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Abstract
Extreme polarization stands as a crucial concern for fostering a healthier web ecosystem.
Locating the polarized groups is pivotal in this context. These groups involve nodes forming
robust agreements with each other and engaging in collective conflicts with other groups.
Previous studies tackle this problem by focusing on the balanced subgraphs in which all
(or small) cycles have an even number of negative edges. However, balanced subgraphs in
real-world signed networks are often not inherently polarized, such as those with solely pos-
itive edges, and any method that targets balanced subgraphs results in sizable communities
with dominantly positive interactions. Building on this concern, we propose to utilize cohe-
sion to find polarized subgraphs in this work. Specifically, we identify pairs of cohesively
polarized communities where each node within a community has many positive connections
with the nodes in the same community and numerous negative connections with the nodes
in the opposing community. We introduce a novel measure, called dichotomy, to capture
both cohesion and polarization in a given pair of polarized communities. We show that opti-
mizing dichotomy is NP-hard. As a heuristic approach, we employ balanced triangles to
develop a hierarchical dense subgraph discovery algorithm, called atom decomposition, that
establishes effective seedbeds for polarized communities in signed networks. To address the
challenges posed by real-world signed networks, we introduce two additional algorithms
to find polarized communities: photon and electron decompositions. Photon decomposition
filters out the nodes that engage in unbalanced triangles and yields numerous cohesively bal-
anced communities. Electron decomposition favors polarized triangles over positive triangles
to find polarized communities with high dichotomy. Through comprehensive experiments,
we demonstrate that our approaches excel in identifying cohesively polarized communities,
surpassing the state-of-the-art methods across various metrics. We give interesting anecdotal
findings by using our algorithms on a political network among governments in the Cold War
era and a business network of company relationships/competitions. Overall, our algorithms
exhibit greater effectiveness and efficiency than existing methods, rendering them practical
for large-scale networks.
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1 Introduction

With the rise of the Internet, there is no shortage of social media platforms where people
constantly form factions that conflict with each other. Extreme polarization in social media
platforms impacts the health of public discourse and democracy. One important problem in
this context is finding polarized groups. In recent years, detection and mitigation of polarized
groups has attracted an extensive interest [1–11]. Polarized groups are often characterized as
a pair of communities where nodes form strongly stable agreements in their own community
and participate in collective conflicts with the nodes in the other community [12–14]. Con-
sidering the magnitude of today’s social media platforms, it is essential to devise scalable
and practical algorithms to find polarized communities [12].

Signed networks are a powerful tool to model positive and negative interactions, such as
friend-foe and trust-distrust relations [15, 16]. One classical measure to identify polarized
groups in signed networks is the balance,whichmeasures the stability according to the relative
placement of positive and negative edges. Heider defined that a signed graph is balanced if
each cycle in it contains an even number of negative edges [15]. A more practical measure
is the partial balance, often defined as the ratio of the number of balanced triangles, +++
and +−−, to the count of all triangles [16, 17]. Earlier works often considered (partially)
balanced subgraphs as a proxy for polarized communities in signed networks [12–14, 18].
Those works define and optimize a measure, called polarity, which simply favors the good
edges (positiveswithin, negatives across), penalizes the bad edges (positives across, negatives
within), and normalizes w.r.t. total size. Optimizing polarity results in large and (almost)
balanced subgraphs. However, the balanced subgraphs in real-world signed networks are
often dominated by positive interactions and hence do not offer a clear notion of conflict.
The main reason for this behavior is that +++ triangles in real-world signed networks
are significantly more abundant than +−− triangles, thus dominate the resulting balanced
subgraphs with little to no polarization.

In this work, we propose to differentiate polarization from balance by using the notion of
cohesion. We argue that any node in a polarized community pair should engage in a large
number of agreements with the other nodes in the same community and also participate
in many conflicts with the nodes in the other community. Accordingly, we hypothesize that
cohesive (i.e., with high edge ratio) and (partially) balanced subgraphs can offer better proxies
for polarized groups in real-world signed networks. To characterize the extent of polarization
for a given pair of communities, we devise the dichotomy measure. It considers the polarity
from [12], cohesion, and community size information to represent the agreement within the
communities, the conflict across the communities, and the relative sizes of the communities.
A subgraph with high dichotomy score contain two similar-sized cohesive communities with

Fig. 1 In each community pair,white nodes denote the left community andblack nodes are the right community.
Positive edges are shown by blue straight lines and negative edges are denoted by dashed red lines. Although
the right pair exhibits a better polarization, the polarity [12] and relative 3-balance scores [17] for the left pair
and the right pair are the same (polarity is 3.2 and relative 3-balance is 1.0). Our dichotomy metric, on the
other hand, assigns a higher score for the right pair (0.158 vs 1.422)
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high polarity, where edgeswithin a community are positive and edges across the communities
are negative. Figure 1 compares dichotomy against other measures. As optimizing dichotomy
is NP-hard, we study effective and practical heuristics to find polarized subgraphs with high
dichotomy.

We leverage the balanced triangles to model both the cohesion and the polarization.
Inspired by the truss decomposition [19], which finds cohesive regions with hierarchi-
cal relations in simple unsigned networks, we propose atom decomposition to find signed
triangle-specific cohesive subgraphs. Atom decomposition provides good seedbeds to find
balanced and polarized subgraphs. In an early empirical analysis, we show that (1) +++
triangles are significantly more common in the most cohesive subgraphs found by atom
decomposition, and (2) not only are balanced triangles more abundant in the real-world
signed networks, they are also significantly closer to each other than expected. Building
on these observations, we propose two algorithms, photon and electron decompositions, to
find highly-polarized subgraphs. Photon decomposition finds cohesively balanced subgraphs
by filtering out the nodes that participate in many unbalanced triangles and applying atom
decomposition with balanced triangles. The algorithm is parameterized to tune the filtering
process and enable finding larger subgraphs with lower balance scores. Photon decomposi-
tion yields numerous communities with high balance and cohesion. Electron decomposition
actively considers the nodes that are in many +−− triangles and few unbalanced triangles
to find highly polarized pairs of communities. It is also parameterized to provide a trade-off
between subgraph size and quality. Electron decomposition results in polarized communities
with higher dichotomy scores than photon decomposition but less in quantity.

In an extensive experimental evaluation on real-world and synthetic networks, we show
that photon and electron decomposition find higher quality communities than the state-of-
the-art with respect to various measures. We give interesting anecdotal findings on a political
network among governments in the Cold War era and a business network of company rela-
tionships/competitions. Last, but not least, our algorithms are more scalable than the previous
methods and are practical for large-scale networks with more than 100M edges.

Our contributions can be summarized as follows 1:

• Separation of balance and polarization. Previous state-of-the-art works consider bal-
ance to be equivalent to polarization which we show to be false. Polarized subgraphs are
balanced but a balanced subgraph may not be polarized.

• Dichotomy to model polarized communities. To better define the polarization within a
subgraph, we define the dichotomy measure, which considers the polarity metric (from
[12]), cohesion, and partition sizes, to model the polarization. A subgraph with a high
dichotomy score contains two highly-polarized communities with proportional sizes. We
show that finding subgraphs with optimal dichotomy is NP-hard.

• Improving cohesion through triangles. We propose atom decomposition to find com-
pact clusters of signed triangles. By utilizing this method, we show how the structure
of real-world signed networks promote a triangle-based exploration for balanced and
polarized communities.

• Finding multiple balanced and polarized subgraphs. We introduce two algorithms:
photon and electron decompositions. The former finds numerous cohesively balanced
subgraphs and the latter yields highly-polarized communities by focusing on polarized
triangles. Our algorithms feature a filtering scheme to improve the balance and polariza-
tion before applying atom decomposition to find signed triangle-specific subgraphs.

1 An earlier version of this work appeared in the companion proceedings of the ACMWeb Conference 2023
[20]
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• Evaluation.Wecompare our results against several baselines on real-world and synthetic
networkswith respect to severalmeasures. Photon decomposition findsmultiple cohesive
and balanced communities. Electron decomposition yields polarized communities with
the best dichotomy scores.We give interesting anecdotal findings by using our algorithms
on a political network among governments in the Cold War era (Correlates of War)
and a business network of company relationships/competitions (Relato Business). Our
algorithms are more efficient than the alternative methods and are practical for large
networks with more than 100M edges.

2 Preliminaries

We work on a simple and undirected signed graph G = (V , E) where V is the set of nodes
and E = E+ ∪ E− is the set of edges such that E+ and E− are the sets of positive and
negative edges, respectively. The neighbors of a node v are denoted by N (v). A triangle is
a set of three nodes where each node is directly connected to the other two. We define each
triangle in a signed network to be of type+++,+−−,++−, or−−−, where each+ and−
is the sign of a unique edge in the triangle. We utilize set notation in our pseudocode where
| is shorthand for ‘such that’.

In this work, we aim to find a subgraph that consists of two polarized communities where
the nodes in the same community are connected with positive edges and the nodes from
different communities are connected with negative edges. We denote the target subgraph,
S = (VS, ES), as the union of left and right communities, denoted by (VL , EL ) and (VR, ER),
and the edges across the left and right communities, ELR . Hence, VS = (VL ∪ VR) and
ES = (EL ∪ ER ∪ ELR). Any edge set with a sign superscript denotes the subset of edges
with that sign, e.g., E−

L is the set of negative edges in EL . Without loss of generality, we
assume that the larger of two communities (in number of nodes) is called the left community,
hence |VL | ≥ |VR | by default.
Balance measures. A graph is balanced if its node set can be partitioned into two subsets
such that each negative edge joins nodes from different subsets [21]. A popular measure for
partial balance is the relative 3-balance—the ratio of the number of balanced triangles to
the total number of triangles in the graph [17]. Triangles are preferred when characterizing
the partial balance since triangles represent the strongest interactions [22]. However, relative
3-balance, along with other balance measures such as degree of balance and normalized
frustration index [17], does not guarantee polarization as in the case of a graph with only
positive edges.

Cohesive subgraphs and truss decomposition. The problem of truss decomposition is
based on cohesive subgraph discovery. The cohesion of a subgraph is measured in terms of
the edge ratio, which is the ratio of the number of edges in the subgraph to the number of
node pairs. The most intuitive definition for a cohesive subgraph is a clique in which every
pair of nodes is connected. However, it is often too rigid, resulting in small subgraphs with
trivial significance. Thus, more relaxed forms of a cohesive subgraph have been proposed
and k-truss is one such proposal that has been shown to be effective [19]:

Definition 1 A k-truss of G is a maximal connected subgraph of G where each edge partic-
ipates in at least k triangles in the subgraph.

The truss number of an edge e ∈ E (denoted by K (e)) is the largest k for which there
is a k-truss that contains e. The edges in the k-truss are triangle-connected to each other,
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which means any pair of edges e, e′ in a k-truss either participates in the same triangle or
connected to each other via a series of other edges e = e1, e2, . . . , ek = e′ such that each
consecutive edge pair ei , ei+1 (for 1 ≤ i < k) shares a triangle [23, 24]. Truss decomposition
is the process of finding the truss numbers of all the edges in a given graph through a peeling
process which iteratively peels the edge with the lowest triangle count. The triangle count
of an edge that is being peeled is assigned as its truss number [19]. For a given graph
G = (V , E), the space complexity of the truss decomposition is O(|V | + |E |) and the time
complexity is O(

∑
v∈V |N (v)|2). An edge can reside in multiple k-trusses with different k

values, which results in a hierarchy where lower k-trusses contain (i.e., serve as a parent of)
higher k-trusses. The terminal subgraphs which do not have a child in the truss hierarchy are
called the leaf trusses. Leaves have the highest edge ratio and thus represent the strongest
interactions. A truss has a depth of x from a leaf if its distance to the closest leaf is x . We
use the fast hierarchy construction algorithms to obtain the actual subgraphs during the truss
decomposition, for which the time complexity is the same as peeling [25].

3 Related work

Here we review prior works on finding balanced and polarized subgraphs and put them in
context of our work.

Controversy in Unsigned Networks. Garimella et al. quantified controversy in unsigned
networks by classifying two communities which are strongly separated [5]. They proposed
a random walk-based method to measure the controversy, which is based on the probability
that nodes will end in the same set after a random walk.Random walk controversy (RWC)
is defined as follows:

(LL)(RR)

(LL + RL)(LR + RR)
− (LR)(RL)

(LR + RR)(LL + RL)
(1)

where XY represents the number of walks which start in set X and end in set Y . We
use the authors’ code to calculate random walk controversy in polarized communities where
negative edges are ignored. 50% of the nodes are randomly selected as starting nodes from
each set and the walk terminates when another starting node is reached. Our work differs
from Garimella et al.’s method by operating on signed networks and considering subgraphs
with high cohesion across partitions.

Finding Balanced Communities.A related problem is to find a perfectly balanced subgraph
for which the size of the node set is maximized. Figueiredo and Frota proposed a branch-
and-cut approach [26] and introduced applications in risk management [27]. Ordozgoiti et
al. proposed an algorithm which greedily removes the nodes from the graph until the graph
is balanced, followed by adding back the nodes which do not impact balance [18]. The main
difference between our work and these approaches is that we allow partial balance and also
target high cohesion in the subgraphs.

For partial balance, Bonchi et al. introduced a spectral algorithm, EIGENSIGN, which
computes the first eigenvector corresponding to the largest eigenvalue in the adjacencymatrix
and then discretizes its entries [12]. EIGENSIGN aims to find a pair of communities S that
maximizes the polarity measure:

POL(S) = 2 ∗ (|E+
L | + |E+

R | − |E−
L | − |E−

R | + |E−
LR | − |E+

LR |)
|VL | + |VR | (2)
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where ELR is the set of edges between the left and right sets. Bonchi et al. also adapted
the greedy 2-approximation approach proposed by Charikar for finding the most cohesive
subgraph [28], herein we refer to as GREEDY. It iteratively peels the node with the min-
imum difference between its positive and negative edge counts and the subgraph with the
maximum polarity in this process is returned. In a related direction, Xiao et al. proposed
an algorithm which, given two seed (disjoint) sets of nodes, outputs two disjoint subgraphs
such that each contain one of the seed node sets and polarity between sets is maximized [14].
One drawback of the polarity measure is that it measures balance but not polarization.
Contrary to its name, a high value for the polarity measure does not always indicate the
existence of two polarized communities. The polarity measure can be high even when one
of the communities is empty—a subgraph whose edges are almost entirely positive is close
to a complete agreement and there is no polarization at all. In our work, we remedy this
issue by studying cohesively polarized communities. We compare our algorithms against
EIGENSIGN and GREEDY in Sect. 6.

Detecting k Conflicting Groups. In this problem, the objective is to find k subsets of nodes
which are positively connectedwithin subsets and negatively connected between subsets. The
problem of finding a pair of polarized communities is simply a special case of this problem
for k = 2. Chu et al. proposed an algorithm which aims to find all groups which contain k
polarized subgraphs in signed networks [29]. However, their algorithm only finds polarized
communities within each local region, which often yields subgraphs of lesser quality. A
better algorithm for the same problem is proposed by Tzeng et al. [13]. The authors proposed
two spectral methods, SCG-MA and SCG-R, which operate on the leading eigenvector of
the adjacency matrix and differ in their rounding schemes [13]. In our problem formulation,
prior knowledge of k is not required, unlike [13]. Nevertheless, we compare our algorithms
against SCG-MA and SCG-R in Sect. 6.

Correlation Clustering. The objective is to partition the nodes of a signed graph into a
specific number of clusters such that there are mostly positive edges within clusters and
mostly negative edges across clusters [30]. The 2-correlation-clustering problem is a specific
casewhere the number of clusters is two.Bansal et al. introduced a 3-approximation algorithm
which considers pairs of clusters for all v ∈ V such that v and all its positively connected
neighbors are in one cluster and all its negatively connected neighbors are in the other cluster
[30]. As a follow-up, Bonchi et al. proposed returning the cluster pair which maximizes
the polarity measure (Eq. 2) [12], which we refer to as BANSAL. Coleman et al. proposed
the PASTA-TOSS algorithm for the 2-correlation-clustering problem which iteratively moves
nodes across sets and returns the resulting distribution with the highest polarity [31]. We
use PASTA-TOSS to partition the subgraphs returned by our algorithms into left and right
communities. We compare our algorithms against BANSAL in Sect. 6.

Balanced Clique Enumeration. Although finding cohesive subgraphs is a fundamental
graph mining problem for all kinds of networks with key applications [32–40], it is not much
studied in signed networks. Existing studies only consider strict models such as cliques [41]
or focus on streaming workloads [42] but have not leveraged the cohesion while finding
polarized communities. Recently, Sun et al. and Chen et al. studied the problem of maximal
balanced k-clique enumeration in signed networks [43, 44], which aims to find maximal
cliques with no unbalanced triangles. Gao et al. introduced the maximal multipolarized
clique model [45] where cliques are polarized with each other. However, the definition of
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a clique is often too rigid, resulting in small subgraphs with trivial significance. Here we
consider k-truss, a more relaxed model, to model cohesion.

k-truss-BasedModels. There are a few recent works that attempt adapting the k-truss model
for signed networks. Zhao et al. defined the signed k-truss as a subgraph where each edge
takes part in at least k − 2 balanced triangles and there is no unbalanced triangles [46].
Their proposed solution, which we refer to as ZHAO, iteratively removes the edge which
participates in at least one unbalanced triangle and results in the largest subgraph until the
remaining graph does not contain any unbalanced triangles. Wu et al. introduced another
model, signed (k, r )-truss, where each edge is in at least k balanced triangles and at most
r unbalanced triangles [47]. Both Zhao et al.’s and Wu et al.’s truss-based models find a
single edge-induced subgraph where only a subset of edges among the selected subset of
nodes is considered as part of the subgraph [46, 47]. We compare our algorithms against
ZHAO in Sect. 6.

4 Modeling polarized communities

In this paper, we aim to find cohesively polarized pairs of communities with non-trivial
size. For cohesion, we use the edge ratio (see Sect. 2). We consider cohesion in our problem
formulation to preventweakly connected communities frombeingmisrepresented as strongly
polarized. This makes our algorithms more practical than the existing methods. We consider
groups of nodes as a community, which are best modeled as vertex-induced subgraphs in
which all the edges among the nodes are considered to be in the subgraph. We believe that
this is more realistic than finding edge-induced subgraphs [46, 47] because it is often the set
of entities, not specific connections, that one is interested in real-world applications.

Previous works on balanced subgraphs [12, 13, 30] consider balance as a direct link to
polarization. However, balanced subgraphs do not have to be polarized as in the case of a
subgraphwith only positive edges. In this case, it is impossible to identify and limit the spread
of polarization. Therefore, we consider a new approach based strictly on finding cohesively
polarized communities of significant size.

Cohesively polarized communities. Polarized communities are two or more conflicting
groups with positive connections in each group and negative connections in between the
groups. Polarized communities are balanced but the opposite is not true: a set of nodes with
only positive edges is balanced but not polarized.

To quantify the polarized communities, various measures have been proposed by earlier
works, as explained inSect. 3. Thepolaritymeasure (Eq. 2) has twodisadvantages inmodeling
polarized communities: (1) It does not care about the size of each community separately, i.e., it
is perfectly okay if one of the communities does not exist or have a trivial size; (2) It combines
two different objectives, agreement inside and conflict across, hence lets one dominate the
other when optimizing the measure. Aref et al. proposed two measures to remedy the second
issue [48]: cohesiveness is defined as the fraction of positive edges to the total number of
edges within sets and divisiveness is defined as the ratio of negative edges to the total number
of edges between sets. Those two measures, however, cannot address the first issue and also
do not penalize the negative edges inside each community and positive edges across the
communities. A subgraph with high cohesiveness may have a lower edge ratio compared to
another subgraph with similar cohesiveness. Likewise, high divisiveness is trivial if the two
communities of the subgraph are connected only by a few, negative edges.

123



12008 J. Niu, A. E. Sarıyüce

To address the issues mentioned above, we define dichotomy,which quantifies the quality
of a given pair of polarized communities S by using the polarity, cohesion, and the ratio of
the community sizes, as follows:

POL(S) · |ES |
(|VS |

2

) · min(|VL |, |VR |)
max(|VL |, |VR |) (3)

POL(S) represents the polarity (Eq. 2) between the communities. Dichotomy measures the
polarization of a subgraph by considering all the traits of a cohesively polarized subgraph.
We want to find subgraphs which maximize the polarity and cohesion while having similar
left and right set sizes so one community does not overwhelm the other. These traits each
correspond to a part of the dichotomy formulation.

Our main problem is defined as follows:

Problem 1 Given an undirected signed graph G, find a pair of polarized communities with
optimal dichotomy.

Bonchi et al. proved that optimizing polarity (Eq. 2) is NP-hard [12]. Therefore, by exten-
sion, Problem1 is alsoNP-hard.Wepropose heuristics (Sect. 5) to find polarized communities
with high dichotomy.

5 Algorithms

We start with atom decomposition (Sect. 5.1), which is at the core of our algorithms, and
give an early empirical evaluation to understand the structure of real-world signed networks
(Sect. 5.1.1). Motivated by our observations, we then provide photon decomposition to find
balanced and dense subgraphs (Sect. 5.2). At the end, we propose electron decomposition
for Problem 1 to find pair(s) of cohesively polarized communities with high dichotomy score
(Sect. 5.3).

5.1 Using triangles for cohesion and balance

Triangles offer a unique opportunity to capture cohesion and balance at the same time. The
literature is rich with the methods that use triangles to model cohesive subgraphs in various
kinds of networks [23, 24, 49]. Here we introduce a new subgraph definition for cohesive
subgraphs with respect to a given set of triangle types in signed networks.

Definition 2 A (k,�)-atom of G is a maximal triangle-connected subgraph of G where each
edge participates in at least k triangles of type in �.

� is the set of triangle types for which the subgraphs are to be found. If � has all the four
signed triangle types, (k,�)-atom is equivalent to the k-truss in the unsigned version of the
network. For simplicity, we denote balanced triangles (� = {+++, +−−}) by bal and
unbalanced triangles (� = {++−, −−−}) by unbal. We use �-atom as shorthand for
(k,�)-atom when k is not relevant. We also define the �-atom number of an edge as the
largest k for which there is a non-empty (k,�)-atom that contains the edge. As in the case of
k-truss, all the (k,�)-atoms in a graph form a hierarchy where subgraphs with low k values
contain the subgraphs with higher k values. The largest k value for which there exists a non-
empty (k,�)-atom is the maximum �-atom number of the graph. A (k,�)-atom with the
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Algorithm 1: ATOM (G,�)
Input: G (V , E): graph, �: set of triangle types
Output: K : �-atom numbers

1 T (e) ← 0 ∀ edge e ∈ E
2 foreach triangle t ∈ G do
3 if type(t) ∈ � then T (e)++∀ edge e ∈ t
4 Mark every e ∈ E as unprocessed
5 foreach unprocessed edge e with min. T (e) do
6 K (e) ← T (e)
7 foreach triangle t | type(t) ∈ �∧e ∈ t do
8 if any edge e′ ∈ t is processed then cont.9 foreach edge e′ ∈ t | e′ �= e do

10 if T (e′) > T (e) then T (e′)−−
11 Mark e as processed
12 return K

maximum atom number is themaximum �-atom. A (k,�)-atom that does not contain any
(k′,�)-atom such that k′ > k is a leaf �-atom (i.e., a leaf in the hierarchy).

To find (k,�)-atoms in a given graph (for all k values), we introduce atom decomposition,
ATOM in short, in Algorithm 1. It takes as input a signed graph G and a set of triangle
types � and finds the �-atom number of all the edges. Atom decomposition is inspired
by the peeling-based truss decomposition algorithm. The triangle count of each edge is
initialized to the number of triangles of type in � that the edge participates in (lines 1-3).
Then, a peeling process is performed to iteratively peel the edge with the lowest triangle
count (of types in �) from the graph (lines 5-11). In each iteration, the �-atom number of
the edge of interest is assigned, triangle count of the neighboring edges (with higher value) is
decremented, and the edge of interest is marked as processed. At the end,�-atom numbers of
all the edges are returned (line 12). To construct the subgraphs and hierarchy, we consider the
fast hierarchy construction algorithms in [25] (details are omitted for brevity). ATOM finds
cohesive subgraphs with maximal number of given triangle types.

Timeand space complexity.Unlike truss decomposition,ATOM only processes the triangles
of a certain type, i.e., it performs truss decomposition on a smaller graph consisting of a subset
of triangles from the original graph. This translates to the two additional checks in ATOM to
ensure that the correct types of triangles are counted (line 3) and the correct types of triangles
are used in the peeling (line 7). Those checks are performed in constant time and do not
take additional space, thus the time and space complexities of ATOM are the same as truss
decomposition (see Sect. 2).

5.1.1 Early evaluation

We perform an early evaluation of ATOM to understand the structure of real-world signed
networks in terms of signed triangles (see Table 3 for the datasets). To characterize the
significance of the results in real-world networks, we use a null model for comparison,
proposed by Kirkley et al. [50]. In this model, the structure of the graph is not changed (i.e.,
unsigned version stays the same) and only the signs of the edges are randomized while the
ratio of negative edges is preserved. For each real-world network, we generate 10 randomized
networks and report the average values.

Placement of signed triangles. Previous studies have shown that balanced triangles (+++,
+−−) are more abundant than unbalanced triangles (++−, −−−) and also more frequent
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Table 1 Maximum �-atom numbers

Real-world +++ +−− ++− −−− bal
Networks Real Exp. Real Exp. Real Exp. Real Exp. Real Exp.

Bitcoin 9.0 7.2 8.0 2.0 3.0 3.2 2.0 1.6 10.0 7.2

Wikielections 17.0 12.1 4.0 3.0 5.0 7.1 4.0 2.6 17.0 12.1

Tw-referendum 51.0 46.3 11.0 2.1 7.0 6.0 0.0 1.2 51.0 46.3

Slashdot 34.0 19.0 7.0 4.0 3.0 12.0 3.0 3.0 34.0 19.0

Epinions 104.0 69.9 10.0 5.7 8.0 26.6 8.0 3.0 104.0 69.9

Wikipolitics 28.0 23.0 3.0 3.0 4.0 7.0 6.0 2.0 28.0 23.0

Wikiconflict 28.0 5.0 14.0 16.0 15.0 9.0 22.0 14.4 28.0 18.0

For each �, real denotes the real value and exp. is the average value of corresponding randomized networks.
bal denotes {+++, +−−}

than expected in real-world signed networks [17, 51, 52]. However, there has been limited
research on the relative placement of these triangles in relation to each other. We now check
how close the signed triangles of same (or similar) type are placed in real-world networks and
in their randomized counterparts. To quantify this, we use the maximum �-atom numbers
(Table 1) and the average proportion of the selected triangles in leaf atoms (Table 2).

A large maximum �-atom number implies that the edges in the corresponding subgraph
participate in a larger number of triangles of type in �, thus the triangles of type � are
placed close to each other. Table 1 presents the maximum atom numbers of real networks
and randomized networks (on average) for five settings of triangles. If � has a balanced
triangle (first, second, and last settings), the maximum atom number is significantly larger in
the real network than in the randomized versions. On the other hand, if� = {++−}, the real
maximum atom number is smaller than the expected value in all but two graphs. The +−−
results in Table 1 are particularly striking because even in the networks with a smaller fraction
of +−− than ++− triangles (Tw-referendum, Epinions), the maximum {+−−}-
atom number is larger than the maximum {++−}-atom number in real networks!

Another proxy to quantify the closeness of triangles is the proportion of selected triangle
types in the resulting subgraph. If the average proportion of triangles is larger than the
expected, then the leaves of the real network are typically more cohesive than expected
with respect to the corresponding triangle type(s). To measure that, we compute the leaf
atoms with various � settings in both real and randomized networks, compute the fraction
of selected triangle types in each, and calculate the average value (e.g., if � = {+−−}, we
check the fraction of +−− triangles in the leaf {+−−}-atoms). Note that leaf atoms have
the highest edge ratio when compared to its surroundings. Table 2 presents the results for
five settings. +++ and +−− each (and together) yields subgraphs with a higher fraction of
selected triangles in real networks than in randomized networks. Also,++− exhibits smaller
proportions than expected for four of seven networks. We observe that not only are balanced
triangles more abundant in the real networks, they are also typically closer to each other than
expected, thus tend to form good seedbeds for highly balanced and/or polarized subgraphs.

5.2 Improving the balance

In our early evaluation in Sect. 5.1.1, we found that +++ triangles typically dominate
the triangle count and balanced triangles overall are much more common. Therefore, if we
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Table 2 Average proportion of the corresponding triangle type (�) within each leaf in the �-atom hierarchy.
Tw-referendum returned no applicable subgraphs for � = {---}
Real-world +++ +−− ++− −−− bal
networks Real Exp. Real Exp. Real Exp. Real Exp. Real Exp.

Bitcoin 0.98 0.69 0.82 0.17 0.48 0.37 0.31 0.59 0.97 0.86

Wikielections 0.88 0.51 0.32 0.13 0.32 0.41 1.00 0.03 0.89 0.77

Tw-referendum 1.00 0.86 0.80 0.01 0.21 0.16 n/a 0.57 1.00 1.00

Slashdot 0.99 0.48 0.63 0.14 0.14 0.42 0.87 0.54 0.99 0.98

Epinions 0.99 0.59 0.50 0.08 0.26 0.36 0.49 0.01 0.98 0.96

Wikipolitics 0.95 0.71 0.18 0.15 0.22 0.31 0.83 0.18 0.96 0.94

Wikiconflict 0.71 0.06 0.58 0.44 0.62 0.28 0.84 0.26 0.73 0.68

simply use {+++, +−−}-atoms (which we refer as bal-atoms hereafter) to find polarized
communities, +++ triangles may overwhelm +−− triangles. Another thing is that �-atom
is designed to maximize the number of triangles of desired type(s). However, it does not
prevent the undesired type(s) of triangles from forming. As mentioned in Sect. 2, all the
subgraph definitions in this work are vertex-induced, implying that all the edges among the
chosen set of nodes are considered to be part of the subgraph. If one is looking for balanced
subgraphs, bal-atoms only ensure that each edge is part of many balanced triangles but does
not enforce anything about participations in unbalanced triangles. The most cohesive bal-
atoms may contain many unbalanced triangles, e.g., 27% of the triangles in leaf bal-atoms of
Wikiconflict are unbalanced (see the last pair of columns in Table 2). Although�-atom
provides a simple model to find subgraphs with many triangles of interest, it is not capable
to find cohesively polarized pairs of communities. Therefore, we propose to explicitly avoid
unwanted triangles with a pre-processing step.

Algorithm 2: PHOTON (G, α)
Input: G (V , E): graph, α: threshold in [0, 1]
Output: K : processed bal-atom numbers // bal = {+++,+--}, unbal = {++-,---}

1 badK ← AT OM (G, unbal)
2 E ′ ← {e ∈ E | badK (e) >= max(badK ) ∗ α}
3 foreach endpoint node u ∈ E ′ do
4 Remove u from G
5 K ← AT OM (G, bal)
6 return K

We introduce photon decomposition,PHOTON in short, to find highly balanced subgraphs
while also preserving the density (Algorithm 2).We rank the edges based on their unbalanced
triangle counts, i.e., unbal-atom ({++−, −−−}-atom) number, to determine which ones
need to be avoided in the resulting subgraphs. PHOTON takes as input a signed graph G and
a threshold α, and outputs the bal-atom numbers of the filtered graph. PHOTON filters the
bad edges according to the α threshold, which is in the interval [0, 1]. In pre-processing, we
remove the endpoints of edges from the graph whose unbal-atom number is at least α of the
maximum unbal-atom number (lines 1-4). Then, bal-atom decomposition is applied on the
remaining graph (line 5). The top subgraph is the maximum bal-atom obtained at the end. If
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there are multiple subgraphs with the same highest k, then we choose the subgraph with the
best dichotomy. The tunable threshold provides a trade-off between balance and subgraph
size. Lower threshold values typically result in smaller subgraphs with more balance, while
higher threshold values usually yield larger subgraphs with lower balance.

Time and space complexity. PHOTON has two calls to atom decomposition (lines 1 and 5)
and a filtering step (lines 2-4), thus the time and space complexities are the same as atom
decomposition.

Algorithm 3: ELECTRON (G, β)
Input: G (V , E): graph, β: threshold in [-1, 1]
Output: K : processed {+−−}-atom numbers

1 T (u) ← 0 ∀ node u ∈ V
2 foreach triangle t ∈ G do
3 if t is +−− then T (u)++ ∀ u ∈ t4 else if t is unbal. then T (u)−− ∀ u ∈ t
5 while |V | > 0 do
6 f ← min

u∈V
T (u)

(
|V |−1

2 )
// Min. friction value

7 if f >= β then break // Threshold met

8 N ← {u ∈ V | T (u)

(
|V |−1

2 )
= f } // Min. friction nodes

9 foreach node u ∈ N do
10 foreach triangle t ∈ G | u ∈ t do
11 if t is +−− then
12 T (v)−− ∀ node v ∈ t | u �= v

13 else if t is unbal. then
14 T (v)++ ∀ node v ∈ t | u �= v

15 Remove u from G
16 K ← AT OM (G, {+−−})
17 return K

5.3 Finding polarized communities

We propose a conflict-based algorithm which builds upon the (k,�)-atom model. It is well-
known that real-world signed networks typically have more positive than negative edges.
Therefore, previous state-of-the-art algorithms often find subgraphs with mainly positive
edges. Poor conflict for these models is one of the most common reasons for low dichotomy.
These algorithms find subgraphs which are balanced but may not be polarized. Ideally, a
polarized subgraph is balanced and contain two distinct communities with positive edges
within and negative edges in between. As shown in Sect. 5.1.1, +++ triangles are typically
muchmore common than+−− triangles in real-world signed networks. Hence, the balanced
and cohesive subgraphs found by bal-atom and PHOTON often feature one large positively
connected community and one much smaller opposing community, if at all. In order to find
two polarized communities of non-trivial and comparable size,+−− triangles must be given
a higher importance than +++. {+−−}-atom (i.e., polarized atom) may seem like the
obvious choice in this context since it maximizes the number of +−− triangles. However, it
does not prevent the presence of other types of triangles, which would reduce the polarization
between the two communities.
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To prevent the presence of undesirable triangleswhile keeping+−− triangles, we propose
to filter out the nodes which are least correlated to the polarization. To this end, we first rank
the nodes for removal by using the difference between the count of +−− and unbalanced
triangles {++−,−−−}. This difference favors balanced triangles over unbalanced triangles.
Note that we specifically ignore +++ triangles to put more emphasis on the presence of
+−− triangles. In addition, we want to factor in cohesion as it is part of the dichotomy.
Let T+−−

ub (u) be the number of +−− triangles minus the number of unbalanced triangles

containing u. The maximum number of +−− triangles a node can participate in is
(|V |−1

2

)
.

To measure how important a node is for the total polarization of the graph, we define the
friction as follows (takes values in [-1,1] interval):

T+−−
ub (u)
(|V |−1

2

) (4)

We give a tunable algorithm, electron decomposition (ELECTRON in short), that leverages
the friction values of the nodes to find cohesively polarized communities with high dichotomy
(Algorithm 3). ELECTRON takes as input a signed graph G and a threshold β, and outputs
the {+−−}-atom numbers of the filtered graph. ELECTRON has a pre-processing stage
which filters the input graph according to a specified threshold β (lines 1-13). The threshold
β provides a trade-off between the subgraph size and conflict—higher β values typically
result in smaller subgraphs with higher degrees of conflict. After the computation of T+−−

ub
values for each node (lines 1-4), the nodes with minimum friction are iteratively removed
from the graph until the friction of all the nodes satisfy the threshold β, which is in the
interval [-1, 1] (lines 5-15). Note that once a node is removed, the friction of the neighboring
nodes may change (lines 9-15). At the end, {+−−}-atom decomposition is performed on
the remaining graph (line 16). After the {+−−}-atoms are computed, the two communities
(left and right sets) in each subgraph is obtained by Coleman et al.’s PASTA-TOSS algorithm,
which partitions the nodes into two communities with highest polarity [31]. The top subgraph
from our algorithm is the maximum {+−−}-atom. If there are multiple subgraphs with the
same highest k, then we choose the subgraph with the best dichotomy.

Time and space complexity. In addition to the atom decomposition (line 16), we perform a
filtering process (lines 1-15) as a peeling computation over nodes. T+−−

ub values of the nodes
aremaintained in a bucket (instead of friction values, because all have the same denominator),
which ensures picking the node(s) with minimum friction value in constant time. This is a
variation of the (1,3)-nucleus decomposition, proposed in [24], where the triangle counts of
the nodes are used for peeling. The time complexity of this filtering process is the same as truss
decomposition and its space complexity is O(|V |). Hence, the time and space complexity of
electron decomposition are the same as atom decomposition.

6 Experimental evaluation

Here we evaluate our algorithms on real-world networks against several baselines. We use
various measures in evaluation. We answer the following research questions in the marked
sections:

• How does the PHOTON and ELECTRON compare against the state-of-the-art methods in
finding a single best andmultiple polarized communitieswith respect to variousmeasures
(including dichotomy)? (Sects. 6.1 and 6.2)
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Table 3 Statistics of the
real-world networks

Net. |V | |E | |E−|/|E | # triangles

CO 180 1,803 0.22 12,249

BI 5,881 21,492 0.15 33,493

RB 44,674 129,668 0.17 607,536

WE 7,115 100,693 0.22 607,279

TW 10,884 251,406 0.05 3,120,811

SL 82,140 500,481 0.23 579,565

EP 131,580 711,210 0.17 4,910,076

WP 138,587 715,883 0.12 2,978,026

WC 116,717 2,026,646 0.62 13,831,236

• How does the α and β parameters in PHOTON and ELECTRON respectively, impact the
size and quality (dichotomy) of the resulting subgraphs? What values should be chosen?
(Sect. 6.3)

• What does the resulting subgraphs by PHOTON, ELECTRON, and state-of-the-art look
like in a political network among governments in the Cold War era (Correlates of War)
and a business network of company relationships/competition (RelatoBusiness) datasets?
(Sects. 6.4 and 6.5)

• How efficient arePHOTON andELECTRONwhen applied to large-scale networks, espe-
cially when compared to the state-of-the-art methods? (Sect. 6.6)

Datasets. Important statistics of the used real-world signed networks are given in Table 3.
Bitcoin (BI) and Epinions (EP) are who-trusts-whom networks of the users of Bitcoin
OTC and Epinions.com, respectively [53]. Tw-referendum (TW) is built from Twitter
data about the 2016 Italian Referendum: an interaction is negative if two users are classified
with different stances, and is positive otherwise [54]. Slashdot (SL) contains friend/foe
links between the users of Slashdot [53].Wikiconflict (WC), Wikielections (WE),
and Wikipolitics (WP) contain links between users from the English Wikipedia [55].
The edges of Wikiconflict represent positive and negative edit conflicts between users.
Wikielections is the network of users that voted for and against each other in admin
elections. Wikipolitics contains interpreted interactions between users that have edited
pages about politics. We use CoW (CO) and Rel-Business (RB) as case studies which
we describe in Sects. 6.4 and 6.5, respectively. We also use two large unsigned networks for
scalability evaluation: LiveJournal and Orkut. We randomly assign the edge signs and
perform runtime experiments (see Table 9).

Measures. To quantify the quality of the polarized communities, we consider relative 3-
balance (Sect. 2), edge density/cohesion (Sect. 2), random walk controversy (RWC) (Eq. 1),
polarity (Eq. 2), cohesiveness, divisiveness (Sect. 4), and dichotomy (Eq. 3) measures.

Baselines.Wecompareour algorithmsagainst several state-of-the-art baselines:BANSAL[30],
EIGENSIGN[12], GREEDY[12], SCG-MA and SCG-R (k=2) [13], and ZHAO[46] (detailed
descriptions are given in Sect. 3). Since SCG-MA consistently finds subgraphs with lower
balance compared to the other baselines, it is omitted in the results. We also use the
truss decomposition [19], which we refer to as TRUSS, as a baseline (it is the same as
{+++,++−,+−−,−−−}-atom decomposition). For all baselines, we consider the vertex-
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induced subgraphs that are obtained by including the endpoints of the edges outputted by the
baseline.

Setup. All experiments are performed on a Linux operating system (v. Linux 3.10.0-1127)
running on amachine with Intel(R) Xeon(R) Gold 6130 CPU processor at 2.10 GHzwith 192
GBmemory.We implemented our algorithms in C++ and compiled using gcc 6.3.0 at the -O2
level.Code is available at https://tinyurl.com/polarizedDichotomy. For each experiment, the
complete set of results is available in the extended version [56].

6.1 Polarized communities

Here we compare PHOTON and ELECTRON against the state-of-the-art methods in
finding the top pair of polarized communities. Table 4 shows the results obtained by the
best baseline algorithm in terms of dichotomy (shown with an appended asterix), bal-atom
decomposition (denoted as B-ATOM), {+−−}-atom decomposition (shown as P-ATOM),
PHOTON (α = 0.6), and ELECTRON (β = 0.1) (we explain these default α and β values
in Sect. 6.3). As explained in Sects. 5.2 and 5.3, the top subgraph from PHOTON is the
maximum bal-atom obtained at line 5 of Algorithm 2 and the top one from ELECTRON is
the maximum {+−−}-atom given at line 16 of Algorithm 3. If there are multiple subgraphs
with the same highest k, then we choose the subgraph with the best dichotomy. For each
graph and algorithm, we list the number of nodes in the left and right communities (larger
one is the left w.l.o.g.), relative 3-balance, edge density, random walk controversy, polarity,
cohesiveness, divisiveness, and dichotomy. Trivial subgraphs with empty right sets do not
have a cohesiveness and divisiveness score.

PHOTON’s top subgraph has the best relative 3-balance and edge density for 5 of 7
networks. These subgraphs often represent a closely connected positive cluster due to their
small or empty right sets. However, these communities have little to no polarization, unlike
the communities found byP-ATOM andELECTRON.P-ATOM andELECTRON consistently
have the best dichotomy scores, often outperforming all other algorithms by far. Note that
randomwalk controversy and polarity scores are not in line with the other measures in several
cases, which suggests that they are not reliable measures.

6.2 Findingmultiple communities

As real-world networks typically consist of multiple smaller polarized communities instead
of a single large community, finding multiple high quality subgraphs is also an important
problem. Our algorithms can find multiple pairs of polarized communities along with the
maximal pair, which are ranked by their atomnumbers. Each of these non-maximal subgraphs
with high dichotomy can tell a unique story about polarization within the signed network.
For PHOTON and ELECTRON, we consider all the subgraphs within a depth level of 2 from
a leaf in the resulting hierarchy. For the baselines, we can find multiple sets of polarized
communities by removing the resulting communities from the graph and reapplying the
algorithm on the residual graph—we repeat this process to obtain atmost 10 pairs of polarized
communities.

Table 5 shows the average results for the multiple pairs of polarized communities obtained
by the best baseline algorithm in terms of dichotomy, bal-atom decomposition (B-ATOM),
{+−−}-atom decomposition (P-ATOM), PHOTON (α = 0.6), and ELECTRON (β = 0.1).
For each graph and algorithm, we list the number of obtained community pairs, average
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Table 6 Average results for PHOTON with α = 0.3, 0.6, 0.9. R3B is the relative 3-balance

|V | Density R3B

Networks 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

BI 10.0 16.9 23.3 0.40 0.48 0.56 1.00 1.00 1.00

WE n/a 79.3 155.3 n/a 0.32 0.42 n/a 0.97 0.94

TW 40.3 65.7 66.7 0.53 0.70 0.85 1.00 1.00 1.00

SL 14.8 15.4 17.3 0.46 0.41 0.53 1.00 0.99 0.99

EP 16.9 18.5 20.1 0.60 0.68 0.68 1.00 1.00 1.00

WP 20.7 18.9 25.0 0.46 0.67 0.66 0.99 0.98 0.95

WC 36.7 20.8 25.1 0.27 0.40 0.44 0.73 0.49 0.35

number of nodes in the left and right sets (larger set is the left w.l.o.g.), and average relative
3-balance, polarity, cohesiveness, divisiveness, and dichotomy. Trivial subgraphs with empty
right sets are omitted.

PHOTON finds the most community pairs in 5 of 7 networks. This is a stark contrast
to ELECTRON, which found at most 3 community pairs. Although ELECTRON often finds
subgraphs of higher quality, PHOTON finds a plethora of communities, thanks to the detailed
resulting hierarchy with many leaf subgraphs, with high relative 3-balance. Overall, PHO-
TON is effective for findingmany cohesively balanced communities.ELECTRON has the best
dichotomy score in 6 of 7 networks, often outperforming the second-best algorithm by a sig-
nificant margin. Tw-referendum is the only dataset where P-ATOM slightly outperforms
ELECTRON.

6.3 Threshold experiments

Here, we present the threshold experiments for PHOTON and ELECTRON. We consider all
subgraphs found by our algorithms and compute their average scores.

To analyze the impact of the α threshold in PHOTON, we compare the results obtained for
different α values. PHOTON finds highly balanced and dense subgraphs which are not neces-
sarily polarized. Table 6 shows the average relative 3-balance results for PHOTONwhen α is
set to 0.3, 0.6, and 0.9. In some networks, such as Wikipolitics and Wikiconflict,
higher α values typically result in subgraphs with less balance. However, lower α values
often result in smaller size subgraphs, many of which have less than 10 nodes—no subgraph
with non-trivial size can be found in Wikielections for α ≤ 0.4. In general, α = 0.6
provides a good trade-off between subgraph size, density, and balance for all the graphs,
hence can be chosen as the default.

For ELECTRON, we compare the average results for different values of β. Figure 2 shows
the average number of nodes and dichotomy for all resulting subgraphs when β is 0.1, 0.2,
and 0.3. ELECTRON avoids finding harmonious subgraphs with little to no polarization,
unlike other algorithms. In general, a β value of 0.1 gives subgraphs with high dichotomy
for the majority of the networks, hence suggested as default. One can choose slightly higher
β values for higher degrees of conflict at the expense of smaller community sizes.
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Fig. 2 Threshold experiments for
ELECTRON. We plot the average
number of nodes (left) and
average dichotomy (right) for the
β values of 0.1, 0.2, and 0.3

Table 7 Average results for our
algorithms and baselines on CoW.
NP is the number of pairs of
polarized communities and the
rest is defined as in Table 5. We
only show the algorithms that
have the best result for Pol., Coh.,
Div., and/or Dic. (highlighted in
blue)

Algorithm NP |VL | |VR | Pol. Coh. Div. Dic.

ZHAO 8 24.12 1.62 13.84 0.60 1.00 0.05

TRUSS 8 27.5 0.12 21.35 0.99 1.00 0.11

P-ATOM 3 17.0 4.67 6.64 0.76 1.00 3.50

PHOTON 6 15.17 0.83 12.86 0.99 1.00 0.47

ELECTRON 2 10.5 6.0 11.18 0.97 1.00 4.99

6.4 Case study: correlates of war

In this section, we present a case study to evaluate the algorithms on the CoW (Correlates of
War) dataset [57]. Nodes in CoW are the countries, negative edges indicate a major conflict
such as war, and positive edges represent alliances or peace treaties. The original data have
52 signed networks corresponding to different time periods between 1946 and 1999. Here
we aggregate the data by choosing the most common sign for each edge (or the most recent,
if tied). In the aggregated network, there are 180 nodes, 397 negative edges, 1,406 positive
edges, and 12,249 triangles. The USA has the highest positive degree and RUS (Russia) has
the highest negative degree.

Table 7 shows the average results for the obtained communities (as described in Sect.
6.2). We omit the baselines that do not perform best in any of the measures. Almost all of the
baselines (except SCG-R) and B-ATOM find the same subgraph consisting of 33 countries
strongly aligned with the USA—there are 554 positive and only 7 negative edges. Although
PHOTON also finds this subgraph, the top subgraph it reports is a different alliance not found
by the other algorithms. PHOTON’s top subgraph (the maximum bal-atom of the filtered
graph), shown in Figure 3, has 16 African countries, such as NGA (Nigeria), LBR (Liberia),
SEN (Senegal), with many currently taking part in the ECOWAS union due to their positive
relationships with each other—there are 119 positive edges and only 1 negative edge.

P-ATOM and ELECTRON are the only algorithms that are able to find a subgraph with a
significant dichotomy. It is the top subgraph found by ELECTRON (the maximum {+ − −}-
atom of the filtered graph) and shown in Figure 4. One set has the countries in alliancewith the
USA (Western bloc) and the other set contains the countries who had a positive relationship
with RUS (Eastern bloc). This is expected since the time range mapped by CoW includes
the cold war period. P-ATOM finds a smaller version of this subgraph. None of the baseline
methods can find a similar subgraph that depicts the conflict between Western and Eastern
blocs.
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Fig. 3 The top subgraph found by PHOTON for CoW. Positive edges are the straight blue lines and negative
ones are the dotted red lines

Fig. 4 The top subgraph found
by ELECTRON in CoW. White
and black nodes denote the left
and right communities,
respectively. Positive edges are
denoted by straight blue lines and
negative ones are shown by
dashed red lines

Although a large subgraph may have high balance, it may not have high dichotomy.
Subgraphs with low cohesion typically represent weaker alliances and/or conflicts where
some countries may be neutral (not friendly nor hostile) with each other. On the other hand,
subgraphs with high cohesion likely contain strong alliances between countries who may not
be directly involved in the cold war. Subgraphs with high dichotomy consist of two strong
alliances in a significant conflict with each other. Hence, capturing the polarization in the form
of dichotomy is the key to measure the significance of the relationships within a subgraph.

6.5 Case study: relato business

In this section, we analyze business relationships within the Relato Business Graph Database
(Rel-Business in short) [58]. Here, nodes are businesses, positive edges represent part-
nerships (from the partnership pages of companies), and negative edges correspond to
competitors (co-bidders on AdWords). There are 44,674 nodes, 129,668 edges (22,303 of
which are negative), and 607,536 triangles.
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Table 8 Average results for the subgraphs obtained by our algorithms and baselines on Rel-Business.
Notation is defined as in Table 7. We highlight the best results in blue

Algorithm NP |VL | |VR | R3B Den. Pol. Coh. Div. Dic.

BANSAL 10 139.1 9.5 0.70 0.14 9.38 0.86 0.24 0.05

EIGENSIGN 2 228.5 0.0 0.55 0.10 20.57 - - 0.00

GREEDY 7 180.29 9.29 0.65 0.12 12.89 0.92 0.12 0.04

SCG-R 0 - - - - - - - -

ZHAO 7 175.14 0.0 0.71 0.26 21.43 - - 0.00

TRUSS 38 15.95 4.97 0.05 0.59 2.77 0.09 1.00 0.32

B-ATOM 3 261.33 0.0 0.65 0.25 41.65 - - 0.00

P-ATOM 3 317.67 1.33 0.53 0.30 14.92 0.67 1.00 0.12

PHOTON 7 41.14 0.14 0.93 0.47 9.36 0.96 1.00 0.00

ELECTRON 0 - - - - - - - -

Fig. 5 One of PHOTON’s top
subgraphs for Rel-Business.

Table 8 shows the average subgraph results found by our algorithms and baselines. Note
that SCG-R and ELECTRON found no subgraphs with non-trivial size. PHOTON has the best
average relative 3-balance with 0.93—the second best algorithm is able to give only 0.71,
suggesting the superiority of PHOTON in finding highly balanced subgraphs. PHOTON also
has the second best average density after traditional truss decompositionwhich has an average
relative 3-balance of only 0.05.

In datasets where the polarization is minimal, finding strongly connected communities
with high agreement is important for clustering purposes. With its relatively high cohesion
and balance, PHOTON finds more strongly stable communities compared to the state-of-
the-art baselines. For Rel-Business, PHOTON finds three different subgraphs with the
highest bal-atom number of four. Figure 5 gives one of these subgraphs with no negative
edges. This subgraph contains mainly data analysis companies who have strong partnerships
with each other. The other two subgraphs feature positive connections within several mar-
keting/advertising and online data security companies. Overall, PHOTON can distinguish
between different types of companies through strongly correlated balanced communities.

123



12024 J. Niu, A. E. Sarıyüce

Table 9 Runtime results (in sec.). Computations over 12h are shown by -

WC LiveJournal Orkut
(117K (4M 35M) (3M 109M)
2M) |E−|/|E | |E−|/|E |

Algorithm 0.05 0.25 0.5 0.05 0.25 0.5

BANSAL 11.5K – – – – – –

EIGENSIGN 344 10.2K 3.2K 607 8.3K 4.3K 5.0K

GREEDY 7.7K – – – – – –

SCG-R 2.8K 6.9K 2.4K 2.6K 2.7K 2.8K 3.4K

ZHAO 496 4.6K 1.9K 2.6K 20.2K 19.9K 21.7K

TRUSS 20 106 105 123 668 671 671

B-ATOM 38 352 315 316 2.0K 2.3K 1.9K

PHOTON 75 643 692 751 2.5K 3.3K 3.2K

ELECTRON 47 681 632 722 1.6K 2.0K 2.3K

6.6 Runtime performance

Finally we compare the runtimes of our algorithms and the baselines on the largest network in
our dataset, Wikiconflict, and also two large unsigned networks: LiveJournal and
Orkut. We randomly assign the edge signs in LiveJournal and Orkut, and used three
different probabilities for negative edges, 0.05, 0.25, and 0.5, to see if the fraction of signs
impact the results. We generate 10 random networks for each configuration and considered
the average runtimes.We terminate the computations after 12h. TRUSS,B-ATOM,PHOTON,
and ELECTRON finds multiple subgraphs through their peeling process. For the baselines,
we find multiple sets of communities as explained in Sect. 6.2.

Table 9 gives the results. Our algorithms are consistently faster than all of the baselines
besides TRUSS. TRUSS takes less time as it simply considers all the triangles without any
specific checks for edge signs, which makes it ineffective in finding polarized communities.
Both PHOTON and ELECTRON are consistently faster than the baselines, taking a few
minutes for LiveJournal and less than an hour for Orkut. We do not observe any
significant difference for different ratios of negative edges. Overall, our algorithms are not
only effective in finding highly balanced (PHOTON) and highly polarized (ELECTRON)
subgraphs, but they are also more efficient and practical than the existing methods.

7 Conclusion

Characterizing and finding polarized communities is an important problem to enable a health-
ier web ecosystem. Previous state-of-the-art methods simply focus on balanced subgraphs
and optimize the ill-defined polarity measure which represents balance but not polarization.
We define the dichotomy measure that improves upon polarity to better model the polariza-
tion. Given that maximizing dichotomy is NP-hard, we utilized balanced triangles to design a
hierarchical dense subgraph discovery algorithm, named atomdecomposition. This algorithm
establishes effective foundations for polarized communities within signed networks. An early
evaluation of atom decomposition suggested that not only are balanced triangles more abun-
dant in the real networks, they are also typically closer to each other than expected.Motivated
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by this, we introduced two additional algorithms, namely photon and electron decomposi-
tions, designed to identify polarized communities. Photon decomposition sifts through nodes
engaged in unbalanced triangles, producing numerous cohesively balanced communities.
Electron decomposition prioritizes polarized triangles over positive ones, identifying polar-
ized communities with high dichotomy. Through extensive experiments, we showcase the
superior performance of our approaches in identifying cohesively polarized communities,
surpassing state-of-the-art methods across various metrics. Our algorithms yield compelling
anecdotal findings when applied to a political network among governments in the Cold War
era and a business network of company relationships/competitions. Overall, our algorithms
demonstrate heightened effectiveness and efficiency compared to existing methods, making
them suitable for large-scale networks.

Webelieve that our algorithmswill be beneficial in real-world applications that are engaged
with signed networks. For example, polarized subgraphs in online discussion platforms can
point to the set of users that are heavily interested in a topic with strong opinions. Those users
can be moderated with a better care to control the discourse and avoid extreme polarization.
For future work, it would be interesting to adapt this problem for weighted signed networks
where the weight of an edge represents the magnitude of agreement or conflict between two
nodes. Another avenue for further inquiry is to improve the scalability of our algorithms for
massive networks with billions of edges.
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