,32] or by using
different matrix storage formats [4,14] have been proposed. Ar-
guably, themost efficient method to regularize thememory access
pattern is to multiply a sparse matrix by multiple vectors if this is
possible. When the multiple vectors are organized as a dense ma-
trix, the problem becomes the multiplication of a sparse matrix by
a dense matrix (SpMM). While each nonzero of the sparse matrix
causes themultiplication of a single element of the vector in SpMV,
it causes the multiplications of as many consecutive elements of
the dense matrix as its number of columns in SpMM.

Adapting that idea in closeness centrality essentially boils down
to the computing multiple sources at the same time, simultane-
ously. But contrarily to SpMV, where the vector is dense hence
each non-zero induces exactly one multiplication, in BFS, not all
the non-zeros will induce operations. In other words, a vertex in
BFS may or may not be traversed depending on which level is
currently being processed. Therefore, the traditional queue-based
implementation of BFS does not seem to be easily extendable to
support multiple BFSs in a vector-friendly manner.

3.2.1. An SpMV-based formulation of closeness centrality

The main idea is to revert to a more basic definition of level
synchronous BFS traversal. Vertex v is part of level ℓ if and only
if one of the neighbor of v is part of level ℓ − 1 and v is not part
of any level ℓ′ < ℓ. This formulation is commonly used in parallel
implementation of BFS on GPU [11,22,29] but also in some shared
memory [1] and distributed memory implementations [6].

The algorithm is better represented using binary variables. Let
xℓ
i be the binary variable that istrue if vertex i is part of the frontier
at level ℓ for a BFS. The neighbors of level ℓ is represented by a
vector yℓ+1 computed by

yℓ+1
k = ORj∈adj(k)xℓ

j .

The next level is then computed with

xℓ+1
i = yℓ+1

i AND not (ORℓ′≤ℓxℓ′

i).

Using these variables, one canupdate the closeness centrality value

of vertex i by adding xℓi
ℓ
if i is at level ℓ. One can remark that yℓ+1

is the result of the ‘‘multiplication’’ of the adjacency matrix of the
graph by xℓ in the (OR,AND) semi-ring.

Implementing BFS using such an SpMV-based algorithm chang-
es its asymptotic complexity. The traditional queue-based BFS al-
gorithm has a complexity of O(|E|). But the complexity of the
SpMV-based algorithm described above depends on how the ad-
jacency matrix is stored. If it is stored column-wise, then it is easy
to traverse column j only if the value of xℓ

j is true. This leads to an
O(|E|) implementation of BFS, and such an implementation is not
essentially different from the queue-based implementation of BFS:
they both follow a top-down approach. However, when xℓ

j is true,
the updates on the entries of yℓ+1 vector cause scattered writes to
memory which are problematic when executed in parallel.

On the other hand, by storing the adjacency matrix row-wise,
different values of xℓ are gathered to compute a single element of
yℓ+1. This yields a bottom-up implementation of BFS which has
a natural write access pattern. However, it becomes impossible
to only traverse the relevant nonzero of the matrix and the
complexity of the algorithm becomes O(|E| × L), where L is the
diameter of the graph. This is the implementation that we favor
and we do not feel that this asymptotically worse complexity is
a problem since it has been noted many times before that social
networks have small world properties. So, their diameter tends to
be low. Note that the small world property only informs on the
average distance between two vertices is proportional to log(|V |)
while we are interested in the maximum distance. There could
be small world graphs with a long chain on where our technique
might not apply as gracefully.

3.2.2. An SpMM-based formulation of closeness centrality

It is easy to derive an algorithm from the formulation given
above for closeness centrality that processes multiple sources at
once (see Algorithm5). The algorithmprocesses sources by batches
of B. For each level ℓ, it builds a binary matrix xℓ where xℓ

i,s
indicates if vertex i is at distance ℓ of source vertex s where 0 ≤
s < B is the relative source id in the batch. The first part of the
algorithm is Initwhich computes x0.

After Init, the algorithm performs a loop that iterates over the
levels of the BFSs. The second part is SpMMwhich builds thematrix
yℓ+1 bymultiplying the adjacencymatrix with xℓ. After each SpMM,
the algorithm enters its Update phase where xℓ+1 is computed
and then the closeness centrality values are updated using the
information of level ℓ+ 1.

By letting B be the size of the vector register of the machine
used, a row of the x and ymatrices exactly fits in a vector-register,
and all the operations become vector-wide OR, AND and not and
bit-count operations. Fig. 3 presents an implementation of this
algorithm using AVX instructions (B = 256). We use similar codes

112 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
Algorithm5: CC-SpMM: SpMM-based centrality computation
Data: G = (V , E), B
Output: ccent[.]
◃Init

1 ccent[v] ← 0,∀v ∈ V
2 ℓ← 0
3 partition V into k batches Π = {V1, V2, . . . , Vk} of size B
4 for each batch of vertices Vp ∈ Π do
5 x0s,s ← 1 if s ∈ Vp, 0 otherwise
6 while

i

s x
ℓ
i,s > 0 do

◃SpMM
7 yℓ+1

i,s = ORj∈adj(i)xℓ
j,s,∀s ∈ Vp,∀i ∈ V

◃Update

8 xℓ+1
i,s = yℓ+1

i,s AND not(ORℓ′≤ℓxℓ′

i,s),∀s ∈ Vp,∀i ∈ V
9 ℓ← ℓ+ 1

10 for all v ∈ V do

11 ccent[v] ← ccent[v] +

s x
ℓ
v,s

ℓ

12 return ccent[.]

Fig. 3. Hardware vectorization using AVX for the SpMM-based formulation of
closeness centrality.

to leverage 32-bit integer types, SSE registers and Xeon Phi’s 512-
bit registers in the experiments. The code uses three arrays to
store the internal state of the algorithm. current stores xℓ for
the current level ℓ, neighbor stores yℓ+1 and visited stores
ORl′≤ℓxℓ′ . The function bitCount_256(.) calls the appropriate bit-
counting instructions.

A potential drawback of the SpMM variant of the closeness
centrality algorithm is that each traversal of the graph now
accesses a wider memory range than the one used in an SpMV
approach. This can harm the cache locality of the algorithm. To see
Fig. 4. Simulated cache-hit ratio of the SpMM variant on a 512 K cache (e.g., Intel
Xeon Phi’s L2 cache).

the impact on cache-hit ratio, we wrote a simulator to emulate the
cache behavior during the SpMMoperation. The simulator assumes
that the computation is sequential; the cache is fully associative; it
uses cache-lines of 64 bytes; only the x vector (current array in
the code) is stored in the cache; and the cache is completely flushed
between iterations.

Fig. 4 presents the cache-hit ratios with a cache size of 512 K
(the size of Intel Xeon Phi’s L2 cache) for different number of BFSs
and for the seven graphs we will later use in the experimental
evaluation. The cache hit-ratio degrades by about 20%–30% when
the number of concurrent BFSs goes from 32 to 512. This certainly
introduces a significant overhead, but we believe it should be
widely compensated by reducing the number of iterations of the
outer loop by a factor of 16.

3.2.3. Software vectorization

The hardware vectorization of the SpMM kernel presented
above limits the number of concurrent BFS sources to the size of the
vector registers available on the architecture. However, there is no
reason to limit themethod to the size of a single register. One could
use two registers instead of one and perform twicemore sources at
once. The penalty on the cache locality will certainly increase, but
probably not by a factor of two.

Since we want to try various number of simultaneous BFS, the
implementation effort for manual vectorization of each version
becomes prohibitive. Therefore, we developed a unique code that
allows to easily change the number of concurrent source traversed.
Fig. 5 presents a fragment of this code which has been carefully
written to allow the compiler to leverage vector instructions
where possible. The key of this code is to specify the number of
simultaneous traversals as a C++ template parameter instead of
using a function parameter. This forces the compiler to generate
a different object code for each value of the template parameter
vector_size (expressed in number of 32-bit words). Therefore,
it allows the compiler on a CPU architecture to utilize the SSE
instructions if vector_size is 4 or to utilize the AVX instructions
if it is more than 8. The right template parameter is selected in a
wrapper function (not shown here).

Instead of using explicit registers, this compiler vectorized
code expresses the state of the x vector as an array of 32-bit
integers. The compiler is hinted at unrolling these accesses to
prevent a loop and expose their vectorial nature. Though, the
C++ language does not directly allow that vectorization to take
place because the various pointers of the function might point to
overlapped memory. The __restrict__ language extension is
used to instruct the compiler that none of the arrays will ever
overlap, allowing the compiler to generate the vector instructions
when it believes that they are appropriate. As the experiments will

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 113
Fig. 5. Compiler vectorization for the SpMM-based formulation of closeness
centrality.

show, the compiler-based vectorization in Fig. 5 perform almost
as good as the manually vectorized code given in Fig. 3 which is
useful in practice since the compiler-based vectorization is much
more flexible to change the number of simultaneous BFSs.

3.2.4. Closeness centrality on GPU

The SpMM-based approach for closeness centrality can be di-
rectly adapted for GPU since the hardware is already modeled for
SIMD execution. Simply put, one can consider one operation on
a CUDA warp as one Xeon Phi SIMD operation. For our imple-
mentation, we used 64-bit integers to store parts of current,
neighbor, and visited arrays per thread. Thus, each thread can
use a bitwise operation to process 64 BFSs simultaneously. When
a vertex is assigned to a single GPU warp (containing 32 threads),
B = 32 × 64 = 2048 BFSs can be handled simultaneously. For
memory-bound kernels such as a graph traversal, only a half-
warp (16 threads) may also be considered as a counterpart of a
SIMD operation on Xeon Phi, since the GPU coordinates the global
memory accesses of the threads in a half-warp into a single trans-
action. Or similar to software vectorization, one can go wider and
use more than a warp per vertex to support more than 2048 BFSs.
We experimented with these three options and assign a vertex to
16, 32, and 64 threads. A similar direction one can follow to in-
crease B is assigning more work to each thread. That is, by dou-
bling thework of a single thread and assigning 128 BFSs to a thread
and a vertex to a warp, one can handleB = 4096 BFSs at once, and
hence, halves the number of kernel executions. However, while
following any of these approaches, we are always limited by the
memory footprint of the kernel which is a problem for a memory-
restricted device such as GPU.

For our GPU-based CC implementation, we used the traditional
compressed adjacency list format instead of virtual-vertices we
employed in our GPU-based BC implementation. As explained in
Section 2.3.1, virtual vertices are proposed to improve the load
balance inside a CUDA warp for a single BFS. Since each thread
is responsible for a single BFS and when a vertex is not on the
current level ℓ of the corresponding BFS, the thread needs to wait
the others in the warp. However, in our CC implementation, since
a thread is responsible for multiple BFSs (i.e., 64 of them) it is more
likely that at least in one of these BFSs, the threadwill need towork.
Thus, warp occupancy is expected to be high for the SpMM-based
CC. Furthermore, when a single vertex is assigned to a warp, each
thread will visit the same adjacency list. Thus, there will not be a
load balancing problem and the memory accesses will be highly
coalesced. In our experiments, we compared the performance of
the SpMM-based implementation (GPU-SpMM) with the virtual-
vertex-based ones with one BFS at a time (GPU-VirCC) and
multiple BFSs (GPU-VirCC-Multi), where the latter adapts the
parallelization techniques we explained for BC in Section 3.1.

3.2.5. Implementation details

We improved the performance of the SpMM-based implemen-
tation given in Fig. 3 (as well as the compiler-vectorized one in
Fig. 5 and GPU-based implementation), by employing two simple
modifications. In the first modification, which is in the SpMM part
of Fig. 3, before traversing the adjacency list of the ith vertex, the
algorithmchecks that if all theB = 256visited bits correspond-
ing to B BFSs assigned to the thread were already set to 1 by the
previous or current level expansions. If this is the case, since the
vertex has already been visited in all the BFSs, the thread skips the
SpMM part and directly goes to the Update part. For the GPU im-
plementation, each thread checks the corresponding 64 bits in the
visited array. Note that, a warp in the SpMM kernel can termi-
nate only when the 32 × 64 = 2048 visited bits are already
equal to 1.

The second modification is similar to the first one but this time
it is in theUpdate part of Fig. 3: when all theB bits in the visited
array were already set to 1, the code sets the corresponding
current bits to 0 and ends the Update part without any other
bitwise operations or bit counting. Similar to the firstmodification,
in the GPU-based CC implementation, each thread in a warp takes
this shortcut by using the 64 bits corresponding to the visited
information of the 64 BFSs and sets the corresponding 64 bits in
the current array to 0.

4. Experiments

The experiments were carried out on a system equipped with
two Intel Sandy Bridge-EP CPUs clocked at 2.00 GHz and 256 GB of
memory split across twoNUMAdomains. Each CPUhas eight-cores
(16 cores in total) and HyperThreading is enabled. Each core has its
own 32 kB L1 cache and 256 kB L2 cache. The 8 cores on a CPU share
a 20MB L3 cache. The machine is equipped with an NVIDIA Tesla
K20c GPU featuring 13 Streaming Multiprocessors, 192 cores per
SM clocked at 700MHz (for a total of 2496 CUDA cores), and 4.8 GB
of global memory clocked at 2.6 GHz. ECC is enabled. The system
also has an Intel Xeon Phi coprocessor with 8 memory controllers
and 61 cores clocked at 1.05 GHz. There is a 32kB L1 data cache, a
32 kB L1 instruction cache, and a 512kB L2 cache associated with
each core. The bandwidth of each core is 8.4 GB/s where the cores’
memory interface are 32-bit widewith two channels. Although the
cores are expected to provide 512.4 GB/s, the bandwidth between
the memory controllers and they are limited by the ring network
in between which theoretically supports at most 220 GB/s.

On the software side, we run a 64-bit Debian with Linux 2.6.39-
bpo.2-amd64. All the codes are compiled with GCC with the -O3
optimization flag in version 4.4.4. Xeon Phi codes are compiled
with the Intel C++ Compiler in version 13.1 using -O3 optimization

114 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
Table 1
Properties of the largest connected components of the graph used in the experiments.

Graph |V | |E| Avg.
|adj(v)|

Max.
|adj(v)|

Diam.

Amazon 403 K 2,443 K 6.0 2,752 19
Gowalla 196 K 950 K 4.8 14,730 12
Google 855 K 4,291 K 5.0 6,332 18
NotreDame 325 K 1,090 K 3.3 10,721 27
WikiTalk 2,388 K 4,656 K 1.9 100,029 10
Orkut 3,072 K 117,185 K 38.1 33,313 9
Live Journal 4,843 K 42,845 K 8.8 20,333 15
(a) Working warps. (b) Non simultaneous virtual vertex traversal.

Fig. 6. Analyzing the behavior of VirBC-Multi. The values are normalized relatively to the case B = 1 and accumulated over the iterations of a batch.
flag. CUDA 5.0 is used with flag -arch sm_20. We have carefully
implemented all the algorithms using C++. To have a base-line
comparison, we implemented OpenMP versions of the CPU-based
betweenness and closeness centrality algorithms. Note that, our
system has 16 cores. When implementing the CPU based closeness
centrality code, we made use of the direction optimization
technique, presented in [3]. Other than direction optimization, no
particular optimizations have been applied to the CPU codes except
the ones performed by the compiler. We also used various studies
from the literature to evaluate the practical performance of our
GPU-based betweenness centrality implementation with virtual
vertices and multiple BFSs and SpMM-based closeness centrality
implementation.

For the experiments, we used a set of graphs from the SNAP
dataset.1 Directed graphs were made undirected and the largest
connected component is extracted and used in the experiments.
The list of graphs and the properties of the largest components that
are used in our experiments can be found in Table 1.

All the results presented in this section are computed by using
the total application time from the moment where the graph is
fully loaded into the main memory of the machine to the moment
where the final centrality values are available in the main memory
of the node. In particular, the time excludes reading the graph
from the hard drive; but it includes the transformations such
as virtualization and all the communications between the host
and the device. Using these times, we computed the traversed
edges per second (TEPS) values and report them on the figures
in this section. Given the total application time (in seconds) for
K sources/BFSs on a graph with m (undirected) edges, the TEPS
value is equal to (m× K)/time. Note that to process K sources, the
algorithm needs K/B kernel executions where each of the kernels
handles B sources.

1 http://snap.stanford.edu/data/index.html.
4.1. Evaluating the proposed betweenness centrality algorithm
VirBC-Multi

In this section, we investigate the efficiency of our virtual-
vertex based BC algorithm. We first analyze the VirBC-Multi
algorithm with different parameters, then present the absolute
numbers on its performance by a comparison with existing work
in the literature. We used ∆ = 8 for virtualization. Since the com-
putations can be extremely long (months), we did not used all
the n BFS sources in the graphs and measured the time for 1,024
sources/BFSs in total. We observed that the runtimes of single ker-
nel executions to be very stable, allowing us to make a meaningful
extrapolation. Thus, if necessary, the results can be used to linearly
extrapolate the runtime for the whole graph.

4.1.1. Analysis of VirBC-Multi

We first investigate the validity of one of the assumptions we
make: batching multiple traversals is useful because a vertex only
appears in a small number of levels. This assumption is expected
to lead to a high number of threads within a warp concurrently
expending the same vertex. It should improve the computation
by increasing the reutilization of the graph data structure and by
structuring the memory accesses made by a warp into regular
patterns. To verify this, we computed two indices.

The first index is the number of working warps; in each ker-
nel call, a thread is said to be working if it passes the condition
line 12 of VirBC-Multi (Algorithm 4); that is to say, if that ver-
tex is expended. Similarly, a warp is said to be working if one of
its 32 threads passes that line. When B grows, the structure of
the warps change leading to differences in the number of work-
ing warps. The more working warps there are, the more compu-
tation the GPU will need to perform (this simplification may not
be true for all the kernels that run on GPUs, but since we employ
virtual vertices for BC, each warp takes essentially the same num-
ber of operationswhichmakes the simplification valid). In Fig. 6(a),

http://snap.stanford.edu/data/index.html

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 115
Table 2
Performance of the betweenness centrality algorithms (in MTEPS).

Graph CPU-SNAP CPU-Ligra CPU-BC GPU-VirBC GPU-VirBC-Multi

Amazon 23 116 297 349 591
Gowalla 12 103 535 349 657
Google 17 107 275 377 525
NotreDame 6 62 806 234 441
WikiTalk 9 67 316 346 491
Orkut 52 450 319 275 1,018
LiveJournal 29 253 225 268 701
we present how the number of working warps within the BC com-
putation is impacted by B. Surprisingly, the number of working
warps evolves differently for different graphs. For some graphs,
e.g., Amazon, NotreDame, and Google, the number initially de-
creases but then either stabilizes or increases. For some other
graphs, e.g., WikiTalk, Orkut, Gowalla, and LiveJournal, the
number increases. However, overall, the variation of the number of
working warps is fairly small; the decrease is never more than 20%
and the increase is never more than 75%. This indicates that batch-
ing sources has almost no impact on thread divergence and this
impact is mostly better for performance.

The second index measures how many times a virtual vertex is
non-simultaneously traversed. When B = 1, each virtual vertex
is traversed exactly once per source and each of these traversals is
performed by a differentwarp. ButwhenB increases then a virtual
vertex might be traversed multiple times by a single warp, and we
say that these two virtual vertices are traversed simultaneously.
What we are interested in, overall, is how many different warps
traverse a given virtual vertex. Fig. 6(b) shows that the number of
non-simultaneous traversals sharply decreases for all the graphs
when B increases. This number improves by more than 85% for all
the graphs. This should significantly improve the coalescing of the
memory operations performed by various kernels.

We can conclude that the previous increase in the number of
working warps is most likely linked to the fact that the warps
were naturally well structured because the consecutive vertices
are close in the graph and are typically traversed in the same level,
thanks to the virtualization. We show the actual impact of vary-
ing the number of simultaneous sources B in performance is in
Fig. 7. All the values are normalized to the time taken by the vari-
ant that executes one BFS at a time. A first observation is that all
the graphs benefit from executing multiple sources in a batch. But
the rate of improvement is different. For instance the improve-
ment seen on Orkut is very similar to the improvement in non-
simultaneous virtual vertex traversal (Fig. 6(b)). On the other hand,
other graphs, such as Amazon, incur lesser improvements. Finally
for some graphs, the normalized time is V-shaped. We guess that
the increase in memory occupation with large B values is detri-
mental for some cases. Alternatively, it is possible that for some
cases, the memory accesses were already fairly well organized and
the proposed techniques only have a limited impact.

4.1.2. Evaluating the absolute performance

We experimentally evaluated the algorithms given in Sec-
tion 3.1 on betweenness centrality kernels. There are mainly three
variants: OpenMP-based parallel CPU implementation (Cpu-BC),
GPU implementation with virtual vertices (VirBC) and VirBC-
Multi. We also compared our techniques with the betweenness
centrality kernels in the state-of-the-art shared-memory graph
processing frameworks Ligra [30] and SNAP [2]. Comparisons are
done in terms of million traversed edges per second (MTEPS) which
is computed as (1, 024×|E|)/(106

×time), where |E| is the number
of (undirected) edges and time is the time required to complete all
the 1,024 BFSs we perform for a configuration. For VirBC-Multi,
Fig. 7. Impact of B on VirBC-Multi run on an NVIDIA Tesla K20.

we only report the performance achieved using the best value for
B. This value is representative of the performance one can get on a
real application since it can easily be discovered at runtime during
the first few iterations of the overall algorithm.

Fig. 8 presents the MTEPS for BC algorithms when executed on
the seven networks given in Table 1. Precise values are provided
in Table 2 for comparison purpose. As Fig. 8 shows, VirBC-Multi
is superior to the others on 6 of 7 graphs. On average, VirBC-
Multi is 35 times faster than SNAP, 4.7 times faster than Ligra,
68% faster than Cpu-BC and 96% faster than VirBC. In terms of the
performance, VirBC-Multi reaches to 1 GTEPS on Orkut network.

4.2. Evaluating the proposed SpMM-based closeness centrality algo-
rithm

The closeness centrality experiments are performed using a
total of 16384 sources. Hence, for a configuration with B simul-
taneous BFSs uses 16384/B kernel executions. Similar to BC ex-
periments, we did not observe a significant variance among the
execution times of these executions. The presented TEPS results
in the figures are computed by linear extrapolation for the entire
graph.

4.2.1. SpMM-based closeness centrality on x86-based architectures

We will first have a look at the performance of our techniques
on CPU and Intel Xeon Phi. Since they present similar patterns
and Intel Xeon Phi obtains a better performance, we will only
present the results for that architecture in this subsection. As
a first experiment, we compare the manual and compiler-based
hardware vectorization options. For manual vectorization, we
implemented 32-bit, 128-bit SSE, 256-bit AVX (see Fig. 3), and 512-
bit Intel Xeon Phi versions with various intrinsics supported by
the hardware for a concurrent execution of 32, 128, 256 and 512
BFSs, respectively. For compiler-based vectorization, we used the
code (partially) given in Fig. 5 without the modifications described
in Section 3.2.5 and let the compiler optimize it with -O3 flag.
Fig. 9 gives the performance results in terms of billions of traversed
edges per second (GTEPS). The bars in the figure with -comp

116 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
Fig. 8. Evaluation of the betweenness centrality algorithms in terms of MTEPS. The values for the proposed algorithms are the best ones we obtained with different B
values.
Fig. 9. The compiler- and manually-vectorized implementation of SpMM-based closeness centrality reach similar performance.
keyword are the ones with the compiler-vectorized versions. For
almost all the graphs, 512-bit Intel Xeon Phi vectorization gives the
best results. For Gowalla, NotreDame, and WikiTalk, 256-bit
versions are better. Overall, manual vectorization is only slightly
better than compiler-based vectorization. This shows that if the
code is properly written, the compiler does its job and optimizes
relatively well. We will mainly use the compiler-vectorized
implementation in the rest of the text, since it is more flexible and
its performance is comparable to the manually-vectorized one.

The implementation on Intel Xeon Phi uses the offload mode.
The memory transfer time is optimized by using large mem-
ory pages whose size is set with an environment variable
MIC_USE_2MB_BUFFERS = 4 K. The memory allocation is per-
formed in two phases; as usual in Linux systems, the memory
allocation routine is called to allocate the virtual pages and the
physical pages are allocated when the memory is touched for the
first time. On Intel Xeon Phi, the physical page allocation is fairly
slow. To give a point of reference, in our preliminary experiments,
the physical memory allocation required to perform 8192 BFSs on
Google (2.44 GB) takes 0.88 s; while performing the BFSs takes
1.44 s. Still, this overhead increases only with 8192 and it does not
change with the number of sources used for centrality computa-
tion. Hence, considering the number of vertices, n, is much larger
than B, the overhead are small compared to the time required to
process the whole graph for exact centrality computation (we re-
mark that the presented results are extrapolated taking the mem-
ory allocation time into consideration). However, their impact can
be higher while using sampling and approximation techniques for
closeness centrality.

We experimentedwith values ofB from 32 to 8192 (higher val-
ues of B would lead to out-of-memory for the larger graphs). We
present the performance of the compiler-vectorized implementa-
tion that benefits from themodifications presented in Section 3.2.5
Fig. 10. Impact of the number of simultaneous BFS on the performance obtained
on Intel Xeon Phi with the modifications described in Section 3.2.5. The separation
between hardware and software vectorization is marked.

in Fig. 10. In short, the performance increases with B. We can ob-
serve that the rate of improvement is higher when hardware vec-
torization is leveraged, i.e., whenB is smaller than the register size
of Intel Xeon Phi, compared to the case when software vectoriza-
tion is leveraged. Yet, software vectorization still provides signif-
icant performance improvements for all the graphs. In the rest of
the experiments, we will use the configuration with 8192 simulta-
neous traversals since it obtains best performance.

To put the results into perspective, in Fig. 11, we com-
pare the performance of the fine-grain BFS technique devel-
oped for Intel Xeon Phi presented in [27] (PHI-BFS-block), a
coarse-grain (32 threads) CC code (PHI-DO) that uses direction-
optimized BFS idea [3], the hardware-vectorized code with B =
512 (PHI-SpMM-512), the compiler-vectorized version using
B = 8192 BFSs with (PHI-SpMM-opt-comp-8192) and with-

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 117
Fig. 11. Performance of the closeness centrality algorithms (and configurations) on
Intel Xeon Phi.

Fig. 12. Proportion of each section of the execution time of PHI-SpMM-
comp-opt-8192.

out (PHI-SpMM-comp-8192) the modifications described in
Section 3.2.5. The first twomethods do not use the proposed densi-
fication techniques and obtain low performance: the performance
of PHI-BFS-block ranges from 600 MTEPS to 2.1 GTEPS, while
PHI-DO sees its performance range from 311 MTEPS to 2.4 GTEPS.
On the other hand, PHI-SpMM-opt-comp-8192 is, on the aver-
age, 22.1 times faster than PHI-DO and its performance is between
16.8 GTEPS to 68.2 GTEPS. Also, themodifications to take shortcuts
bring a 1.75 factor of improvement on the average.

As the other SpMM-based codes, PHI-SpMM-opt-comp-8192
is composed of three phases:Init,SpMM andUpdate. The relative
proportions of the execution times of these phases depend on the
structure of the graph as shown in Fig. 12. For all the graphs,
the time required for Init is smaller compared to other phases.
However, the relative time for SpMM and Update drastically
changes with the graph, e.g., see NotreDame and Orkut. Fig. 13
shows how the time of the SpMM phase and the Update phase vary
with the iterations among the levels of the BFSs and how many
vertices are actually processed in each of these phases. One can
see that the time spent in the SpMM phase is fairly well correlated
to the number of vertices processed in this phase (thanks to the
modifications in Section 3.2.5). A similar pattern exists on the
Update phase. The non-modified version, which is not shown
here, has much flatter execution times for these two phases; the
amount of improvement provided by the modifications depends
on the distribution of these skipped vertices which varies from one
graph to the other.

4.2.2. SpMM-based closeness centrality on GPU

The performance of the SpMM-based approach on the GPU
depends on how many traversals are performed simultaneously,
Fig. 13. Time break-down per iteration and number of updated vertices for the
Amazon graph. The variation of the time is explained by the number of vertices
processed during those phase.

the data type used, and how many threads/warps are used per
vertex. Overall, as in Xeon Phi experiments, when B increases
so does the performance. In addition to 64-bit integers, we also
tried using 32-bit ones in our preliminary experiments which
performed almost alwaysworse than the 64-bit version. Therefore,
Fig. 14 uses the 64-bit version and shows the performance of the
GPU-based algorithm using different number of threads/warps per
vertex. Since the NVIDIA Tesla K20 has a relatively small memory,
which is 6 GB, B, the maximum number of simultaneous BFSs, is
set to 2048 for Orkut and LiveJournal, 4096 for WikiTalk and
8192 for Amazon, Gowalla, Google, and NotreDame. The figure
does not contain 2-warp per vertex (64 threads) configuration for
Orkut and LiveJournal since there are only 2048/64 = 32
integers due to the memory restriction. Hence, even we assign 2-
warps per vertex, one of the warps will stay idle.

The performance of the SpMM-based approach varies with the
number of threads per vertex. The performance usually increases
when we use a single warp (32 threads) instead of a half-warp (16
threads) per vertex (except LiveJournal). This is expected
since although the memory accesses of the threads in each half
are coordinated, a half still need to wait the other especially
when the lengths of the adjacency lists assigned to these halves
significantly differ. Using two warps (64 threads) also increases
the performance but less frequently. For example, the increase
for Amazon and WikiTalk, are not significant, and there is a
performance decrease forGoogle.Wewill use 32 threads per each
vertex in the rest of the text while presenting the performance of
GPU-based implementation.

We compare the performance of GPU-SpMM with multiple
baselines from the literature in Fig. 15. GPU-LinearBFS is
the linear-time, fine-grain, parallel BFS implementation proposed
for GPU [19]. GPU-VirCC is a direct adaptation of GPU-VirBC
(from [24]), and GPU-VirCC-Multi is a direct adaptation of
GPU-VirBC-Multi (from Section 3.1) to closeness centrality.
Similar to BC experiments, we used ∆ = 8 for virtualization. With
the help of simultaneous BFSs, GPU-VirCC-Multi performs
better than the single-BFS variant GPU-VirCC. However, the
GPU-SpMM algorithm performs one order of magnitude faster than
the rest thanks to vectorization and a more compact formulation.

4.2.3. Summary of the closeness centrality experiments

In Fig. 16, we present the performance of the SpMM-based CC
implementation on all the three architectures with the best non-
vectorized algorithm from the literature and the best vectorized
algorithm described in this paper. Table 3 gives precise values
for comparison purposes. On CPU and Xeon Phi, 4096 and 8192

118 A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119
Table 3
Performance of the Closeness Centrality algorithms (in MTEPS).

Graph CPU-DO CPU-SpMM PHI-DO PHI-SpMM GPU-VirCC GPU-SpMM

Amazon 1,985 15,146 1,535 34,743 542 40,602
Gowalla 4,340 12,588 2,077 29,409 594 34,759
Google 1,736 10,391 1,632 23,953 516 43,206
NotreDame 2,925 8,956 1,828 16,858 418 22,462
WikiTalk 2,122 11,611 1,940 17,876 462 20,881
Orkut 3,073 28,393 2,548 68,290 801 85,335
LiveJournal 1,879 23,283 326 56,589 609 55,862
Fig. 14. Impact on the number of threads per vertex on the performance of GPU-SpMM.
simultaneous BFSs, respectively, are used. On GPU, the maximum
possible simultaneous BFSs is used for each graph as described
above. For the non-vectorized variants, the direction optimized
CC variant performs the best on CPU and Xeon Phi, while the
GPU-VirCC algorithm with simultaneous BFSs performs best on
the GPU. On average, the vectorized algorithm is 5.9 times faster
than the non-vectorized one on CPU, 21.0 times faster on Intel
Xeon Phi, and 70.4 times faster on NVIDIA Tesla K20c than the best
existing ones.

5. Conclusion and future work

In this work, we proposed new algorithms and parallelization
techniques to make betweenness and closeness centrality compu-
tations faster on commonly available cutting edge hardware. There
are two traditionalways to execute centrality computations in par-
allel. Either each thread traverses the graph from a single source,
or all the threads collaboratively traverse the graph from a unique
source. We deviated from the traditional approaches by using all
the threads in the system to collaboratively traverse the graph
from many sources simultaneously. This scheme makes the com-
putations more regular and allows a better utilization of modern
computing devices. The experimental evaluation of the proposed
Fig. 15. Comparison of GPU-based closeness centrality algorithms.

algorithms shows that significant improvements can be obtained
over the best known algorithms for centrality computation on the
same device, without using an additional hardware: a improve-
ment of a factor 5.9 on CPU architectures, 70.4 on GPU architec-
tures and 21.0 on Intel Xeon Phi.
Fig. 16. Vectorization works: CPU-SpMM is the compiler-vectorized implementation executed on CPU (32 threads) with B = 4096. PHI-SpMM is the corresponding Xeon
Phi variant with B = 8192. For the GPU-based implementation, the maximum possible B value is used for each graph, and a vertex is assigned to a warp (32 threads).

A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 119
The techniques canbe applied to these architectures at the same
time. Hence, they are suitable for heterogeneous computing which
is straightforward for centrality computations as we have shown
in [24]. Furthermore, we believe that the proposed approach is also
suitable to compute approximate centrality values and it can be
investigated as a future work. In the future, we want to analyze
the impact of vectorization in the streaming setting for dynamic
networks. But more importantly, we want to investigate whether
other common graph computations can be regularized.

Acknowledgments

This work was partially supported by the Defense Threat Re-
duction Agency grant HDTRA1-14-C-0007. We are also grateful to
Intel for providing us the Intel Xeon Phi card used in the experi-
ments and to NVIDIA for providing us the Tesla K20 card.

References

[1] V. Agarwal, F. Petrini, D. Pasetto, D.A. Bader, Scalable graph exploration on
multicore processors. in: SuperComputing, 2010, pp. 1–11.

[2] D.A. Bader, K. Madduri, SNAP, Small-world Network Analysis and Partitioning:
An open-source parallel graph framework for the exploration of large-scale
networks, in: IPDPS, 2008, pp. 1–12.

[3] S. Beamer, K. Asanović, D. Patterson, Direction-optimizing breadth-first search,
in: Proceedings of Supercomputing (SC), 2012.

[4] M. Belgin, G. Back, C.J. Ribbens, Pattern-based sparsematrix representation for
memory-efficient SMVM kernels, in: Proceedings of ICS, 2009, pp. 100–109.

[5] U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2) (2001) 163–177.

[6] A. Buluç, J.R. Gilbert, The combinatorial BLAS: Design, implementation, and
applications, Internat. J. High Perform. Comput. Appl. (2011).

[7] A. Buluç, S. Williams, L. Oliker, J. Demmel, Reduced-bandwidth multithreaded
algorithms for sparse matrix–vector multiplication, in: Proc. IPDPS, 2011.

[8] Ü.V. Çatalyürek, C. Aykanat, A hypergraph-partitioning approach for coarse-
grain decomposition, in: ACM/IEEE SC2001 Denver, CO Nov. 2001.

[9] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: Distributed
graph-parallel computation on natural graphs, in: 10th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 12, 2012, pp. 17–30.

[10] S. Hong, T. Oguntebi, K. Olukotun, Efficient parallel graph exploration onmulti-
core CPU and GPU, in: Proceedings of the 2011 International Conference on
Parallel Architectures and Compilation Techniques, PACT’11, 2011.

[11] Y. Jia, V. Lu, J. Hoberock, M. Garland, J.C. Hart, Edge vs. node parallelism for
graph centrality metrics, in: GPU Computing Gems: Jade Edition, Morgan
Kaufmann, 2011.

[12] S. Jin, Z. Huang, Y. Chen, D.G. Chavarría-Miranda, J. Feo, P.C. Wong, A novel
application of parallel betweenness centrality to power grid contingency
analysis, in: Proceedings of IEEE International Parallel and Distributed
Processing Symposium, IPDPS, 2010, pp. 1–7.

[13] G.J. Katz, J.T. Kider, All-pairs shortest-paths for large graphs on the GPU,
in: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware GH’08, Aire-la-Ville, Switzerland, Switzerland, 2008.
Eurographics Association, pp. 47–55.

[14] X. Liu, M. Smelyanskiy, E. Chow, P. Dubey, Efficient sparse matrix–vector
multiplication on x86-based many-core processors, in: Proceedings of
the 27th International ACM Conference on International Conference on
Supercomputing, ICS’13, 2013.

[15] L. Luo, M.Wong,W.m. Hwu, An effective GPU implementation of breadth-first
search, in: Proceedings of the 47th Design Automation Conference DAC’10,
ACM, New York, NY, USA, 2010, pp. 52–55.

[16] K. Matsumoto, N. Nakasato, S. Sedukhin, Blocked all-pairs shortest paths
algorithm for hybrid CPU–GPU system, in: High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on, 2011,
pp. 145–152.

[17] A. McLaughlin, D.A. Bader, Revisiting edge and node parallelism for dynamic
GPU graph analytics, in: 28th International Symposium on Parallel and
Distributed Processing, Workshops and PhD Forum (IPDPSW), Workshop on
Multithreaded Architectures and Applications (MTAAP), 2014.

[18] E.L. Merrer, G. Trédan, Centralities: Capturing the fuzzy notion of importance
in social graphs, in: Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems (SNS), 2009.

[19] D.Merrill, M. Garland, A. Grimshaw, Scalable GPU graph traversal, in: Proceed-
ings of the 17thACMSIGPLAN symposiumonPrinciples and Practice of Parallel
Programming PPoPP’12, ACM, New York, NY, USA, 2012, pp. 117–128.

[20] D. Mizell, K. Maschhoff, Early experiences with large-scale Cray XMT sys-
tems, in: 23rd International Symposium on Parallel and Distributed Pro-
cessing, Workshops and PhD Forum (IPDPSW), Workshop on Multithreaded
Architectures and Applications (MTAAP), (May), 2009, pp. 1–9.

[21] T. Okuyama, F. Ino, K. Hagihara, A task parallel algorithm for finding all-pairs
shortest paths using the GPU, Int. J. High Perform. Comput. Netw. 7 (2) (2012)
87–98.
[22] P. Pande, D.A. Bader, Computing betweenness centrality for small world
networks on a GPU, in: 15th Annual High Performance Embedded Computing
Workshop, HPEC, 2011.

[23] M.C. Pham, R. Klamma, The structure of the computer science knowledge
network, in: Proceedings of International Conference on Advances in Social
Networks Analysis and Mining, ASONAM, 2010.

[24] A.E. Sarıyüce, K. Kaya, E. Saule, Ü.V. Çatalyürek, Betweenness centrality on
GPUs and heterogeneous architectures, in: Workshop on General Purpose
Processing Using GPUs, GPGPU, in: Conjunction with ASPLOS March 2013.

[25] A.E. Sarıyüce, E. Saule, K. Kaya, Ü.V. Çatalyürek, Hardware/software vectoriza-
tion for closeness centrality onmulti-/many-core architectures, in: 28th Inter-
national Symposium on Parallel and Distributed Processing, Workshops and
PhD Forum, IPDPSW, Workshop on Multithreaded Architectures and Applica-
tions (MTAAP), May 2014.

[26] A.E. Sarıyüce, E. Saule, K. Kaya, Ü.V. Çatalyürek, STREAMER: a distributed
framework for incremental closeness centrality computation, in: Proc. of IEEE
Cluster 2013, Sept. 2013.

[27] E. Saule, Ü.V. Çatalyürek, An early evaluation of the scalability of graph
algorithms on the Intel MIC architecture, in: 26th International Symposium
on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW),
Workshop on Multithreaded Architectures and Applications, MTAAP, May
2012.

[28] E. Saule, K. Kaya, Ü.V. Çatalyürek, Performance evaluation of sparse matrix
multiplication kernels on Intel Xeon Phi, in: Proc. of the 10th Int’l Conf. on
Parallel Processing and Applied Mathematics, PPAM, Sept. 2013.

[29] Z. Shi, B. Zhang, Fast network centrality analysis using GPUs, BMC Bioinfor-
matics 12:149, 2011.

[30] J. Shun, G.E. Blelloch, Ligra: A lightweight graph processing framework for
shared memory, in: Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP’13, 2013.

[31] Ö. Şimşek, A.G. Barto, Skill characterization based on betweenness, in:
Proceedings of Neural Information Processing Systems, NIPS, 2008.

[32] R. Vuduc, J. Demmel, K. Yelick, OSKI A library of automatically tuned sparse
matrix kernels, in: Proc. SciDAC 2005, J. of Physics: Conference Series (2005).

[33] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, Ü Çatalyürek,
A scalable distributed parallel breadth-first search algorithm on BlueGene/L,
in: Proceedings of SC2005 High Performance Computing, Networking, and
Storage Conference, 2005.

Ahmet Erdem Sarıyüce is a Ph.D. candidate in the Depart-
ment of Computer Science and Engineering at The Ohio
State University. He received his B.S. in Computer Engi-
neering from Middle East Technical University, Turkey,
2010. His research interests include graphmining, stream-
ing graph algorithms and combinatorial scientific comput-
ing.

Erik Saule is an Assistant Professor in the Computer Sci-
ence department of UNC Charlotte since August 2013. He
received his License and Maitrise in Computer Science in
2003 from University of Versailles, France and his Mas-
ter and Ph.D. in Computer Science, respectively in 2005
and 2008, from Grenoble Institute of technology, France.
Dr. Saule has been a post-doctoral researcher in the De-
partment of Biomedical Informatics at The Ohio State Uni-
versity from 2009 to 2013. His research interests revolve
around the efficient use of modern computing platforms
for compute intensive or data intensive applications.

Kamer Kaya is an Assistant Professor in the Department
of Biomedical Informatics at The Ohio State University. He
received his Ph.D. and Master in Computer Science, from
Bilkent University, Turkey.

Ümit V. Çatalyürek is a Professor in the Depts. of Biomed-
ical Informatics, Electrical and Computer Engineering, and
Computer Science and Engineering. His research interests
include combinatorial scientific computing, runtime sys-
tems for data-intensive computing, and high-performance
computing in biomedicine. He received his Ph.D., M.S.
and B.S. in Computer Engineering and Information Science
from Bilkent University, Turkey, in 2000, 1994 and 1992,
respectively.

http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref5
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref6
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref11
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref15
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref19
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref21
http://refhub.elsevier.com/S0743-7315(14)00128-2/sbref32

	Regularizing graph centrality computations
	Introduction
	Notation and background
	Betweenness centrality
	Closeness centrality
	Parallelism for network centrality
	Graph storage schemes and parallelization

	Faster network centrality
	A more regular and denser betweenness centrality kernel on GPU
	A more regular and denser closeness centrality kernel on GPU and Intel Xeon Phi
	An SpMV-based formulation of closeness centrality
	An SpMM-based formulation of closeness centrality
	Software vectorization
	Closeness centrality on GPU
	Implementation details

	Experiments
	Evaluating the proposed betweenness centrality algorithm VirBC-Multi
	Analysis of VirBC-Multi
	Evaluating the absolute performance

	Evaluating the proposed SpMM-based closeness centrality algorithm
	SpMM-based closeness centrality on x86-based architectures
	SpMM-based closeness centrality on GPU
	Summary of the closeness centrality experiments

	Conclusion and future work
	Acknowledgments
	References

