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Networks are commonly used to model traffic patterns, social interactions, or web pages.
The vertices in a network do not possess the same characteristics: some vertices are
naturally more connected and some vertices can be more important. Closeness centrality
(CC) is a global metric that quantifies how important is a given vertex in the network.
When the network is dynamic and keeps changing, the relative importance of the vertices
also changes. The best known algorithm to compute the CC scores makes it impractical to
recompute them from scratch after each modification. In this paper, we propose STREAMER, a
distributed memory framework for incrementally maintaining the closeness centrality
scores of a network upon changes. It leverages pipelined, replicated parallelism, and
SpMM-based BFSs, and it takes NUMA effects into account. It makes maintaining the close-
ness centrality values of real-life networks with millions of interactions significantly faster
and obtains almost linear speedups on a 64 nodes 8 threads/node cluster.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

How central is a vertex in a network? Which vertices are more important during an entity dissemination? Centrality met-
rics have been used to answer such questions. They have been successfully used to carry analysis for various purposes such
as power grid contingency analysis [16], quantifying importance in social networks [23], analysis of covert networks [18],
decision/action networks [8], and even for finding the best store locations in cities [26]. As the networks become large, effi-
ciency becomes a crucial concern while analyzing these networks. The algorithm with the best asymptotic complexity to
compute the closeness and betweenness metrics [4] is believed to be asymptotically optimal [17]. The research on fast cen-
trality computation have focused on approximation algorithms [7,9,24] and high performance computing techniques
[22,32,20]. Today, the networks to be analyzed can be quite large, and we are always in a quest for faster techniques which
help us to perform centrality-based analysis.

Many of today’s networks are dynamic. And for such networks, maintaining the exact centrality scores is a challenging
problem which has been studied in the literature [10,19,27]. The problem can also arise for applications involving static net-
works such as the power grid contingency analysis and robustness evaluation of a network. The findings of such analyses and
evaluations can be very useful to be prepared and take proactive measures; for instance if there is a natural risk or a possible
adversarial attack that can yield undesirable changes on the network topology in the future. Similarly, in some applications,
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one might be interested in trying to find the minimal topology modifications on a network to set the centrality scores in a
controlled manner. (Applications include speeding-up or containing the entity dissemination, and making the network
immune to adversarial attacks).

Offline closeness centrality (CC) computation can be expensive for large-scale networks. Yet, one could hope that the
incremental graph modifications can be handled in an inexpensive way. Unfortunately, as Fig. 1 shows, the effect of a local
topology modification can be global. In a previous study, we proposed a sequential incremental closeness centrality algo-
rithm which is orders of magnitude faster than the best offline algorithm [27]. Still, the algorithm was not fast enough to
be used in practice. In a previous work, we proposed STREAMER [29] to parallelize these incremental algorithms. In this paper,
we present an improved version of STREAMER, to efficiently parallelize the incremental CC computation on high-performance
clusters.

The best available algorithm for the offline centrality computation is pleasingly parallel (and scalable if enough memory is
available) since it involves n independent executions of the single-source shortest path (SSSP) algorithm [4]. In a naive dis-
tributed framework for the offline case, one can distribute the SSSPs to the nodes and gather their results. Here the compu-
tation is static, i.e., when the graph changes, the previous results are ignored and the same n SSSPs are re-executed. On the
other hand, in the online approach, the graph modifications can arrive at any time even while the centrality scores for a pre-
vious modification are still being computed. Furthermore, the scores which need to be recomputed (the SSSPs that need to be
executed) change depending on the modification of the graph. Finding these SSSPs and distributing them to the nodes is not
a straightforward task. To be able to do that, the incremental algorithms maintain complex information such as the bicon-
nected component decomposition of the current graph [27]. Hence, after each edge insertion/deletion, this information
needs to be updated. There are several (synchronous and asynchronous) blocks in the online approach. And it is not trivial
to obtain an efficient parallelization of the incremental algorithm. As our experiments will show, the dataflow programming
model and pipelined parallelism are very useful to achieve a significant overlap among these computation/communication
blocks and yield a scalable solution for the incremental centrality computation.

In this paper, we extend STREAMER that we introduced in [29]. Our contributions in [29] can be summarized as follows:

1. We proposed the first distributed-memory framework STREAMER for the incremental closeness centrality computation
problem which employs pipelined parallelism to achieve computation–computation and computation–communication
overlap [29].

2. The worker nodes we used in the experiments have 8 cores. In addition to the distributed-memory parallelization, we
also leveraged the shared-memory parallelization and take NUMA effects into account [29].

3. The framework scales linearly: when 63 worker nodes (8 cores/node) are used, STREAMER obtains almost linear speedups
compared to a single worker node-single thread execution [29].

In addition to above contributions, we introduce new extensions in this paper as follows:

1. The STREAMER framework is modular which makes it easily extendable. When the number of used nodes increases, the
computation inevitably reaches a bottleneck on the extremities of the analysis pipeline which are not parallel. In [29],
this effect appeared on one of the graph (web-NotreDame). Here, we show how the computation can be made parallel
by leveraging the modularity of dataflow middleware.

2. Using an SpMM-based BFS formulation, we significantly improved the incremental CC computation performance and
show that the dataflow programming model makes STREAMER highly modular and easy to enhance with novel algorithmic
techniques.

3. These new techniques provide an improvement of a factor between 2.2 and 9.3 times compared to the techniques pre-
sented in [29].

The paper is organized as follows: Section 2 introduces the notation, formally defines the closeness centrality metric, and
describes the incremental approach in [27]. Section 3 presents DataCutter [3], our in-house distributed memory dataflow
middleware leveraged in this work. Section 4 describes the proposed distributed framework for incremental centrality
computations in detail. The experimental analysis is given in Section 5, and Section 6 concludes the paper.
Fig. 1. A toy network with eight vertices and three consecutive edge (ah, fh, and ab, respectively) insertions/deletions. The vertices are colored with respect
to their relative CC scores where red implies a higher closeness score. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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2. Incremental closeness centrality

Let G ¼ ðV ; EÞ be a network modeled as a simple undirected graph with n ¼ jV j vertices and m ¼ jEj edges where each
node is represented by a vertex in V, and a node–node interaction is represented by an edge in E. Let CGðvÞ be the set of ver-
tices which share an edge with v.

A graph G0 ¼ ðV 0; E0Þ is a subgraph of G if V 0 # V and E0 # E. A path is a sequence of vertices such that there exists an edge
between consecutive vertices. Two vertices u;v 2 V are connected if there is a path from u to v. If all vertex pairs are connect-
ed we say that G is connected. If G is not connected, then it is disconnected and each maximal connected subgraph of G is a
connected component, or a component, of G. We use dGðu;vÞ to denote the length of the shortest path between two vertices
u;v in a graph G. If u ¼ v then dGðu;vÞ ¼ 0. If u and v are not connected dGðu;vÞ ¼ 1.

Given a graph G ¼ ðV ; EÞ, a vertex v 2 V is called an articulation vertex if the graph G� v has more connected components
than G. G is biconnected if it is connected and it does not contain an articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

2.1. Closeness centrality

The farness of a vertex u 2 V in a graph G ¼ ðV ; EÞ is defined as far½u� ¼
P

v2V
dG ðu;vÞ–1

dGðu;vÞ. And the closeness centrality of u is

defined as cc½u� ¼ jV j
far½u�. If u cannot reach any vertex in the graph, then cc½u� ¼ 0. (All the notations are also given in Table 1).

For a graph G ¼ ðV ; EÞ with n vertices and m edges, the complexity of the best cc algorithm is Oðnðmþ nÞÞ (Algorithm 1).
For each vertex s 2 V , it executes a Single-Source Shortest Paths (SSSP), i.e., initiates a breadth-first search (BFS) from s and
computes the distances to the connected vertices. As the last step, it computes cc½s�. Since a BFS takes Oðmþ nÞ time, and n
SSSPs are required in total, the complexity follows.

Algorithm 1. Offline centrality computation

Data: G ¼ ðV ; EÞ
Out: cc½:�
for each s 2 V do

.SSSP(G; s) with centrality computation

Q  empty queue
d½v�  1;8v 2 V n fsg
Q.push(s), d½s�  0
far½s�  0
while Q is not empty do

v  Q .pop()
for all w 2 CGðvÞ do

if d½w� ¼ 1 then
Q.push(w)
d½w�  d½v� þ 1
far½s�  far½s� þ d½w�

cc½s� ¼ jV j
far½s�

returncc½:�
2.2. Incremental closeness centrality

Algorithm 1 is an offline algorithm: it computes the CC scores from scratch. But today’s networks are dynamic and their
topologies are changing through time. Centrality computation is an expensive task, and especially for large scale networks,
Table 1
Notations.

Notation Meaning

G Graph
n Number of vertices
m Number of edges
CGðvÞ Neighbors of v
dGðu; vÞ Length of the shortest path between u and v
far½u�

P
v2V

dG ðu;vÞ–1
dGðu;vÞ

cc½u� n
far½u�

PðuvÞ Biconnected component edge uv belongs to
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an offline algorithm cannot cope with the changing network topology. Hence, especially for large-scale, dynamic networks,
online algorithms which do not perform the computation from scratch but only update the required scores in an incremental
fashion are required. In a previous study, we used a set of techniques such as level-based work filtering and special-vertex uti-
lization to reduce the centrality computation time for dynamic networks [27]. Here we remind them briefly and direct the
interested readers to [27] for proofs and details.

2.3. Level-based work filtering

The level-based filtering aims to reduce the number of SSSPs in Algorithm 1. Let G ¼ ðV ; EÞ be the current graph and uv be
an edge to be inserted. Let G0 ¼ ðV ; E [ fuvgÞ be the modified graph. The centrality definition implies that for a vertex s 2 V , if
dGðs; tÞ ¼ dG0 ðs; tÞ for all t 2 V then cc½s� ¼ cc0½s�. The following theorem is used to filter the SSSPs of such vertices.

Theorem 2.1 (Sarıyüce et al. [27]). Let G ¼ ðV ; EÞ be a graph and u and v be two vertices in V s.t. uv R E. Let G0 ¼ ðV ; E [ fuvgÞ.
Then cc½s� ¼ cc0½s� if and only if jdGðs; uÞ � dGðs;vÞj 6 1.

Many interesting real-life networks are scale free. The diameters of a scale-free network is small, and when the graph is
modified with minor modifications, it tends to stay small. These networks also obey the power-law degree distribution. The
level-based work filter is particularly efficient on these kind of networks. Fig. 2 (left) shows the three cases while an edge
uv 2 E is being added to G : dGðs;uÞ ¼ dGðs;vÞ, jdGðs;uÞ � dGðs;vÞj ¼ 1, and jdGðs;uÞ � dGðs;vÞj > 1. Due to Theorem 2.1, an
SSSP is required in Algorithm 1 only for the last case, since for the first two cases, the closeness centrality of s does not
change. As Fig. 2 (right) shows, the probability of the last case is less than 20% for three social networks used in the experi-
ments. Hence, more than 80% of the SSSPs are avoided by using level-based filtering.

Although Theorem 2.1 yields to a filter only in case of edge insertions, the same idea can easily be used for edge deletions.
When an edge uv is inserted/deleted, to employ the filter, we first compute the distances from u and v to all other vertices.
Detailed explanation can be found in [27].

2.4. Special-vertex utilization

The work filter can be assisted by employing and maintaining a biconnected component decomposition (BCD) of G. A BCD
is a partitioning P of the edge set E where PðeÞ is the component of each edge e 2 E. A toy graph and its BCDs before and after
an edge insertion are given in Fig. 3.

Let uv be the edge inserted to G ¼ ðV ; EÞ and the final graph be G0 ¼ ðV ; E0 ¼ E [ fuvgÞ. Let far and far0 be the farness
scores of all the vertices in G and G0. If the intersection fPðuwÞ : w 2 CGðuÞg \ fPðvwÞ : w 2 CGðvÞg is not empty, there must
be only one element in it (otherwise P is not a valid BCD), cid, which is the id of the biconnected component of G0 containing
Fig. 2. Three possible cases when inserting uv: for each vertex s, one of the following is true: (1) dGðs;uÞ ¼ dGðs;vÞ, (2) jdGðs;uÞ � dGðs; vÞj ¼ 1, or (3)
jdGðs;uÞ � dGðs;vÞj > 1 (left). The bars show the distribution of random variable X ¼ jdGðw;uÞ � dGðw;vÞj into three cases while an edge uv is being added to
G (right). For each network, the probabilities are computed by using 1000 random edges from E. For each edge uv, we constructed the graph
G ¼ ðV ; E n fuvgÞ by removing uv from the final graph and computed jdGðs;uÞ � dGðs;vÞj for all s 2 V .

Fig. 3. A graph G (left), its biconnected component decomposition P (middle), and the updated P0 after the edge bd is inserted (right). The articulation
vertices before and after the edge insertion are fb; c; dg and fb; dg, respectively. After the addition, the second component contains the new edge, i.e., cid ¼ 2.
This component is extracted first, and the algorithm performs updates only for its vertices fb; c; dg. It also initiates a fixing phase to make the CC scores
correct for the rest of the vertices.
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uv. In this case, updating the BCD is simple: P0ðeÞ is set to PðeÞ for all e 2 E and P0ðuvÞ is set to cid. If the intersection is empty
(see the addition of bd in Fig. 3(b)), we construct P0 from scratch and set cid ¼ P0ðuvÞ (e.g., cid ¼ 2 in Fig. 3(b)). A BCD can be
computed in linear, Oðmþ nÞ time [14]. Hence, the cost of BCD maintenance is negligible compared to the cost of updating
closeness centrality.

Let G0cid ¼ ðVcid; E
0
cidÞ be the biconnected component of G0 containing uv. Let Acid # Vcid be the set of articulation vertices of

G0 in G0cid. Given P0, it is easy to find the articulation vertices since u 2 V is an articulation vertex if and only if it is at least in
two components in the BCD: jfP0ðuwÞ : uw 2 E0gj > 1.

The incremental algorithm executes SSSPs only for the vertices in G0cid. The contributions of the vertices in V n Vcid are inte-
grated to the SSSPs through their representatives, rep : V ! Vcid [ fnullg. For a vertex in Vcid, the representative is itself. And
for a vertex v 2 V n Vcid, the representative is either an articulation vertex in Acid or null if v and the vertices of Vcid are dis-
connected. Also, for all vertices x 2 V n Vcid, we have far0½x� ¼ far½x� þ far0½repðxÞ� � far½repðxÞ�. Therefore, there is no need
to execute SSSPs from these vertices. Detailed explanation and proofs are omitted for brevity and can be found in [27].

In addition to articulation vertices, we exploit the identical vertices which have the same/a similar neighborhood struc-
ture to further reduce the number of SSSPs. In a graph G, two vertices u and v are type-I-identical if and only if CGðuÞ ¼ CGðvÞ.
In addition, two vertices u and v are type-II-identical if and only if fug [ CGðuÞ ¼ fvg [ CGðvÞ. Let u;v 2 V be two identical
vertices. One can easily see that for any vertex w 2 V n fu;vg, dGðu;wÞ ¼ dGðv ;wÞ. Therefore, if I # V is a set of (type-I or type-
II) identical vertices, then the CC scores of all the vertices in I are equal.

We maintain the sets of identical vertices and while updating the CC scores of the vertices in V, we execute an SSSP for a
representative vertex from each identical-vertex set. We then use the computed score as the CC score of the other vertices in
the same set. The filtering is straightforward and the modifications on the algorithm are minor. When an edge uv is added/
removed to/from G, to maintain the identical vertex sets, we first subtract u and v from their sets and insert them to new
ones. Candidates for being identical vertices are found using a hash function and the overall cost of maintaining the data
structure is OðnþmÞ [27].

2.5. Simultaneous source traversal

The performance of sparse kernels is mostly hindered by irregular memory accesses. The most famous example for sparse
computation is the multiplication of a sparse matrix by a dense vector (SpMV). Several techniques, like register blocking [6,33]
and usage of different matrix storage formats [2,21], are proposed to regularize the memory access pattern. However, mul-
tiplying a sparse matrix by multiple vectors is the most efficient and popular technique to regularize the memory access pat-
tern. Once the multiple vectors are organized as a dense matrix, the problem becomes the multiplication of a sparse matrix by
a dense matrix (SpMM). Each nonzero of the sparse matrix causes the multiplication of a single element of the vector in SpMV,
and it results in the multiplications of as many consecutive elements of the dense matrix as its number of columns in SpMM.

Accommodating that idea for closeness centrality computation turns out to be concurrently computing the multiple
sources at the same time. However, as opposed to SpMV, in which the vector is dense and therefore each non-zero induces
exactly one multiplication, in BFS, not all the non-zeros will induce operations. That is to say, a vertex in BFS may or may not
be traversed depending on which level is currently being processed. Thus, the traditional queue-based implementation of
BFS does not seem to be easily extendable to support concurrent BFSs (co-BFS) in a vector-friendly manner. We developed
this method in [30,31] and present here the main idea.

2.5.1. An SpMV-based formulation of closeness centrality
The idea is to convert to a simpler definition of level synchronous BFS: if one of the neighbor of v is part of level ‘� 1 and v

is not part of any level ‘0 < ‘, then vertex v is part of level ‘. This formulation is used in parallel implementations of BFS on
GPU [15,25,32], on shared memory systems [1] and on distributed memory systems [5].

The algorithm is better represented using binary variables. Let x‘i be the binary variable that is true if vertex i is part of
the frontier at level ‘ for a BFS. The neighbors of level ‘ is represented by a vector y‘þ1 computed by y‘þ1

k ¼ ORj2CðkÞx‘j . The next

level is then computed with x‘þ1
i ¼ y‘þ1

i AND not ðOR‘06‘x‘
0

i Þ. Using these variables, one can increase the farness of the source
by ‘ if i is at level ‘ (i.e., if x‘ ¼ 1). One can remark that y‘þ1 is the result of the ‘‘multiplication’’ of the adjacency matrix of the
graph by x‘ in the (OR,AND) semi-ring.

2.5.2. An SpMM-based formulation of closeness centrality
It is easy to derive an algorithm from the formulation given above for closeness centrality computation that processes

multiple sources concurrently. Instead of manipulating a single vector x and y where each element is a single bit, one can
encode 32-bit vectors for 32 BFSs so that one int can encode the state of a single vertex across the 32 BFSs. The algorithm
becomes quite efficient as it does not use more memory and process 32 BFS concurrently. All the operations become simple
bit-wise and, or and not.

Theoretically, the asymptotic complexity changes when BFS is implemented using an SpMM approach. The complexity of
the traditional queue-based BFS algorithm is OðjEjÞ. If the adjacency matrix is stored row-wise, the SpMM-based implemen-
tation boils down to a bottom-up implementation of BFS which has a natural write access pattern. However, it becomes



8 A.E. Sarıyüce et al. / Parallel Computing 47 (2015) 3–18
impossible to only traverse the relevant nonzero of the matrix and the complexity of the algorithm becomes OðjEj � LÞ,
where L is the diameter of the graph. Social networks have small world properties which implies that their diameter is
low and we do not feel that this asymptotic factor of L will hinder performance.

Moreover, multiple BFSs are performed concurrently (here 32) which can recoup for the loss. In [30,31], the algorithm
computes the impact of the sources on all the vertices of the graph. What we presented in this section does the reverse
and compute the impact of all the vertices of the graph on the sources. Despite worse asymptotic complexity the perfor-
mance of co-BFS outperforms traditional BFS approach [30,31]. Moreover, such algorithm is compatible with the decompo-
sition of the graph in biconnected components [28] which can lead to further improvement. Because this algorithm
computes the farness of the sources, it can be used to compute centrality incrementally.

3. DataCutter

STREAMER employs DataCutter [3], our in-house dataflow programming framework for distributed memory systems. In
DataCutter, the computations are carried by independent computing elements, called filters, that have different responsi-
bilities and operate on data passing through them. DataCutter follows the component-based programming paradigm which
has been used to describe and implement complex applications [11–13,29] by way of components – distinct tasks with well-
defined interfaces. This is also known as the filter-stream programming model [3] (a specific implementation of the dataflow
programming model). A stream denotes a uni-directional data flow from some filters (i.e., the producers) to others (i.e., the
consumers). Data flows along these streams in untyped databuffers so as to minimize various system overheads. A layout is a
filter ontology which describes the set of application tasks, streams, and the connections required for the computation. By
describing these components and the explicit data connections between them, the applications are decomposed along nat-
ural task boundaries according to the application domain. Therefore, the component-based application design is an intuitive
process with explicit demarcation of task responsibilities. Furthermore, the communication patterns are also explicit; each
component includes its input data requirements and outputs in its description.

Applications composed of a number of individual tasks can be executed on parallel and distributed computing resources
and gain extra performance over those run on strictly sequential machines. This is achieved by specifying a placement which
is an instance of a layout with a mapping of the filters onto physical processors. There are three main advantages of this
scheme: first, it exposes an abstract representation of the application which is decoupled from its practical implementation.
Second, the coarse-grain dataflow programming model allows replicated parallelism by instantiating a given filter multiple
times so that the work can be distributed among the instances to improve the parallelism of the application and the system’s
performance. And third, the execution is pipelined, allowing multiple filters to compute simultaneously on different itera-
tions of the work. This pipelined parallelism is very useful to achieve overlapping of communication and computation.

Additionally, provided the interfaces exposed by a task to the rest of the application, different implementations of tasks,
possibly on different processor architectures can co-exist in the same application deployment, allowing developers to take
full advantage of modern, heterogeneous supercomputers. Fig. 4 shows an example filter-stream layout and placement. In
this work, we used both distributed- and shared-memory architectures. However, thanks to filter-stream programming
model, many-core systems such as GPUs and accelerators can also be used easily and efficiently if desired [13].

As mentioned above, one of the DataCutter’s strengths is that it enables pipelined parallelism, where multiple stages of
the pipeline (such as A and B in the layout in Fig. 4) can be executed simultaneously, and replicated parallelism can be used
at the same time if some computation is stateless (such as filter B in the same figure). DataCutter makes all this parallelism is
possible by mapping each placed filter to a POSIX thread of the execution platform.

4. STREAMER

STREAMER is implemented in the DataCutter framework. We propose to use the four-filter layout shown in Fig. 5.
InstanceGenerator is responsible for sending the updates to all the other components. StreamingMaster does the work filtering
for each update, explained in Section 2, and generates the workload for following components. ComputeCC component exe-
cutes the real work and computes the updated CC scores for each incoming update. Aggregator does the necessary adjustments
Fig. 4. A toy filter-stream application layout and its placement.
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related to identical vertex sets and biconnected component decomposition. While computing the CC scores, the main portion
of the computation comes from performing SSSPs for the vertices whose scores need to be updated. If there are many updates
(we use the term ‘‘update’’ to refer to the SSSP operation which updates the CC score of a vertex), that part of the computation
should occupy most of the machine. A typical synchronous decomposition of the application makes the work filtering of a
streaming event (handling a single edge change) wait for the completion of all the work incurred by a previous streaming
event. Since the worker nodes will wait for the work filtering to be completed, there can be a large waste of resources. We
argue that the pipelined parallelism should be used to overlap the process of filtering the work and computing the updates
on the graph. In this section, we explain each component in detail and define their responsibilities.

The first filter is the InstanceGenerator which first sends the initial graph to all the other filters. It then sends the Streaming
Events as 4-tuples ðt; oper;u;vÞ to indicate that edge uv has been either added or removed (specified by oper) at a given time
t. (In the following, we only explain the system for edge insertion, but it is essentially the same for an edge removal.) In a real
world application, this filter would be listening on the network or on a database trigger for topology modifications; but in our
experiments, all the necessary information is read from a file.

StreamingMaster is responsible for the work filtering after each network modification. Upon inserting uv at time t, it first
computes the shortest distances from u and v to all other vertices at time t � 1. Then, it adds the edge uv into its local copy
of the graph and updates the identical vertex sets as described in Section 2.4. It partitions the edges of the graph to its bicon-
nected components by using the algorithm in [14] and finds the component containing uv. For each vertex s 2 V , it decides
whether its CC score needs to be recomputed by checking the following conditions: (1) dðs;uÞ and dðs;vÞdiffer by at least 2 units
at time t � 1, (2) s is adjacent to an edge which is also in uv’s biconnected component, (3) s is the representative of its identical
vertex set. StreamingMaster then informs the Aggregator about the number of updates it will receive for time t. Finally, it sends
the list of SSSP requests to the ComputeCC filter, i.e., the corresponding source vertex ids whose CC scores need to be updated.

ComputeCC performs the real work and computes the new CC scores after each graph modification. It waits for work from
StreamingMaster, and when it receives a CC update request in the form of a 2-tuple ðt; sÞ (update time and source vertex id),
ComputeCC advances its local graph representation to time t by using the appropriate updates from InstanceGenerator. If
there is a change on the local graph, the biconnected component of uv is extracted, and a concise information of the graph
structure and the set of articulation vertices are updated (as described in [27]). Finally, the exact CC score cc½s� at time t is
computed and sent to the Aggregator as a 3-tuple ðt; s;cc½s�Þ. ComputeCC can be replicated to fill up the whole distributed
memory machine without any problem: as long as a replica reads the update requests in the order of non-decreasing time
units, it is able compute the correct CC scores.

The Aggregator filter gets the graph at a time t from InstanceGenerator. Then, it obtains the number of updates for that time
from StreamingMaster. It computes the identical vertex sets as well as the BCD. It gets the updated CC scores from ComputeCC.
Due to the pipelined parallelism used in the system and the replicated parallelism of ComputeCC, it is possible that updates
from a later time can be received; STREAMER stores them in a backlog for future processing. When a ðt; s;cc½s�Þ tuple is pro-
cessed, the CC score of s is updated. If s is the representative of an identical vertex set, the CC scores of all the vertices in
the same set are updated as well. If s is an articulation point, then the CC scores of the vertices which are represented by
s (and are not in the biconnected component of uv) are updated as well, by using the difference in the CC score of s between
time t and t � 1. Since Aggregator needs to know the CC scores at time t � 1 to compute the centrality scores at time t, the
system must be bootstrapped: the system computes explicitly all the centrality scores of the vertices for time t ¼ 0.

4.1. Exploiting the shared memory architecture

The main portion of the execution time is spent by the ComputeCC filter. Therefore, it is important to replicate this filter as
much as possible. Each replica of the filter will end up maintaining its own graph structure and computing its own BCD.
Modern clusters are hierarchical and composed of distributed memory nodes where each node contains multiple processors
featuring multiple cores that share the same memory space. For instance, the nodes used in our experiments are equipped
with two processors, each having 4 cores.

It is a waste of computational power to recompute the data structure on each core. But it is also a waste of memory.
Indeed, the cores of a processor typically share a common last level of cache and using the same memory space for all
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the cores in a processor might improve the cache utilization. We propose to split the ComputeCC filter in two separate filters
which are transparent to the rest of the system thanks to DataCutter being component-based. The Preparator filter constructs
the decomposed graph for each Streaming Event it is responsible for. The Executor filter performs the real work on the
decomposed graph. In DataCutter, the filters running on the same physical node act run in separate pthreads within the same
MPI process making sharing the memory as easy as communicating pointers. The release of the memory associated with the
decomposed graph is handled by atomically decreasing a reference counter by the Executor.

The decoupling of the graph management and the CC score computation allows to either creating a single graph repre-
sentation on each distributed memory node or having a copy of the graph on each NUMA domain of the architecture. This is
shown in Fig. 6.
4.2. Parallelizing StreamingMaster

When the number of cores used for ComputeCC increases, the relative importance of ComputeCC in the total runtime
decreases. Theoretically, with an infinite number of cores for ComputeCC, the time required by it will drop to zero. In this
case, the bottleneck of the application becomes the maximum rate at which StreamingMaster can generate updates request
and the rate at which Aggregator can merge the computed results. To improve these rates, we replace them with a construct
that allow parallel execution.

StreamingMaster is decomposed in three filters which are laid out according to Fig. 7. Most of the work done by Stream-
ingMaster is done by a filter (we still call it StreamingMaster for convenience) which supports replication. Each of the replica
Fig. 6. Placement of STREAMER using 2 worker nodes with 2 quad-core processors. (The node 2 is hidden). The remaining filters are on node 0.

Fig. 7. Replicating StreamingMaster for a better scaling when the number of processors is large.
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receives the list of edges it has to compute the filtering from a WorkDistributor. This WorkDistributor just listens the modifi-
cations on the graph and distribute the Streaming Events among different StreamingMasters.

It is important that ComputeCC receives the update requests in non-decreasing order of Streaming Events. StreamCoordi-
nator is responsible for enforcing that order. StreamCoordinator sits between the StreamingMaster and the ComputeCC (and
the Aggregator) and relays messages to them. The StreamCoordinator tells StreamingMaster which streaming event is the next
one. In other words, before outputting the list of updates (and metadata for the Aggregator), the StreamingMaster reads from
the StreamCoordinator whether it is time to output.

4.3. Parallelizing Aggregator

One of the challenges in parallelizing the Aggregator is that there can be only one filter that actually stores the centrality
values of the network. Fortunately, most of the computation time spent by the Aggregator is spent in preparing the network
rather than in applying the updates. We modify the layout of the Aggregator to match that of Fig. 8.

Therefore only a single filter, we will call Aggregator for the sake of simplicity, is responsible for applying the updates, and
is only responsible for this. It takes three kinds of input: the updates on the graph itself, the information of how many
updates will be applied for each streaming event and information on the graph (the graph itself, its biconnected decompo-
sition and identical vertices).

The graph information is constructed by another filter called AggregatorPreparator which can be replicated. It listens to
the Streaming Events and receive work assignments. It then computes the sets of identical vertices and the graph’s bicon-
nected component decomposition and send them through its downstream.

The work in the AggregatorPreparator is distributed in a way similar to the parallelization of the StreamingMaster. Also the
graph information must reach the Aggregator in the order of the Streaming Event. An AggregatorCoordinator is used to reg-
ulate the order in which the graph information is sent. It behaves under the same principle as StreamCoordinator.

5. Experiments

STREAMER runs on the owens cluster in the Department of Biomedical Informatics at The Ohio State University. For the
experiments, we used all the 64 computational nodes, each with dual Intel Xeon E5520 Quad-core CPUs (with 2-way Simul-
taneous Multithreading, and 8 MB of L3 cache per processor), 48 GB of main memory. The nodes are interconnected with 20
Gbps InfiniBand. The algorithms were run on CentOS 6, and compiled with GCC 4.8.1 using the -O3 optimization flag.
DataCutter uses an InfiniBand-aware MPI to leverage the high performance interconnect: here we used MVAPICH2 2.0b.

For testing purposes, we picked 4 large social network graphs from the SNAP dataset to perform the tests at scale. The
properties of the graphs are summarized in Table 2. For simulating the addition of the edges, we removed 50 edges from
the graphs and added them back one by one. The streamed edges were selected using a uniform random distribution. For
comparability purposes, all the runs performed on the same graph use the same set of edges. The number of updates induced
Fig. 8. Replicating Aggregator for a better scaling when the number of processors is large.

Table 2
Properties of the graphs we used in the experiments and execution time on a 64 node cluster.

Name jV j jEj # Updates Time (s) Speedup w.r.t [27]
seq. non-incremental

Speedup w.r.t. [27]
seq. incremental

web-NotreDame 325,729 1,090,008 399,420 3.29 43,237 805
amazon0601 403,394 2,443,308 1,548,288 33.16 22,471 449
web-Google 916,428 4,321,958 2,527,088 71.20 45,860 578
soc-pokec 1,632,804 30,622,464 4,924,759 816.73 – –
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by that set of edges when applying filtering using identical vertices, biconnected component decomposition, and level filter-
ing is given in Table 2. In the experiments, the data comes from a file, and the Streaming Events are pushed to the system as
quickly as possible so as to stress the system.

All the results presented in this section are extracted from a single run of STREAMER with proper parameters. As our pre-
liminary results show, the regularity in the plots indicates there is a small variance on the runtimes, which induces a rea-
sonable confidence in the significance of the quoted numbers. In the experiments, StreamingMaster and Aggregator run on
the same node, apart from all the ComputeCC filters. Therefore, we report the number of worker nodes, but an extra node
is always used.

To give an idea of the actual amount of computation, in the fourth column of Table 2, we report the time STREAMER spends
to update the CC scores upon 50 edge insertions by using all 63 worker nodes. We also present the speedup of parallel imple-
mentation on 64 nodes with respect to sequential non-incremental computation and sequential incremental computation.
The STREAMER framework is never sequential due to its distributed-memory nature and the pipelined parallelism, i.e., different
filters are always handled by different threads even in the most basic setting with no filter replication. (STREAMER uses at least
the four filters of Fig. 5, so at least four POSIX threads are always used.) Therefore, there is no sequential runtime for the
STREAMER framework. When we mention the sequential time, it refers to our previous work [27], which runs sequentially
using a single core of the same cluster. As all the execution times given in this section, the times in Table 2 do not contain
the initialization time. That is the time measurement starts once STREAMER is idle, waiting to receive Streaming Events.
5.1. Basic performance results

Fig. 9 shows the performance and scalability of the system in different configurations with a single StreamingMaster and
Aggregator. In general, the success of a streaming graph analytics operation is measured by the rate at which they can
Fig. 9. Scalability: the performance is expressed in the number of updates per second. Different worker-node configurations are shown. ‘‘8 threads, 1 graph/
thread’’ means that 8 ComputeCC filters are used per node. ‘‘8 threads, 1 graph’’ means that 1 Preparator and 8 Executor filters are used per node. ‘‘8 threads, 1
graph/NUMA’’ means that 2 Preparators per node (one per NUMA domain) and 8 Executors are used.
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maintain the analytic. For this reason, the performance is expressed in number of (vertex’s centrality) updates per second.
The framework obtains up to 11,000 updates/s on amazon0601 and web-Google, 49,000 updates/s on web-NotreDame, and
more than 750 updates/s on the largest tested graph soc-pokec. It appears to scale linearly on the graphs amazon0601 and
web-Google, soc-pokec. For the first two graphs, it reaches a speedup of 456 and 497, respectively, with 63 worker nodes
and 8 threads/node (504 Executor threads in total) compared to the single worker node-single thread configuration (the
incremental centrality computation on soc-pokec with a single node and a single thread was too long to run the experi-
ment, but the system is clearly scaling well on this graph). The last graph, web-NotreDame, does not exhibit a linear scaling
and obtains a speedup of only 316.

Let us first evaluate the performance obtained under different node-level configurations. Table 3 presents the relative
performance of the system using 31 worker nodes while using 1;4, or 8 threads per node. When compared with the single
thread configuration, using 4 threads (the second column) is more than 3 times faster, while using 8 threads (columns 3–5)
per node usually gives a speedup of 6:5 or more. Overall, having multiple cores is fairly well exploited. Properly taking the
shared-memory aspect of the architecture into account (column 5) brings a performance improvement between 1% to 10%
(the last column). In one instance (web-Google with a graph for each NUMA domain), we observed that the normalized per-
formance is more than the number of cores. This can be explained by the fact that actually 10 threads are running on each
computing node (8 Executor and 2 Preparator) which can lead to a higher parallelism.
5.2. Execution-log analysis

Here we discuss the impact of pipelined parallelism and the sub-linear speedup achieved on web-NotreDame. In Fig. 10,
we present the execution logs for that graph obtained while using 3;15, and 63 worker nodes. Each log plot shows three data
series: the times at which StreamingMaster starts to process the Streaming Events, the total number of updates sent by
StreamingMaster, and the number of updates processed by the Executors collectively. The three different logs show what hap-
pens when the ratio of update produced and update consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 10(a)) shows the amount of the updates emitted and processed as
two perfectly parallel almost straight lines. This indicates that the runtime of the application is dominated by processing the
updates. As the figure shows, the times at which the StreamingMaster starts processing the Streaming Events are not evenly
distributed. As mentioned before, StreamingMaster starts filtering for the next Streaming Event as soon as it sends all the
updates for the current one. In other words, the amount of updates emitted for a given Streaming Event can be read from
the execution log as the difference of the y-coordinates of two consecutive ‘‘update emitted’’ points (the first line). In the
first plot, we can see that 6 out of 50 Streaming Events (the ticks at the end of each partial tick-lines) incurred significantly
much more updates than the others. While these events are being processed, the two lines stay straight and parallel, because
in DataCutter, writing to a downstream filter is a buffered operation. Once the buffer is full, the operation becomes blocking.

The second execution log with 15 worker nodes (Fig. 10(b)) shows a different picture. Here, the log is about 4 times short-
er and the lines are not perfectly parallel. The number of updates emitted shows three plateaus for more than a second
around times 0;5, and 16 s. These plateaus exist because many consecutive Streaming Events do not generate a significant
amount of updates; therefore, the StreamingMaster spends all its time by filtering the work for these Streaming Events.

The second plateau is around time 5 s of the execution log with 15 worker nodes, it lasts 1.2 s, and less than 100 updates
are sent during that interval. However, as the plot shows, the worker nodes do not run out of work and process more than
25,000 updates during the plateau. This is possible because the computation in STREAMER is pipelined. If the system were syn-
chronous the worker nodes would spend most of that plateau waiting which yields a longer execution time and worse per-
formance. In addition to the three large plateaus, cases with a few consecutive Streaming Events that lead to barely no
updates are slightly visible around times 3 and 9. These two smaller cases are hidden by the pipelined parallelism. The third
plateau is much longer than the second one (20 Streaming Events, 2.1 s) and the worker nodes eventually run out of work
halfway through the plateau. As can be seen in Fig. 9(b), the performance does not show linear scaling at 15 worker nodes;
but it is still good, thanks to the pipelined parallelism.

When 63 worker nodes are used, the execution log (Fig. 10(c)) presents another picture. With the increase on the workers’
processing power, a single StreamingMaster is now the main bottleneck of the computation. Two additional, considerably
large plateaus appeared, and StreamingMaster starts to spend more than half of its time with the work filtering. However,
Table 3
The performance of STREAMER with 31 worker nodes and different node-level configurations normalized to 1 thread case (performance on soc-pokec is
normalized to 8 threads, 1 graph/thread). The last column is the advantage of shared memory awareness (ratio of columns 5 and 3).

Name 4 Threads 8 threads, 1 graph per Shared Mem. awareness

Thread Node NUMA

web-NotreDame 3.69X 6.46X 7.13X 6.99X 1.08X
amazon0601 3.26X 6.75X 6.81X 7.45X 1.10X
web-Google 3.69X 7.77X 7.55X 8.06X 1.03X
soc-pokec - 1.00X 0.92X 1.01X 1.01X



Fig. 10. Execution logs for web-NotreDame on different number of nodes. Each plot shows the total number of updates sent by StreamingMaster and
processed by the Executors, respectively (the two lines), and the times at which StreamingMaster starts to process Streaming Events (the set of ticks).
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during these times, the workers keep processing the updates, but at varied rates, due to temporary work starvation. The work
filtering and the actual work are being processed mostly simultaneously showing that pipelined parallelism is very effective
in this situation. Without the pipelined parallelism, the computation time would certainly be 2 s longer, and 25% worse per-
formance would be achieved.

We used the techniques described in Sections 4.2 and 4.3 (Figs. 7 and 8) to replicate the StreamingMaster and Aggregator
filters, respectively, and obtain a better performance when these filters becomes bottleneck throughout the incremental
closeness centrality computation. The results on the web-NotreDame graph are given for 50 and 1000 Streaming Events
in Fig. 11. As the figure shows, using four StreamingMaster and Aggregator filters instead of one yields around 6% improve-
ment for 50 Streaming Events when 63 working nodes in the cluster are fully utilized. This small improvement is due to a
lack of sufficient number of Streaming Events which generates a large amount of updates (see Fig. 10). Hence, even with a
large number of StreamingMaster and Aggregator filters, due to the load balancing problem on these filters, one cannot
improve the performance more with 50 Streaming Events by just replicating them. Fortunately, in practice this number is
usually much higher. In Fig. 11(b), we repeated the same experiment for 1000 Streaming Events. As the figure shows, the
performance significantly increases when the filters are replicated. Furthermore, the percentage of the improvement increas-
es when more nodes are used and reaches to 58% with 63 working nodes. This is expected since, with more cores for the
Executor filters, the time spent for StreamingMaster and Aggregator becomes (relatively) more important. When applied on
the other graphs, going from one StreamingMaster and Aggregator to four have not yield significant difference since these
components were not bottlenecks. Therefore, we omitted those results here.
5.3. Plug-and-play filters: co-BFS

As stated above, thanks to filter-stream programming model, different filter implementations and various hardware such
as GPUs can be used easily and efficiently if desired. Here, we show that using the SpMM-based approach described in Sec-
tion 2.5, one can modify the ComputeCC filter in Fig. 5 (or the Executor filters in Fig. 6) to increase the performance. For this
experiment, we swapped the Executor filter with one that uses the co-BFS algorithm which computes 32 BFSs from different
sources concurrently. The results of the experiments with 15;31, and 63 working nodes are shown in Fig. 12. Using co-BFS



Fig. 11. Parallelizing StreamingMaster and Aggregator: the number of updates per second for web-NotreDame with 50 and 1000 Streaming Events,
respectively. The best node configuration from Fig. 9, i.e., 8 threads, 1 graph/NUMA, is used for both cases.

Fig. 12. co-BFS: the performance is expressed in the number of updates per second. The best worker-node configuration, ‘‘8 threads, 1 graph/NUMA’’, is
used for the experiments.
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(and coupled with multiple StreamingMaster and Aggregator) improves the performance of the regular version by a factor
ranging from 2.2 to 9.3 depending on the graph and number of working nodes.



Fig. 13. Closeness centrality score evolution in DBLP coauthor network.
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5.4. Illustrative example for closeness centrality evolution

In this section, we present a real world example to show how the closeness centrality scores of four researchers change
over time in the temporal coauthor network obtained from DBLP.1 We selected the four authors of this manuscript which have
different experiences and looked at their closeness centrality score evolution from December 2009 to August 2014. We report
the closeness centrality scores at the end of every 3 months by our incremental algorithms.

Fig. 13 shows how the CC score changes when time passes. Researcher 4 is a PhD student who started in September 2010
and his first paper was published at the beginning of 2011. Point A shows the impact of the first paper on his CC score.
Researcher 3 joined the team as a postdoc in September 2011. His first paper with the team members was published in early
2012 (Point B). We can observe that this publication increased his CC score, making him more central in the DBLP coauthor
network. This publication also effected the centrality score of Researcher 2, who was another postdoc of the team at the time.
Another significant point in the figure is point C, which corresponds to the publication of Researcher 4 as a result of his
internship in an different institute. This publication made Researcher 4 more central since he is connected to new research-
ers in the DBLP coauthor network. Apart from those important milestones, we can see that there is a steady increase in CC
scores of the four researchers.

5.5. Summary of the experimental results

The experiments we conducted shows that STREAMER can scale up and efficiently utilize our entire experimental cluster. By
taking the hierarchical composition of the architecture into account (64 nodes, 2 processors per node, 4 cores per processor)
and not considering it as a regular distributed machine (a 512-processor MPI cluster), we enabled processing of larger graphs
and obtained 10% additional improvement. Furthermore, the pipelined parallelism proved to be extremely necessary while
using a large amount of nodes in a concurrent fashion.

Replicating the ComputeCC filter leads to significant speedup. Yet, the bottleneck eventually becomes the filters that can-
not be replicated automatically. For filters where the ordering of the messages is important, we can substitute an alternative
filter architecture to alleviate the bottleneck and make the whole analysis pipeline highly parallel.

The flexibility of the filter-stream programming model allows to easily substitute a component of the application by an
alternative implementation. For instance, one can use modern vectorization techniques to improve the performance by a sig-
nificant factor. Similarly, one could have an alternative implementation which use different type of hardware such as
accelerators.

For the three of the graphsweb-NotreDame,amazon0601 andweb-Google, a reference sequential time is known from [27]
for both the non-incremental and the incremental cases. STREAMER using 63 worker nodes (8 cores per node), 4 StreamingMaster
and 4 Aggregators and co-BFS computing filters improved the runtime of the incremental algorithm by a factor of 805, 449 and
578 respectively on the three graphs. Compared to a sequential non-incremental computation of the closeness centrality value,
STREAMER improves the runtime by a factor ranging from 22,471 to 45,860. These numbers are reported in Table 2.
6. Conclusion

Maintaining the correctness of a graph analysis is important in today’s dynamic networks. Computing the closeness cen-
trality scores from scratch after each graph modification is prohibitive, and even sequential incremental algorithms are too
expensive for networks of practical relevance. In this paper, we proposed STREAMER, a distributed memory framework which
1 http://dblp.uni-trier.de/xml/
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guarantees the correctness of the CC scores, exploits replicated and pipelined parallelism, and takes the hierarchical archi-
tecture of modern clusters into account.

The system is fully scalable as each of its components can be made to use an arbitrary number of nodes. Also, we showed
that we can easily use alternative implementation of the BFS computations to allow the use of novel algorithmic techniques
or hardware. Using STREAMER on a 64 nodes, 8 cores/node cluster, we reached almost linear speedup in the experiments and
the performance are orders of magnitude higher than the non-incremental computation. Maintaining the closeness cen-
trality of large and complex graph in real-time is now within our grasp.

As a future work, approximate closeness centrality and different path-based centrality measures can be computed in a
STREAMER like framework. For the approximate closeness centrality computation, we just need to change the way closeness
centrality score is computed. In the current STREAMER, we gather the centrality score of each vertex while computing SSSP
from it. For the approximate closeness centrality, we need to scatter the centrality scores to each traversed vertex while
applying the SSSP. For this purpose, we just need to modify StreamingMaster component. For other path-based centrality
measures, general layout will remain same, but some components might need to be modified. For example, betweenness
centrality computation might require a different procedure in ComputeCC.
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