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Abstract—With the emergence of portable DNA sequencers, such as Oxford Nanopore Technology MinlON, metagenomic DNA
sequencing can be performed in real-time and directly in the field. However, because metagenomic DNA analysis tasks, e.g.,
classification, taxonomic units assignment, etc., are compute and memory intensive, and the available methods are designed for batch
processing, the current metagenomic tools are not well suited for mobile devices. In this work, we propose a new memory-efficient
approach to identify Operational Taxonomic Units (OTUs) in metagenomic DNA streams on mobile devices. Our method is based on
finding connected components in overlap graphs constructed over a real-time stream of long DNA reads as produced by the MinlON
platform. We propose an efficient algorithm to maintain connected components when an overlap graph is streamed and show how
redundant information can be removed from the stream by transitive closures. We also propose how our algorithms can be integrated
into a larger DNA analysis pipeline tailored for mobile computing. Through experiments on simulated and real-world metagenomic data,
executed on the actual mobile device, we demonstrate that our resulting solution is able to recover OTUs with high precision.

Our experiments also demonstrate the compounding benefits of introducing feedback loops in the DNA analysis pipeline.

Index Terms—Connected components, metagenomics, nanopore sequencing, streaming algorithms

1 INTRODUCTION

RECENTLY introduced nanopore-based DNA sequencers,
specifically Oxford Nanopore Technology (ONT) Min-
ION [4], are revolutionizing how DNA-based studies are
performed. Their key advantages are a small form factor
and low energy consumption that make them fully portable
and allow for easy deployment in the field, outside of a typi-
cal laboratory [22], [33]. Moreover, these devices can
sequence DNA molecules directly (i.e., without extra steps
like DNA amplification) and can stream the resulting DNA
reads in near real-time. This makes them extremely attrac-
tive for metagenomic studies that involve processing DNA
recovered directly from environmental samples. In recent
years, MinION sequencers have been increasingly used for
in situ studies, including, for example, tracking of COVID19,
Ebola and Zika outbreaks [1], [12], [31], deployments in the
Arctic and Antarctic [11], and even on the International
Space Station [9] (we invite the reader to [18] for a broader
discussion on mobile DNA sequencing).

One of the most common tasks in metagenomics is iden-
tification of Operational Taxonomic Units (OTUs) repre-
sented by clusters of highly similar DNA reads. OTUs often
serve as a proxy representing microbial composition of the
sequenced sample in cases where reads classification (e.g.,
by searching a DNA database of known organisms) is

o The authors are with the Department of Computer Science, University
at Buffalo, Buffalo, NY 14260-1660 USA. E-mail: {vickyzhe, erdem, jzola}
@buffalo.edu.

Manuscript received 26 Feb. 2021; revised 14 Jan. 2022; accepted 22 Apr. 2022.
Date of publication 5 May 2022; date of current version 3 Apr. 2023.

This work was supported by National Science Foundation under the under
Grant CNS-1910193.

(Corresponding author: Vicky Zheng.)

Digital Object Identifier no. 10.1109/TCBB.2022.3172661

difficult or impossible. However, in the current mobile
DNA sequencing workflows, identification of OTUs, along
with any other DNA analytics, remains challenging. In
Fig. 1, we outline the usual mobile DNA sequencing work-
flow using MinION. The device streams, in real-time, elec-
tric signals characterizing detected DNA fragments. These
signals are basecalled to yield DNA reads, which are next
processed using full-fledged bioinformatics tools. In a
mobile setup, the sequencer is typically coupled with a por-
table host device with limited compute power, memory,
and energy supply (e.g., tablet or a dedicated system-on-a-
chip like MinlIT [2]). Since the basecalling process is already
compute and memory intensive, the bioinformatics analysis
step has to be either offloaded to a cloud service (which is
not always possible or desired) or postponed until sufficient
compute resources become available. In both cases, the
resulting delay between DNA read acquisition and the ana-
lytics is highly undesirable from the end-user’s perspective,
as it decreases the overall responsiveness.

In this work, we focus on the problem of identifying OTUs
in mobile DNA read streams generated by MinlON portable
sequencers. Our goal is to provide a memory and compute
efficient solution that could be deployed as a co-processing
routine in portable DNA sequencing workflows operating on
light-weight computational devices. Our approach is based
on finding connected components in the similarity (or over-
lap) graphs constructed and streamed directly over the DNA
read streams. Connected components have been demon-
strated before as a robust representation of OTUs [13], [15],
[29]. They are an attractive abstraction, as they are the starting
point to multiple other tasks, including DNA assembly [30],
reference-free taxonomic classification (or clustering) [17],
[36], or species abundance estimation [10]. Intuitively, con-
nected components build from the observation that metage-
nomic samples contain many organisms whose DNA reads
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Fig. 1. Schematic representation of mobile DNA sequencing pipeline with MinlON. Sequenced reads can be analyzed locally, or can be offloaded to a
Back-end as a Service (or Software as a Service) for processing in a cloud. In this work, we propose an OTU identification method suitable to run

directly on mobile devices.

should not assemble together in a similarity graph [29]. In this
work, we make the following specific contributions:

o  We propose efficient algorithms to identify transitive
closures and maintain connected components in
streamed DNA overlap graphs. These algorithms are
able to identify transitive closures in expected con-
stant time and allow us to maintain a minimal mem-
ory footprint while collecting connected component
statistics to identify OTUs.

e We show how our algorithms can form a feedback
loop with a DNA overlaps detection routine to fur-
ther reduce memory footprint of the end-to-end
processing workflow.

e Through experimental results on the actual mobile
device, we demonstrate that the proposed methods
are both memory and computationally efficient, and
can identify OTUs in ONT MinION sequencing data.

2 PROBLEM FORMULATION

We consider a mobile DNA sequencing pipeline as pre-
sented in Fig. 1. A portable DNA sequencer (specifically ONT
MinION) is attached and controlled by a battery powered
mobile host (e.g., laptop or system-on-a-chip) that is also
responsible for DNA data processing. The sequencer deliv-
ers, in real-time, raw signals representing detected DN'A mol-
ecules. Raw signals are comprised of the measurement of the
ionic displacement of DNA molecules as they pass through a
nanopore. These raw signals are immediately basecalled on
the host machine yielding the actual DNA reads. To illustrate
the rate at which the process happens: in our experiments,
we usually observe that the sequencer delivers around 130
raw signals per second. The basecalling rate varies depend-
ing on the host machine capabilities. For example, using NVI-
DIA Nano Supercomputer-on-a-Chip with 128 GPGPU cores
and 4 GB of main memory, the basecalling can be sustained
at the rate of approximately 31 reads per second. Reads gen-
erated from nanopore-based sequencers are commonly tens
of thousands of bases in length with the longest reported
read being 2.3Mbp [21]. The resulting DNA reads stream is
passed for the downstream analysis.

In this work, we are specifically interested in performing
OTU identification directly on the host that receives
streamed DNA reads. To this end, we use connected compo-
nents as proxies for OTUs. As mentioned earlier, connected
component have been demonstrated as a robust OTU repre-
sentation in the past [15], [29]. To formalize the resulting
problem, let R = [ry,...,r,] represent an input stream of
DNA reads generated in real-time by a DNA sequencer.

We have that for each i < j read r; precedes read r; in the
Authorized licensed use limited to: University at Buffalo Libraries.

stream, which we will denote by r; < r;. The size of the
stream, n, is not known a priori. For example, a user may
decide to terminate a sequencing experiment at any point of
time (e.g., after sufficient data has been collected), or may run
an experiment for a specified time interval (e.g., two hours,
which could be a small metagenomic experiment).

Given a set of DNA reads, we can construct an overlap
graph G = (V, E) in which vertices V represent the reads,
and two vertices, v and v, are connected by the directed
edge, u — v, denoted by e = (u,v), if there is a significant
overlap between a suffix of the read represented by v and a
prefix of the read represented by v. Here significant overlap
means that the length of the suffix-prefix match is beyond
some predefined threshold and indicates that the two reads
corresponding to u and v have been derived from neighbor-
ing portions of the unknown underlying genome. For now,
we assume that an overlap detection tool (ODT) is available
and capable of constructing an overlap graph over the
stream R (see below).

Let R’ be the set of the first i reads from the stream R,
and let G' = (V, E') be the overlap graph constructed over
R!. Moreover, let G denote an undirected graph con-
structed by treating all edges in E' as undirected. Our goal
is to dynamically identify and maintain, in a computation-
ally and memory efficient way, a set C* = {c},c},... ,c""Ci‘}
of all connected components found in graph G, where ¢ is
the set of vertices in component j of graph G'. The final set
of connected components, C", will represent the Opera-
tional Taxonomic Units over the set of DNA reads in R. In
other words, we will expect that all reads within a given
connected component will be coming from the same taxo-
nomic unit (e.g., an organism).

We note that, when processing stream R, we are con-
cerned only with the graph G’ and the set C' (since these
structures carry our information of interest), and do not
have to explicitly store or maintain graph G'. Moreover, cur-
rently we are not concerned with the details of how the
overlap graph is computed (e.g., what is the similarity
threshold for suffix-prefix comparison, or how DNA
reverse-complements are handled; we discuss this issue in
Section 3.4). In other words, we are assuming that in our
mobile DNA sequencing pipeline, there is an ODT that
operates under the hardware constraints mentioned earlier.
The ODT handles an incoming stream of reads generated
by a sequencer and creates, with some precision and sensi-
tivity, a new stream of edges induced by the incoming read.
Specifically, given incoming read r;, let v; be its correspond-
ing vertex in graph G’. The ODT provides sets N*(v;) C
Vi~land N~ (v;) C Vi1, such that for each u € N*(v;) there
is an edge (v;,u) € E' and for each u € N~ (v;) there exists
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Fig. 2. (a) Example DNA reads with their overlaps marked. (b) Three different cases that may occur in the overlap graph constructed over reads in (a)
if r, <r, <m,r;,m, and ODT does not report overlap between r, — r; and r; — r,. () Irreducible graph created by removing r; as a transitive read.

Connected components in the resulting graph do not change.

an edge (u,v;) € E' (note that in both cases u corresponds to
aread that precedes r; in R, i.e., u < v;).

3 PROPOSED APPROACH

Given the above problem formulation, to create and main-
tain our desired set C?, we could leverage one of the several
existing algorithms for finding connected components in
graph streams (we review them in Section 5). However, this
approach has drawbacks because the current algorithms are
tailored for general graph streams and are oblivious to the
domain specific properties of the data. Therefore we take a
slightly different route and exploit the (well known) fact
that, in a typical DNA sequencing experiment, many DNA
reads are sharing an overlap, and thus provide redundant
information.

To better illustrate this property, consider a set of reads in
Fig. 2a that come from the same region of a genome. Because
read r; overlaps with both r; and r;, and at the same time r;
and 7 are overlapping as well, we can eliminate read r; with-
out disconnecting the underlying overlap graph and hence
without losing any critical information. This simplifies the
graph on which we have to perform connected components
identification, and reduces the number of reads (and hence
graph nodes) we have to maintain in the memory. The
redundant reads may be marked as such, and can be off-
loaded to a persistent storage and processed later, e.g., when
more computational resources are available.

The second observation is that, in our problem, we never
remove arbitrary nodes from the overlap graph. This simpli-
fies data management as we can adopt tested data structures
such as disjoint-set to identify connected components [19].

In our approach, outlined in the right-most panel of
Fig. 1, we exploit both properties at the same time: we first
provide an efficient strategy to identify redundant reads in
a stream and then use a variant of union-find to track con-
nected components. In the process, we provide feedback
information to the ODT to further improve end-to-end per-
formance on the entire workflow. Here we note that the
feedback step is entirely optional, and it does not affect the
performance of our method.

3.1 Finding Transitive Nodes

The first step in our approach is to decide whether an
incoming read is redundant and hence can be removed
from further processing. Let us consider again example
reads in Fig. 2a and, for the purpose of presentation, let us
assume that v, < r, < r;,r;,r,.. Depending on which of the
reads r;,r;, ) arrives last, we have one of three possible

overlap graphs as shown in Fig. 2b. Here, read r; is repre-
sented by vertex v;, and shaded nodes correspond to the
last arriving read. Any redundant read, in our case read r;,
shares suffix-prefix overlap with at least two other reads, in
our case r; and 7. Now let us consider an induced subgraph
over the redundant vertex (i.e., vertex corresponding to the
redundant read, in our case v;) and any two of its adjacent
vertices that are also adjacent to each other. In this sub-
graph, one of the nodes must have two outgoing edges, one
must have two incoming edges, and one must have one
incoming and one outgoing edge (this node must corre-
spond to a redundant read). Back to Fig. 2b, we can see that
node v; is redundant irrespective of the order in which
reads are processed due to the transitive edge (vj,v;). We
will call nodes that introduce transitive edges between two
other nodes transitive, and since they correspond to redun-
dant reads, we will eliminate them from processing.

For each incoming read, we now want to identify if it
introduces any transitive nodes. This can be done by consid-
ering all possible triples it forms with its adjacent nodes. For
instance, to find the transitive nodes introduced by the
arriving node v; (i.e., read ;) in the first example in Fig. 2b,
we need to check if it has a pair of incoming neighbors
u,w € N~ (v;) that share an edge (u,w) or (w,u). In the sec-
ond example, to find the transitive nodes introduced by the
arriving node, we check if it has an incoming neighbor u €
N~ (v;) and outgoing neighbor w € N*(v;) that share an
edge (u,w). Finally, to find the transitive nodes introduced
by the arriving node v;, we need to check if it has a pair of
outgoing neighbors u,w € N~ (v;) that share an edge (u,w)
or (w, u).

In general, we notice that there are three ways an
incoming read can introduce transitive nodes. However,
because we do not know which case we are dealing with,
we need to consider all three. This intuition is captured in
Algorithm 1.

For each incoming read v, the input to the algorithm are
all overlaps with the previously processed nodes (repre-
sented by sets N*(v) and N~ (v)), and the current irreduc-
ible overlap graph G (we explain irreducibility below). In
lines 3-9, we check if v has a pair of outgoing neighbors
u,w € N*(v) that share an edge (u,w) € E or (w,u) € E.
This scenario corresponds to the last case in Fig. 2b. In lines
10-16, we check if v has a pair of incoming neighbors u, w €
N~ (v) that share an edge (u,w) € E or (w,u) € E. This sce-
nario corresponds to the first case in the Fig. 2b. Finally, in
lines 17-21, we check if v has a pair of neighbors u, w where
u € NT(v) and w € N~ (v) share an edge (w,u) € E. This
scenario corresponds to the middle case in the Fig. 2b.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 01,2023 at 18:24:30 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 1. FINDTRANSITIVE(G, v, N (v), N~ (v))

1: G=(V,E) G is irreducible
2: L < () set of transitive nodes
3: foru € N*(v) do

4: forw e N (v),u# wdo
5 ifug LAw¢ L then
6: if (u,w) € E then
7
8

L — LU{u}
else if (w,u) € E then
9: L — Lu{w}
10: foru € N~ (v) do
11: forw € N~ (v),u # wdo
12: ifudéd LAw¢ L then

13: if (u, w) € E then

14: L — LU {w}

15: else if (w,u) € E then
16: L — LU{u}

17: foru € N*(v) do
18: forw e N~ (v)do
19: ifug LAw¢ L then

20: if (w,u) € E then
21: L — Lu{v}
22: return L

Although the processing steps in Algorithm 1 are simple,
the entire procedure can be computationally expensive for a
mobile system and streaming regime (keeping in mind that it
is executed for each incoming read). Because we are searching
for edges between incoming neighbors, edges between outgo-
ing neighbors, and edges between incoming and outgoing
neighbors, the process requires O((|N~(v;)| + |N*(v)])?)
edge queries. This is problematic, as v; may have a high
degree, and each edge query can be expensive depending on
how G is stored in memory. However, we can make certain
guarantees about our incoming node degree as long as G is
irreducible. Here, we define an irreducible graph to be an over-
lap graph that does not contain transitive nodes.

Cost of Handling Transitive Nodes

In a streaming regime, we can maintain graph irreducibility
by eliminating transitive nodes the moment they are intro-
duced by an incoming node. We will call removing transi-
tive nodes transitive closures. Maintaining irreducibility
through transitive closures will not require any additional
computational effort. However, it will necessitate a dedi-
cated approach to maintain a coherent list of connected
components.

Recall that by definition, an ODT detects an edge (u,v) if
there is a significant overlap between the reads correspond-
ing to v and v. Here, a significant overlap indicates the reads
corresponding to u and v have been derived from neighbor-
ing portions of the underlying genome. If we have an irre-
ducible overlap graph, we are guaranteed that for an
incoming read v;, |N~(v;)| + |N*(v;)] <4 with [N~ (v;)| < 2
and |N*(v;)| < 2. This can be shown through contradiction:
Suppose we have an incoming read r; and an irreducible
graph G'~!. Now, suppose |N*(v;)] =3 (or [N~ (v;)| =3,
both work). By definition, the three reads in N (v;) that over-
lap with r; belong to the same portion of the genome as 7;.
This is because their prefixes overlap with r;. Since all three
of the reads belong to the same portion of the genome, then
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they must also overlap with one another. Since they all over-
lap with one another, at least one of the reads is either con-
tained within another read or contained within the overlap
of the other two reads. This means that at least one of the
reads is transitive which contradicts that G'~! is irreducible.
This contradiction shows that both | N (v;)| and [N~ (v;)| < 2
and therefore |N~(v;)| + [N (v;)| < 4 so long as G'~! is irre-
ducible. Notice that this is demonstrated in Fig. 2b.

We recognize that the above reasoning holds for the case
where an overlap (a suffix-prefix match above some prede-
fined threshold) between reads indicates that they are
derived from the neighboring portion of a genome. This
assumption is not always true in the real world (e.g., due to
repeats in a genome and errors in sequencing). However, as
we show later in Section 3.4, our method still performs
acceptably well even when the assumption of graph irre-
ducibility is violated.

3.2 Maintaining Graph and Components

Given an efficient routine to identify transitive nodes in the
stream, we need a way to maintain the both graph structure
and the corresponding connected components. Our solution
must also be able to handle deletions of transitive nodes.

To maintain graph G, we use a simple adjacency list
built on top of a hash table. For each vertex we maintain a
list of its incoming and outgoing neighbors, and the neigh-
bor lists are kept in a hash table with key derived from ver-
tex identifier. In this way, we compensate for the fact that
the size of the input stream is not known in advance. This
solution is practical, efficient and takes into account small
expected size of the neighbor lists.

To store and track connected components, we use a vari-
ant of the union-find data structure (UF) [19]. Specifically,
we represent UF as a set of key-value pairs (v, v.), where v,
is some node mapped to a component represented by v,
(i.e., v, is the root of the component). Here, a set is again
implemented over a hash table, to account for the fact that
the size of UF will be changing dynamically.

Algorithm 2. StREAMCC(G*™, UF, v;, N (v;), N~ (v;))
1: Gi—l — (Vi_l,Ei_l)
2: L « FINDTRANSITIVE(G' ™1, v;, Nt (v;), N~ (v;))
3 E- <0
4: foru € L do
5. UF[u] « nil
6
7
8

E-— E U{ele= (u,w) Ae € E"'}
. B~ FE U{ele= (w,u) Ae€ E1}
:ifv; ¢ L then
UF[U,] — U
10: foru e (N*(v;) UN (v;)) do
11: if UF[u] < UF][v;] then
12:  UF[o;] — UF[y]
13: foru e (N (v;) UN"(v;)) do
14: if UF[u] # UF[v;] then

o

15: P — {r|UF[r] = u}
16: forw € P do
17: UF[w] « UF[v;]

18: C* «— UF connected components represented viaUF
19: Vi— (ViTtu{u})\ L

20: B! — EL\ B

21: ODT(drop L) optional feedback to ODT

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 01,2023 at 18:24:30 UTC from IEEE Xplore. Restrictions apply.
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3.3 Maintaining Components Over a Stream
Having all ingredients in place, we summarize our method
for maintaining connected components in Algorithm 2.
In the first step, we identify all transitive nodes that are safe
to remove using our FINDTRANSITIVE routine (line 2). For each
transitive node, we first remove its corresponding entry
from the UF structure (line 5). We then identify all associated
edges to remove from G (lines 6 and 7). Because we are using
hash tables for both UF and £, both of these operations can
be done in amortized O(|V]). Since G is reduced by transitive
closures, we expect |V to be a small fraction of all processed
nodes (which we confirmed via experimental results). If the
incoming node v; is not in the list of nodes to remove, we pro-
ceed with insertion in lines 8-17 (explained below). Finally, in
lines 18-21, we remove all edges associated with transitive
nodes along with the transitive nodes and reads themselves.
One critical advantage of our approach is that it can pro-
vide feedback to the ODT (line 21) instructing it which reads
are potentially redundant. Since transitive nodes corre-
spond to redundant reads, they may be safely offloaded (or
dropped) to a persistent storage, and processed later as
needed, thus saving memory. Moreover, by maintaining
only non-redundant reads, an ODT may improve its perfor-
mance as well. These properties turn out to be particularly
crucial when executing on low-memory devices, since off-
loading reads from the main memory allows us to save gig-
abytes and hence operate on much larger data set then what
would be normally possible (as we demonstrate in the
experimental results).

Inserting Nodes

To insert a node v; (lines 8-17), we process how wv; affects UF
(lines 9-17). Node v; can form its own component (if it has
no neighbors), join a component (if its neighbors all belong
to the same component), or merge components (if its neigh-
bors belong to different components). First, we assume that
v; is forming its own component in line 11. Then, we handle
the situation where it joins a component or merges compo-
nents. If v; has neighbors, then we identify the root of the
component to which v; belongs to (lines 10-12). We note that
because we are incrementally maintaining UF with each
incoming read, the resulting structure always has a depth of
one (all nodes are connected to the root). Therefore, the cost
of this step is O(|N~ (v;) U N (v;)|), which is constant when
G is irreducible.

In lines 13-17, we handle the situation where components
are merged. We do this by checking if any of v;’s neighboring
nodes have a different root (line 14). When this is the case,
we reassign all of the nodes w € c{,,, to UF[w] — UF[v;]. As
a result, neighbors of v; end up having the same component
mapping as v;. Note that gathering component members in
line 15 requires searching through UF, and hence takes
O(|V]) time. However, this cost gets amortized over the
course of execution as shown in experimental results.

3.4 Tuning to Real World Data

So far we have been working under the assumption that an
ODT correctly identifies suffix-prefix overlaps beyond some
predefined threshold between reads coming from the neigh-
boring parts of a genome. Although this assumption is helpful

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 2, MARCH/APRIL 2023

Fig. 3. Impact of false positive and false negative edges on connected
components discovery when using transitive closure. Left: vertex v; is
added to the graph with single component consisting of vertices
{w,u,z,y}. We consider two cases where edges (w,z) and (v;,y) are
incorrectly missing, or edges (z,«) and (u, y) are incorrectly introduced.
Right: After performing transitive closure on u, in both cases the graph
will consist of three connected components instead of one component.

in our understanding of transitive nodes, it is not entirely real-
istic. This is because DNA reads, especially in MinION
sequencing, are error-prone and typical genomes are repeti-
tive. Consequently, an ODT may either miss overlap between
reads (e.g., due to sequencing error) or may detect spurious
overlaps (e.g., due to repetition where similar reads come
from different regions of a genome).

If an ODT detects an overlap between reads that do not
belong to neighboring portions of the genome, then this is a
false positive. The connected components of the overlap
graph that contains many false positives may not be a
robust representations of OTUs; this is especially apparent
in the presence of high sequencing error. However, they
may still be informative, for example, OTUs may be describ-
ing higher taxonomic units (say genus or family) instead of
representing individual species. In [29], Pell ef al. found that
if the false positive rate is above a so called percolation
threshold (e.g., 18% in one of their tests on de Bruijns
graphs), erroneous connections between the “true” compo-
nents emerge and the resulting components do not repre-
sent species any more.

If an ODT misses an overlap between two reads that
belong to neighboring portions of a genome, then this is a
false negative. This can cause two components that are sup-
posed to be connected to be disjoint. Disconnected compo-
nents may also misrepresent the true OTUs, leading to
incorrect assessment of the number of OTUs. False nega-
tives are extremely common and can be dealt with by
increasing the depth of coverage to get a single, complete
component for each OTU. Increasing the depth of coverage
means that more reads are sequenced from the sample. The
intuition behind this is that the more reads that are
sequenced, the more opportunities we give to the ODT to
identify an overlap in that region and ideally form a single
component. The increased depth of coverage causes overlap
graphs to grow large as it introduces more nodes. However,
this is exactly the problem that our transitive closures
approach addresses.

In Fig. 3, we show a hypothetical scenario that demon-
strates the impact of false positive/negative edges. In this
scenario, node wu is transitive, and therefore it will be
removed by transitive closure. However, in the presence of
false positive/negative edges, removing a transitive node
may disconnect our graph. To see why, observe that nodes
w and v; are connected to u, and x and y are connected to u,
and yet these two pairs are not connected to each other.
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This could have happened because ODT missed edges (u, )
and (v;, y) or the ODT incorrectly identified edges (z, u) and
(u,y). In either case, removing u will disconnect the graph.
We use the term articulation points to identify nodes that dis-
connect components upon their removal [14].

Protecting Articulation Points

When transitive nodes are articulation points, we know this
is due to an ODT error. However, we cannot conclude
whether this is due to false positive or false negative edges.
Due to this uncertainty, we should not remove articulation
because we cannot assume that articulation points correctly
provide redundant information. Moreover, disconnecting
components would require recomputing all components
from scratch, thus degrading computational performance.
Furthermore, to even determine whether a component has
become disconnected is a challenging problem on its
own [23]. Hence, in our approach we decided to protect
articulation points from being removed.

Let nodes corresponding to the reads that contain the
redundant read be anchor nodes. For example, in Fig. 3, u is
transitive while v; and w are anchor nodes. Instead of check-
ing whether a node is an articulation point, we will impose
a more strict, and inexpensive to compute, criteria: A transi-
tive node must have anchored neighbors for it to be removed.
A node is anchored if it shares an edge with an anchor node.
If all of a transitive node’s neighbors are anchored, then we
can safely remove the transitive node. This is because a tran-
sitive node cannot be an articulation point if its neighbors
are anchored. Anchor nodes must belong to the same com-
ponent as the transitive node. If all of the transitive node’s
neighbors are anchored, then they all have at least two
points of connection to the rest of the component: one point
is with the transitive node and another point is with at least
one of the anchored nodes. This allows us to safely remove
the transitive node because the neighbors still maintain at
least one point of connection to the rest of the component.

We can modify Algorithm 2 to enforce that we do not
remove transitive nodes that may be articulation points. To
do this, it is sufficient that we remove from set L any node
whose neighbors are not all anchored. For each node u € L,
this necessary condition can be checked in O(|N~(u)|+
|NT(u)]) time because each neighbor of u requires a constant
number of edge queries to see if it is anchored. Hence, this
modification imposes only slight overhead compared to the
original algorithm.

Effects of Preserving Transitive Nodes

We will refer to an overlap graph that has transitive nodes
that are not articulation points removed as a reduced graph. In
a reduced graph, we are guaranteed to not disconnect an
existing component. However, in the following example, we
illustrate how removing transitive nodes may still result in a
fragmented component in the future. Suppose that nodes v, v;
and w precede nodes x and y in Fig. 3 (u,v;, w < z,y). Since
and y have not been added to the graph yet, node u is not an
articulation point and hence is removed by transitive closure.
When 2 and y are added to the graph, they must end up in dif-
ferent components from w and v; since u is missing. Although
this may affect the component count, in the experimental
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results, we show that connected components are still robust
representations of OTUs.

Another observation is that because we cannot remove
all transitive nodes, we will not have the same degree guar-
antees as in an irreducible overlap graph. For example, in
Fig. 3, we cannot remove u due to it being an articulation
point. Later in the process, we may receive a read r;, that
has specifically suffix-prefix overlaps with the reads corre-
sponding to w and « but also u. In such case, the out degree
of v; will be three, which violates our previously established
degree constraints in irreducible graphs.

Fortunately, in practice, we observe that incoming nodes
in the stream follow an exponential degree distribution,
which is a side effect of transitive closures (see experimental
results). If we assume an exponential distribution, then we
can still guarantee that the expected degree of a node will be
constant. Suppose an incoming node v; has degree of k with
probability p;, where p, = (1 — e~ /*)ek/¢ and k is some con-
stant [27]. Then the expected average degree of an infinite
stream is: E[|[Nt(u)|+|IN~ ()= k-pr= k(1 —e V/)e M=

rgm i PN )+ ) > k=3 )
1—e1/k

Since the average degree is bounded by «, as long as k is a
small constant, maintaining transitive closures on a reduced
graph will still perform similarly to an irreducible overlap
graph. In our experimental results, we found that « never
exceeds three.

4 EXPERIMENTAL RESULTS

To validate our proposed approach, we implemented Algo-
rithms 1 and 2, including the extensions from Section 3.4, in
a standalone C++ application (the code is open source and
available from [35]). We performed a set of experiments
using synthetic as well as actual, publicly available, Grid-
ION data [3]. In our experiments, we focused on perfor-
mance (e.g.,, run time and memory use) as well as
correctness characteristics (e.g., connected components and
OTUs recovery and convergence) taking into account prop-
erties of the ODT. We also note that all experiments that
involved random sampling or shuffling of the data were
repeated multiple times, and we did not observe significant
difference from the results reported below.

4.1 Test Data

To prepare benchmark data, we started from the ERR2906227
data set publicly available from the European Nucleotide
Archive [3]. This data set has been generated using the ONT
GridION sequencer, which is a scaled-up version of the porta-
ble MinION platform. We selected this particular data set
since it represents metagenomic sequencing of a mock com-
munity with known microbial composition. Specifically, the
data set is based on the Zymo Community Standards that
comprises five Gram-positive bacteria, three Gram-negative
bacteria, all eight organisms in the same abundance, and two
types of yeast that make 4% of the community (more details
regarding this particular data set and how sequencing had
been performed can be found in [28]). We chose to use data
sets with organisms in the equal abundance to better assess
the effects of transitive closures on OTUs identification. In

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 01,2023 at 18:24:30 UTC from IEEE Xplore. Restrictions apply.



1098

Supplement 1, we provide additional experimental results for
the case where abundance of species changes logarithmically.

To annotate the reads, i.e., assign them to one of the com-
ponent organisms in the mock community, we performed
read mapping using the blast-2.10.1+ tool [7] and the
reference genomes provided by Zymo [37] (maker of the
mock community). For each mapped read, we selected its
target OTU based on the best mapping score (i.e., to which
reference genome it mapped the best). We disregarded
reads with low mapping scores and reads that did not map
uniquely. Furthermore, we eliminated very few reads map-
ping to the yeast genomes since they made less than 4% of
all reads. The resulting data set consists of 2,969,089 classi-
fied (i.e., assigned to an OTU) reads. We will refer to the
resulting data set as ERR2906227.

We used the annotated ERR2906227 data set to simulate
artificial but realistic reads using the NanoSim tool [34].
Starting from the actual GridION reads and the correspond-
ing reference genomes, NanoSim first builds a statistical
model of the GridION sequencer and then uses this model
to derive new reads from the reference genomes. Since
NanoSim reports from which position in the genome each
simulated read has been derived, we can use this informa-
tion to create a perfect ODT, that is, a tool in which no false
positive or false negative edges are created. This enables us
also to control for ODT performance (e.g., precision and
sensitivity) when assessing performance of our algorithms.
We refer to the resulting data set as Sim. The data set con-
sists of 200,000 reads, where each of the eight reference
genomes is represented by 25,000 reads.

For reproducibility purposes, we provide all details
regarding data preparation in the accompanying web page
[35].

4.2 Overlaps Detection

Detection of prefix-suffix overlaps in DNA reads is exten-
sively studied topic, especially in the context of long reads
such as those produced by MinION or PacBio platforms.
However, although there are several ODTs available (e.g.,
daligner [26], minimap2 [20], MHAP [8], ELaSTIC [36]),
these tools do not provide any formal guarantees with
respect to the quality and correctness of the discovered over-
laps. Moreover, they currently are not meant to work in a
streaming regime and are not designed to incorporate poten-
tial feedback provided by our algorithms (e.g., line 21 in
Algorithm 1). Specifically, they do not expose any interface
that would enable us to inform the ODT which reads are no
longer required to perform OTU identification (such reads
could be removed by the ODT from the main memory and
from computations). Taking all of that into account, in order
to test our solution while controlling for ODT quality and
performance, we decided to simulate overlap graph stream-
ing based on overlaps detected via batch processing.

To simulate the overlap process for the ERR2906227
data set, we directly leveraged information provided by the
blast tool when performing reads assignment to OTUs (as
explained in the previous section). Specifically, we assumed
that two reads overlap if they are mapped by blast to the
same portions of the underlying reference genome such that
they have a suffix-prefix overlap of at least size 1,000
nucleotides/characters (based on [25] we consider such
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overlap length significant). To simulate an ODT for the Sim
data set, we used a similar approach. However, instead of
using blast, we directly used the exact mapping informa-
tion provided by NanoSim (as explained earlier). In both
cases, we obtained a complete overlap graph a priori, includ-
ing information about direction of the overlaps.

Since the overlap graphs are constructed by directly
leveraging information provided by blast and NanoSim,
the overlap graphs do not contain any false positive edges.
This means that each component consists entirely of reads
from a single input species and therefore are homogeneous.
If we used an existing ODT, the constructed overlap graph
may have false positive edges because it does not know the
underlying true graph structure. Although we are not able
to control for quality of correctness or give feedback to a
real ODT, we provide additional results using minimap2 in
Supplement 1).

Given an overlap graph, we were able to directly emulate
the corresponding stream of reads R and their neighbor-
hoods N* and N~. To achieve realistic behavior from the
memory use perspective, our simulated ODT performed as
follows. All reads from the stream R are stored in a FASTA
file in the order in which they appeared in the stream (for
each data set we generated several streams by randomly
permuting the order of the reads and we observed no signif-
icant difference in performance of our algorithms for differ-
ent streams). In the FASTA file, the name of each read
encoded information about which other reads in the stream
that read is overlapping with. When executing, our ODT
iterated over the FASTA file and mimicked overlap detec-
tion, which involved parsing the read name to check which
of the overlapping reads were already seen in the stream
and are in the main memory. From that information, the
ODT would generate sets N* and N~ and stream them to
our OTU identification algorithm (using Linux/Unix pipes).
Finally, the ODT was capable of receiving feedback from the
OTU identification algorithm and used the feedback to
reduce the number of reads maintained in the memory. Spe-
cifically, the ODT was maintaining reads as standard strings
in a fast hash table, and would immediately erase any
entries marked as redundant (recall line 21 in Algorithm 2).

4.3 Effectiveness of Transitive Closures

In the first experiment, we tested how maintaining transitive
closures, hence eliminating redundant reads, affects our abil-
ity to recover connected components and their corresponding
OTUs. To do this, we constructed a series of overlap graphs
over the Sim data set, in each case randomly removing a frac-
tion of edges to introduce false negatives. For each such cre-
ated overlap graph, we simulated a streaming process and
used our software to identify connected components from the
stream. To obtain the actual true number of connected compo-
nents in a given overlap graph, we used standard union-find
algorithm on the graph without streaming. We note that in
the ideal scenario, both methods should be identifying eight
connected components, each corresponding to one OTU in
the data set. The results of this experiment are summarized
in Fig. 4. Here we use Actual to denote the number of con-
nected components that are identifiable in the graph, and
Transitive to denote the number of connected components
recovered when the graph is processed using our method.
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Fig. 4. Number of identified connected components depending on the
percentage of edges retained in the Sim overlap graph that has eight
components (y-axis is in log scale). Actual means components identified
using union-find on the entire graph, Transitive means components identi-
fied using our method. Significant means components with more than
three nodes.

From the figure we can make several observations. First,
to correctly recover all eight OTUs, the overlap graph must
contain at least 50% of edges. When edge retention is below
50%, the missing edges cause the graph to become highly
disconnected and hence components no longer uniquely
identify OTUs. Second, irrespective of the edge retention,
transitive closures introduce exponentially more connected
components than there are in the unprocessed graph. This
is not entirely surprising considering our previous discus-
sion on how missing edges can lead to disconnected nodes
with transitive closures. As edge retention increases, so
does expected node degree of the nodes in the underlying
graph. This in turn introduces more redundancies therefore
increasing the number of transitive closures performed. In
our tests, the impact of transitive closures become less pro-
nounced only after exceeding 95% edge retention resulting
in sharp dip visible in Fig. 4.

While these results may suggest poor performance of our
method, the picture drastically changes if we consider only
connected components with more than one node. In Fig. 5,
we inspect the component size distribution of components
recovered in the streamed and actual graph. As edge reten-
tion increases, we observe that there are eight distinct com-
ponents along with primarily singleton components. This
clear gap in component sizes allows us to easily distinguish
significant components that correspond to the target OTUs.
If we assume that significant components are components
of at least size three (denoted by Significant in Fig. 4), then
from Fig. 4, we can see that we quickly converge to the
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desired number of components representing OTUs in both
our streamed and actual graph. We note that we observe
the same behavior in real world data set ERR2906227 as
well as in data set with logarithmic abundance distribution
(see Supplement 1). We also note that since the components
of the underlying overlap graphs are homogeneous, and
our algorithm does not introduce any false positive edges,
all recovered components are also homogeneous. We pro-
vide more detailed numbers on effectiveness of transitive
closures in Supplement 1.

4.4 Performance Characteristics

In the second set of experiments, we assessed performance
characteristics of our algorithm in terms of runtime and
memory use. As discussed earlier, the cost of performing
transitive closures and incrementally maintaining con-
nected components depends on the average degree of each
incoming node, irrespective of the performance of the ODT.
In Fig. 6, we plot the incoming node degree distribution
against the fitted exponential distribution when streaming
the Sim data set. From the figure, we can see that the expo-
nential distribution indeed closely fits our data for various
levels of edge retention. Moreover, «, parameter of the
underlying exponential distribution, consistently remains a
small constant (we recorded 1.08 < « < 2.4). This confirms
that transitive closures can be performed in amortized con-
stant time. We note that we observe the same behavior in
real world data set ERR2906227.

To assess the cost of incrementally maintaining con-
nected components, as discussed in Section 3.3, we show
the effect of incoming reads on component formation in
Fig. 7. Initially, when nodes enter the graph, they form sin-
gletons. Then, the components grow larger and begin to
merge, thus reducing the number of components. Finally,
the number levels off and remains constant. This indicates
that as components get larger, merging becomes less fre-
quent, supporting our claim that the costly task of merging
components gets amortized over the course of execution.

Memory Characteristics

In Fig. 8, we show how eliminating redundant reads through
transitive closures affects storage rates throughout the
streaming process. Here, the storage rate refers to the fraction
of reads, as well as their corresponding graph nodes, that the
ODT should maintain in the main memory (such that its
functioning does not affect OTU identification). From this
figure, we can see that as edge retention improves (i.e., we
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Fig. 5. Frequency of components of given size when 10% (left plot), 50% (middle plot) and 90% (right plot) of the edges in the Sim overlap graph are
retained (both axes are in log scale). As edge retention increases, there are eight large components along with primarily singleton components.
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Fig. 6. Node degree distribution observed when streaming Sim data set and corresponding fitted exponential distribution, when 10% (left plot, x =
1.61, R? = 0.99), 50% (middle plot, x = 2.33, R?> = 0.96) and 90% (right plot, « = 1.08, R? = 0.92) of the edges are retained.

have fewer false negatives), we store a smaller percentage of
nodes. This makes sense intuitively because increased edge
retention introduces more redundancies, which lead to more
transitive closures. The same reasoning applies to why stor-
age use improves over time. Specifically, as more nodes are
introduced, more overlaps are being detected and hence
more redundancies are discovered and eliminated via transi-
tive closures.

To further demonstrate the practical implications of our
feedback mechanism, we combined the transitive closure
algorithms with the simulated ODT and deployed them on
an actual mobile device to demonstrate the potential to use
our tool in in situ experiments. For that purpose, we used
the NVIDIA Jetson Nano SCoC. The device comes with a
quad-core ARM Cortex-A57 processor, NVIDIA Maxwell
with 128 GPGPU cores, and 4 GB 64-bit LPDDR4 1600 MHz
of main memory. Our software setup was based on Linux
Ubuntu 18.04.3 configured with 8 GB of swap memory
(more details of our hardware/software configuration are
available from the SMARTEn project [5]). It is worth noting
that a very similar hardware configuration is offered by
Oxford Nanopore in their portable MinIT platform [2]. Nev-
ertheless, the tool is hardware agnostic and can be deployed
on any device ranging from data center through desktops/
laptops to mobile devices.

To measure the memory usage of the ODT combined
with our algorithms, we executed the experiments (in isola-
tion and without any additional non-OS processes running)
and monitored the main memory and swap memory usage
using the Linux sysstat/sar tool. Here, we considered
both scenarios in which the ODT either acted on or ignored
the feedback from the transitive closure algorithm. Fig. 9
shows the results for the Sim data set. Irrespective of the

% 25
T 10% —
X 30% —
ﬂ 20 ' 50% —
: B
S 15 °
Q.
g
8§ 10 -
°
R A
2 0 = T T

0 50000 100000 150000 200000

Number of Reads

Fig. 7. Number of connected components identified as a function of the
number of reads processed when different percentage of edges are
retained in the Sim data set.

number of edges retained, incorporating the feedback has
clear advantage in both reducing the memory footprint and
execution time. This is satisfyingly expected and aligns with
the numbers we reported for reads retention in Fig. 8. Con-
sidering that the average MinION read length in our experi-
ments was around 4 Kbp (with many reads exceeding
41 Kbp), discarding even relatively small number of reads,
as in the case of Sim data set, allows us to reduce memory
use by around 1 GB. This constitutes 25% of the total main
memory available in our NVIDIA Nano SCoC. That kind of
savings become critical in the case of much larger real world
data set, as we show in the following section.

4.5 Real World Data

In the final set of experiments, we assessed how effective our
proposed solution is in recovering OTUs in real world data.
We classified all reads in the ERR2906227 data set as dis-
cussed earlier, and used the resulting classification to assign
them to OTUs. To obtain the actual number of connected com-
ponents in the ERR2906227 overlap graph, we again used
the standard union-find algorithm. The algorithm returned
ten connected components and nine of them were significant
instead of the expected eight. This discrepancy between the
number of connected components and the number of OTUs is
explained by the complexity of one of the reference genomes.
Specifically, the genome of Salmonella is highly repetitive,
which causes repetitive reads to cluster in one region of the
genome thus not providing sufficient information to connect
other regions. We note that this fragmentation is not a side
effect of transitive closures. In fact, component fragmentation
due to a repetitive genome is a common and unavoidable
problem due to the inability of ODTs to distinguish between
very long repetitive portions of the genome.

Fraction of Reads Stored
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Number of Reads
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Fig. 8. Fraction of nodes maintained in the memory as a function of the
number of reads processed when different percentage of edges are
retained in the Sim data set.
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Fig. 9. Main memory available when executing the streaming algorithm together with the simulated ODT for the sim data set, when 10% (left plot),
50% (middle plot) and 90% (right plot) of the edges are retained. Feedback refers to the case when ODT uses information from the streaming algo-
rithm to drop unneeded reads from memory. No Feedback refers to the case when ODT does not leverage information provided by the streaming algo-
rithm. We can see that No Feedback consistently uses more main memory than Feedback.

We simulated the streaming process of the ERR2906227
overlap graph, and recorded the same statistics as for the
simulated data. Our method was able to recover all nine sig-
nificant components (and thus their corresponding OTUs)
after processing 2,004,350 reads (about two thirds of all
reads). In our experiments, we found that the exponential
degree distribution was a good fit with R* = 0.76 and « =
2.4. This confirms that the assumption of amortized con-
stant time for performing transitive closures holds for the
real world data set as well.

Throughout processing, the maximum number of nodes
stored was 30,799 (less than 2% of the total reads processed)
clearly demonstrating effectiveness of maintaining transitive
closures. This result is of particular importance from the
mobile processing perspective. Fig. 10 again shows the actual
memory and swap usage when executing on the NVIDIA
Nano SCoC. When ODT utilizes the feedback, the memory
usage remains relatively low (slightly over 1 GB), and no
swap memory is required. All this despite the fact that all
2,969,089 reads in the ERR2906227 stream are taking over
12 GB. When the ODT was executed without the feedback
mechanism, the main memory was saturated after the first 8
minutes of processing, and the ODT started using swap mem-
ory. However, after another 60 minutest of execution the
swap also was saturated and the ODT process was terminated
by the operating system (after processing slightly over 80% of
the stream). In summary, the feedback mechanism allowed
us to process relatively large real world data that would other-
wise be impossible using our modest mobile resources.
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Fig. 10. Main memory available (left) and swap memory used (right)
when executing the streaming algorithm together with the simulated
ODT for the ERR2906227 data set. Feedback refers to the case when
ODT uses information from the streaming algorithm to drop unneeded
reads from memory. No Feedback refers to the case when ODT does not
leverage information provided by the streaming algorithm. We can once
again see that Feedback uses less main memory than No Feedback. We
also see that No Feedback eventually exhausts main memory and swap
and crashes.

5 RELATED WORK

The idea of using transitive closure to reduce computational
complexity has been used previously in the context of DNA
assembly, where DNA reads are pieced together to recon-
struct longer DNA strings [30]. For example, in [24], Myers
discusses DNA string graphs in which vertices represent
prefixes and suffixes of reads, and edges represent non-
matching substrings between two overlapping reads. He
then shows that transitive edges can be removed without
affecting the ability to reconstruct the assembly. While in
our approach we essentially exploit the same principle, i.e.,
redundancy of overlapping reads, our focus is on streaming
and not memory prohibitive batch processing.

Disjoint-set forests, also known as union-find, is the most
efficient data structure to find connected components in a
graph. Because of its popularity and versatility, there are
several adaptations of union-find for various computational
setups. For example, Isenburg and Shewcuk [16] adapted
the union-find algorithm for a streaming 3D grid network
to use in image processing, Agarwal et al. considered I/O
efficient solutions for terrain analysis [6], and Simsiri et al.
studied work-efficient parallel adaptations of union-find for
incremental graph connectivity [32]. Laura and Santaroni
introduced the first semi-streaming algorithm that makes a
few passes to find strongly connected components in a
directed graph [19]. These methods, however, are primarily
focused on general streams where graph nodes and edges
can be inserted or removed at any point of time. Moreover,
they assume that the executing environment has significant
main memory available. In our case, the problem has a
slightly different flavor. On the one hand, the stream is eas-
ier to handle because we consider only node insertions and
specific node removals. Due to the nature of metagenomic
reads, we can also expect bounded number of edges intro-
duced with every node insertion. On the other hand, we
have very limited access to the main memory and computa-
tional power (typically, available memory is around 4-8 GB)
in any mobile setup. Consequently, our primary focus is on
maintaining minimal memory footprint, while delivering
the desired statistics.

6 CONCLUSION

The growing popularity and rapid adoption of portable DNA
sequencing platforms necessitates the development of new
computational strategies to enable in situ DNA analytics. In
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this work, we introduce OTUs identification method based on
connected components abstraction and operating on DNA
streams. The method can be used to accelerate mobile execu-
tion of multiple types of DNA analysis, including metage-
nomic DNA assembly and classification.

The key element of our solution is memory efficient han-
dling of connected components emerging in streams of
DNA reads and their overlap graphs. Through formal and
experimental analysis, we show that if the degree distribu-
tion of nodes in the streamed overlap graph follows an
exponential distribution (which is the case in real-world
data) our method has minimal computational cost.

The OTUs identification method we describe in this work
builds directly from the earlier observations that connected
components may approximate OTUs. While this approach
is very computationally appealing, it is not bulletproof. As
demonstrated by our experimental results, and observed by
others [29], if the number of false positive edges in the over-
lap graph exceeds certain thresholds, the resulting con-
nected components no longer represent OTUs at the species
level. This limitation should be taken into account when
selecting the ODT to include in the processing pipeline, and
when deciding on the downstream processing tasks.

Our method is introduced in conjunction with the idea of
DNA processing pipeline that incorporates feedback loops
between different stages in the pipeline. Our experiments
demonstrate the compounding benefits of having feedback
loops. In our proposed pipeline, performing transitive clo-
sures reduces the workload of our ODT by reducing the
number of reads the ODT has to manage; the ODT is then
able to reduce the workload of components identification
by reducing overall overlap graph size. The feedback loops
make our algorithms suitable for mobile computing devices.

While our proposed solution addresses the question of
how to identify connected components in a stream, it is based
on the assumption that the processing pipeline includes an
ODT that is able to work efficiently over the streamed DNA
reads and incorporate potential feedback. While such ODTs
are not yet readily available, we hope that our results will con-
vince other researchers to pursue this mechanism. Currently,
we are investigating an adaptive ODT operating directly on
the raw signals produced by MinION sequencer (i.e., bypass-
ing basecalling stage). A new real-time DNA processing pipe-
line and raw signal ODT are both part of the SMARTEn [5]
project, our broader effort in mobile DNA processing.
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