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Abstract

Today’s networks are massive and dynamic; Facebook with a billion of users and

a trillion of connections and Twitter with ∼600 millions of users tweeting ∼9,000

times in a second are just a few examples. Making sense of these graphs in static

and dynamic scenarios is essential. Most of the existing algorithms assume that the

graph is static and it does not change. Today, these assumptions are no more valid.

Fast algorithms for streaming and parallel scenarios are necessary to process graphs

of massive sizes. Compression techniques are also quite necessary to deal with the

size. In our work, we provide compression, streaming, and parallel algorithms for

three important graph analytics problems: centrality computation, dense subgraph

discovery and community detection. In addition, we introduce new dense subgraph

discovery algorithms to better model the cohesion in real-world networks.

Centrality metrics, such as betweenness and closeness, quantify how central a node

is in a network. They have been used successfully to carry various analyses such as

structural analysis of knowledge networks, power grid contingency analysis, quanti-

fying importance in social networks, analysis of covert networks and decision/action

networks, and even for finding the best store locations in cities. However, they are
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computationally expensive kernels. We present two different approaches for speeding

up the centrality computation. First, we propose the framework, BADIOS, which

compresses a network and shatters it into pieces so that the betweenness and close-

ness centrality computations can be handled independently for each piece. Second,

we show how centrality computations can be regularized to reach higher performance

on cutting edge hardware. Last, but not least, we provide incremental algorithms to

efficiently maintain closeness centrality values of vertices upon edge changes in the

graphs.

Finding dense subgraphs is a critical aspect of graph mining. It has been used

for finding communities and spam link farms in web graphs, graph visualization,

real-time story identification, DNA motif detection in biological networks, finding

correlated genes, epilepsy prediction, finding price value motifs in financial data,

graph compression, distance query indexing, and increasing the throughput of social

networking site servers. Motivated by the dynamic nature of graphs, we introduce

incremental algorithms for k-core decomposition, which is proven to be a fast and

effective solution for dense subgraph discovery problem. Furthermore, we present

new algorithms to find high-quality dense subgraphs and the relations among them

in networks. To this end, we introduce nucleus decomposition of a graph, which

represents the graph as a forest of nuclei and results in denser subgraphs than the

state-of-the-art methods.
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Community detection is a fundamental analytic in graph processing that can be

applied to several application domains, such as social networks. In this context,

communities are often overlapping, as a person can be involved in more than one

community. We address the problem of streaming overlapping community detection,

where the goal is to incrementally maintain communities in the presence of streaming

updates.
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Chapter 1: Introduction

Relationships between entities, such as people and systems, can be captured as

graphs where vertices represent entities and edges represent connections among them.

In many applications, it is highly beneficial to capture this graph structure and ana-

lyze it. For instance, in a social network, finding communities in the graph [62] can

facilitate targeted advertising. In the web graphs, finding densely connected regions

in the graph [55] may help identify link spam [142]. In telecommunications graphs,

with call relationships, locating closely connected groups of people for generating pro-

motions is important [128]. In protein-protein interaction graphs, locating cliques in

protein structures can be used for comparative modeling and prediction [144].

Many real-world graphs are highly dynamic. In social networks, users join/leave

and connections are created/severed on a regular basis. In the web graph, new links

are established and severed as a natural result of content update and creation. In

customer call graphs, new edges are added as people extend their list of contacts.

Furthermore, many applications require analyzing such graphs over a time window, as

newly forming relationships may be more important than the old ones. For instance,
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in customer call graphs, the historic calls are not too relevant for churn detection.

Looking at a time window naturally brings removals as key operations like insertions.

This is because as edges slide out of the time window, they have to be removed

from the graph of interest. In summary, dynamic graphs where edges are added and

removed continuously are common in practice and represent an important use case.

Main focus of this dissertation is “fast” algorithms. We always aim to reduce the

absolute execution time for different algorithms under different settings. In general,

we do not reduce asymptotic complexity of an algorithm, instead we focus on effective

heuristics to speed up the computation. Furthermore, we make use of cutting edge
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hardware for faster computations. For all studies included in this dissertation, we al-

ways implement the existing state-of-the-art algorithm in the most efficient manner.

Then, we compare our new algorithms with respect to that efficient baselines. Wher-

ever we introduce a new algorithm, we give the absolute time as well as the speedup

numbers with respect to the efficient baseline implementation. We believe that the

most important thing to evaluate the efficiency of a new algorithm is to have a proper

implementation of the baseline. For instance, in Chapter 2, when we compare our fast

algorithms for betweenness centrality computation with respect to the literature, we

see that many existing implementations are quite slow, and creates an illusion of high

speed up numbers. Our implementation of the baseline algorithm for betweenness

centrality computation is 40-50 times faster than the fastest algorithm in one of the

existing work which claims huge speedups. We also believe that our algorithms are

capable to meet the needs of the datasets we have used. For example, in Chapter 5,

we show that k-core decomposition of 16M edge graph can be maintained in a very

fast rate: 10K edge insertions can be handled in a single second, enabling real-time

processing at that scale.

In this study, we focus on fast algorithms for various types of graph analytics prob-

lems: centrality computation, dense subgraph discovery, and community detection.

Figure 1.1 summarizes the focus of this study, classified by the subdisciplines and

graph analytics algorithms with all the published and under review work. Subjects of

the studies are grouped into three topics; fast and incremental centrality computation,
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incremental and high-quality dense subgraph discovery and incremental overlapping

community detection. Our contributions span to three important subdisciplines of

computer science: high performance computing (HPC), data mining, and data man-

agement.

• In the HPC domain, we introduced parallel algorithms for fast centrality com-

putation [148, 153, 154, 155, 156].

• We investigated sliding window streaming algorithms for closeness centrality,

k-core decomposition, and overlapping community detection problems, which

deal with the management of data. Some of these algorithms are parallel [145,

146, 147, 149, 155].

• Regarding the data mining area, we devised compression algorithms for fast

centrality computation, incremental algorithms for closeness centrality and k-

core decomposition, and high-quality algorithms for dense subgraph discovery

problem [145, 147, 149, 150, 152, 153, 155, 157].

We believe that this dissertation will be beneficial for computer science researchers

working on fast algorithms as well as the domain scientists, who are in need of fast

algorithms to make sense of the graphs. For the computer science perspective, we be-

lieve that our contributions for different graph analytics will long live since significant

portion of them are independent of computer architecture, indicating that they can
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be used as a baseline for any new algorithm on any given architecture. We also intro-

duce quite efficient parallel algorithms on cutting edge architectures, like GPUs and

distributed-memory machines, which have been proven to be inevitable tools for high

performance computing. For the application domains, like sociology, bioinformatics,

and web science, problems in this dissertation have many applications, explained in

detail at the beginning of each chapter, and domain scientists can make use of our

algorithms to work on large scale networks in a more efficient manner.

In the following sections, we briefly present the motivation and specific problems

we studied in this dissertation. Then, we summarize our contributions for each graph

analytic problems and give pointers to associated chapters.

1.1 Fast and Incremental Centrality Computation

Centrality metrics play an important role while detecting the central and influ-

ential nodes in various types of networks such as social networks [112], biological

networks [99], power networks [92], covert networks [100] and decision/action net-

works [48]. The betweenness and closeness metric have always been interesting and

have been implemented in several tools which are widely used in practice for analyz-

ing networks and graphs [114]. In short, the betweenness centrality (BC) score of a

node is the sum of the fractions of the shortest paths between all node pairs that pass

through the node of interest [65] and the closeness centrality (CC) score of a node

is the inverse of the sum of shortest distances from the node of interest to all other
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nodes. Hence, they are measure of the contribution, load, influence, and effectiveness

of a node while disseminating information through a network.

To make the centrality computation faster in sequential settings, we propose the

BADIOS framework which uses a set of techniques (based on Bridges, Articulation,

Degree-1, and Identical vertices, Ordering, and Side vertices) for faster betweenness

and closeness centrality computation, in Chapter 2. The framework shatters the

network by removing Bridges and Articulation points, and reduces its size so that

the BC and CC scores of the nodes in different pieces of network can be computed

correctly and independently, and hence, in a more efficient manner. BADIOS also

compresses the graph by removing Degree-1 vertices recursively, by eliminating the

Identical vertices, which have same neighborhood, and by deleting Side vertices,

whose neighborhoods form a clique. Last, but not least, it also preorders the graph

(Ordering) to improve cache utilization. Details are presented in Chapter 2 and

in [150, 152]. In summary, the contribution of this dissertation on this topic are as

follows:

• We propose BADIOS framework to manipulate graphs by shattering and com-

pressing them for fast centrality computation.

• We present BC and CC algorithms for computing the centrality values on ma-

nipulated graphs.
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• Proposed algorithms are experimentally evaluated. For one of our social net-

works, we achieve to reduce the BC computation time from 5 days to 16 hours

and CC computation time from 3 days to 6 hours.

Huge computational cost of the centrality algorithms necessitates the leveraging

of the cutting edge hardware. In Chapter 3, we show how centrality computations

can be regularized to reach higher performance. For betweenness centrality, we devi-

ate from the traditional fine-grain approach by allowing a GPU to execute multiple

breadth-first searches (BFSs) at the same time. Furthermore, we exploit hardware

and software vectorization to compute closeness centrality values on CPUs, GPUs and

Intel Xeon Phi. Chapter 3 introduces our study on this topic, and more information

can be found in [148, 154, 156]. Contribution of this study can be summarized as

follows:

• We propose simultaneous breadth-first search operations for speeding up the

BC and CC computation on cutting-edge hardware.

• For CC, we make use of hardware/software vectorization to be applied on CC

computation.

• We extensively evaluated our algorithms and techniques on cutting-edge hard-

ware. In particular, we achieve an improvement of a factor 5.9 on CPU archi-

tectures, 70.4 on GPU architectures and 21.0 on Intel Xeon Phi.
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Motivated by the dynamic nature of graphs, we investigated streaming algorithms

for closeness centrality algorithms in sliding-window scenarios. Aim is to maintain

centrality values of vertices when there is an edge insertion or removal in the graph. In

Chapter 4, we provide computation filtering techniques for incremental CC computa-

tion. Our first contributions in Chapter 4 are incremental algorithms which efficiently

update the closeness centralities of vertices upon edge insertions and removals. Com-

pared with the existing algorithms, our algorithms have a low-memory footprint which

makes them practical and applicable to very large graphs. On top of the sequential

incremental closeness centrality algorithms, we present Streamer, a framework to

efficiently parallelize the incremental CC computation on high-performance clusters.

Streamer employs DataCutter [27], our in-house data-flow programming framework

for distributed memory systems. The best available algorithm for the offline central-

ity computation is pleasingly parallel (and scalable if enough memory is available)

since it involves n independent executions of the single-source shortest path algo-

rithm [29]. There are several (synchronous and asynchronous) blocks in the online

approach and it is not trivial to obtain an efficient parallelization of the incremen-

tal algorithm. As our experiments will show, the data-flow programming model and

pipelined parallelism are very useful to achieve a significant overlap among these

computation/communication blocks and yield a scalable solution for the incremental

centrality computation.

8



Chapter 4, and [149, 153, 155], presents more details on this subject, which can

be summarized as follows:

• We introduce the incremental closeness centrality algorithms to maintain cen-

trality values of vertices upon edge changes in the networks.

• We propose the first distributed-memory framework Streamer for the incre-

mental centrality computation problem which employs a pipelined parallelism

to achieve computation-computation and computation-communication overlap.

• We also leverage the shared-memory parallelization and take Non Uniform

Memory Architecture (NUMA) effects into account.

• The framework appears to scale linearly: when 63 worker nodes (8 cores/node)

are used, for the networks amazon0601 and web-Google, Streamer obtains 456

and 497 speedups, respectively, compared to a single worker node-single thread

execution. Furthermore, using additional techniques provide an improvement

of a factor between 2.2 to 9.3 times

1.2 Incremental and High-Quality Dense Subgraph Discov-
ery

Finding dense subgraphs is a critical aspect of graph mining [105]. It has been

used for finding communities and spam link farms in web graphs [101, 72, 56], graph

visualization [7], real-time story identification [11], DNA motif detection in biological

networks [64], finding correlated genes [185], epilepsy prediction [88], finding price

9



value motifs in financial data [57], graph compression [34], distance query index-

ing [91], and increasing the throughput of social networking site servers [73]. This is

closely related to the classic sociological notion of group cohesion [24, 61]. There are

tangential connections to classic community detection, but the objectives are signif-

icantly different. Community definitions involve some relation of inner versus outer

connections, while dense subgraphs purely focus on internal cohesion.

We study the problem of incrementally maintaining the k-core decomposition of

a graph in Chapter 5. A k-core of a graph [161] is a maximal connected subgraph in

which every vertex is connected to at least k other vertices. Finding k-cores in a graph

is a fundamental operation for many graph algorithms. k-core is commonly used as

part of community detection algorithms [70], as well as for finding dense components

in graphs [9, 19, 98], as a filtering step for finding large cliques (as a k-clique is also

a k-1-core), and for large-scale network visualization [8]. We develop streaming algo-

rithms for k-core decomposition of graphs in sliding-windows scenarios. In particular,

we focus on algorithms to update the decomposition as edges are inserted into and re-

moved from the graph (vertex additions and removals are trivial extensions). Details

of our contributions on this part of the dissertation is in Chapter 5 and in [145, 147],

which can be summarized as follows:

• We develop various algorithms to update the k-core decomposition incremen-

tally. To the best of our knowledge, these are the first such incremental algo-

rithms.
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• We identify a small subset of vertices that have to be visited in order to update

the density pointer values of vertices in the presence of edge insertions and

deletions.

• We present a comparative experimental study that evaluates the performance

of our algorithms on real-world and synthetic data sets. Our algorithms provide

a significant reduction in run-time compared to non-incremental alternatives,

reaching 6 orders of magnitude speedup for a graph of size of around 16 million.

For graph analysis, one rarely looks for just a single (or the optimal, for whatever

notion) dense subgraph. We want to find many dense subgraphs and understand the

relationships among them. Ideally, we would like to see if they nest within each other,

if the dense subgraphs are concentrated in some region, and if they occur at various

scales of size and density. Motivated by the following questions:

• How do we attain a global, hierarchical representation of many dense subgraphs

in a real-world graph?

• Can we define an efficiently solvable objective that directly provides many dense

subgraphs? We wish to avoid heuristics, as they can be difficult to predict formally.

In Chapter 6, we present nucleus decomposition [157] for high-quality dense sub-

graph discovery problem. Our contributions can be summarized as follows:

• Our primary theoretical contribution is the notion of nuclei in a graph. Roughly

speaking, an (r, s)-nucleus, for fixed (small) positive integers r < s, is a maximal
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subgraph where every r-clique is part of many s-cliques. (The real definition

is more technical and involves some connectivity properties.) Moreover, nuclei

that do not contain one another cannot share an r-clique.

• We show that the (r, s)-nuclei (for any r < s) form a hierarchical decomposition

of a graph. The nuclei are progressively denser as we go towards the leaves in

the decomposition. We provide an exact, efficient algorithm that finds all the

nuclei for any r, s values and builds the hierarchical decomposition.

• In practice, we observe that (3, 4)-nuclei provide the most interesting decompo-

sition. We find the (3, 4)-nuclei for a large variety of more than 20 graphs. Our

algorithm is feasible in practice, and we are able to process a 39 million edge

graph in less than an hour (using commodity hardware).

1.3 Streaming Overlapping Community Detection

Community detection is a fundamental kernel in graph analytics. We can define

a community within a graph as a set of vertices that exhibit high cohesiveness and

low conductance. High cohesiveness means that the vertices in the community have

relatively high number of edges connecting them, and low conductance means that

the vertices in the community have relatively small number of edges going outside of

the community.

Communities in social networks have two key characteristics. The first is that

communities are overlapping, as different communities can have common users. This
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is a typical scenario, as a single user can be involved in different communities, such as

co-workers, friends, and family. The second is that communities are dynamic. They

evolve as a result of the continuous interactions between people. These interactions

can result in the addition/removal of new/existing relationships in the network. For

instance, the follower-followee graph of Twitter [173] is highly active, with millions of

updates to the graph structure every day. This number is even higher if we consider

the mention graph of Twitter. It is also common to analyze the graph over a recent

time window, such as the mention graph of Twitter over the last week. In such

scenarios, both insertions and removals are equally frequent.

In Chapter 7, we present SONIC—an algorithm to detect overlapping communities

on dynamic graphs in a streaming manner. Upon each edge insertion or removal, we

incrementally maintain the overlapping communities. This way, the communities are

updated more efficiently and without the need for periodic re-computations that are

typically performed in batch. SONIC maintains multiple community ids for each

vertex and updates these ids upon edge insertions and removals. By doing so, it can

answer any query for the communities of a given vertex (or a set of vertices) by a

simple traversal of the community ids.

More details of our contributions on this part of the dissertation can be found in

Chapter 7, and also in [146]. To sum up, major contributions can be listed as follows:

• The SONIC algorithm for incremental overlapping community detection over

dynamic graphs with streaming updates.
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• A technique to detect significant changes in small community structures to

avoid a costly merge, unless a small community change is likely to cause a

larger community change.

• Inverted-index and min-hash based techniques to further accelerate the incre-

mental merge used in SONIC.

• An experimental evaluation of SONIC on real-world and synthetic data sets,

with respect to quality and running time performance.
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Chapter 2: Graph Manipulations for Fast Centrality

Computation

Centrality metrics are crucial for detecting the central and influential nodes in var-

ious types of networks such as social networks [112], biological networks [99], power

networks [92], covert networks [100] and decision/action networks [48]. The between-

ness and closeness are two intriguing metrics and have been implemented in several

tools which are widely used in practice for analyzing networks and graphs [114]. The

betweenness centrality (BC) score of a node is the sum of the fractions of the short-

est paths between node pairs that pass through the node of interest [65], whereas

the closeness centrality (CC) score of a node is the inverse of the sum of shortest

distances from the node of interest to all other nodes. Hence, contribution, load, in-

fluence, or effectiveness of a node, while disseminating information through a network,

is determined with betweenness and/or closeness metrics.

Although BC and CC have been proved to be successful for network analysis,

computing the centrality scores of all the nodes in a network is expensive. Brandes

proposed an algorithm for computing BC with O(nm) and O(nm + n2 log n) time
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complexity and O(n + m) space complexity for unweighted and weighted networks,

respectively, where n is the number of nodes in the network and m is the number of

node-node interactions in the network [29]. Brandes’ algorithm is currently the best

algorithm for BC computations and it is unlikely that general algorithms with better

asymptotic complexity can be designed [97]. However, it is not fast enough to handle

Facebook’s billion or Twitter’s 200 million users.

2.1 Introduction

We propose the BADIOS framework which uses a set of techniques (based on

Bridges, Articulation, Degree-1, and Identical vertices, Ordering, and Side vertices)

for faster betweenness and closeness centrality computation. The framework shatters

the network and reduces its size so that the BC and CC scores of the nodes in two

different pieces of network can be computed correctly and independently, and hence,

in a more efficient manner. It also preorders the graph to improve cache utilization.

For the sake of simplicity, we consider only standard, shortest-path vertex-betweenness

and vertex-closeness centrality on undirected unweighted graphs. However, our tech-

niques can be used for other path-based centrality metrics, or other BC variants,

e.g., edge and group betweenness [30]. BADIOS also applies to weighted and/or

directed networks. And all the techniques are compatible with previously proposed

approximation and parallelization of the BC and CC computation.

We apply BADIOS on a popular set of graphs with sizes ranging from 6K edges

to 4.6M edges. For BC, we show an average speedup 2.8 on small graphs and 3.8 on
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large ones. In particular, for the largest graph we use, with 2.3M vertices and 4.6M

edges, the computation time is reduced from more than 5 days to less than 16 hours.

For CC, the average speedup is 2.4 and 3.6 on small and large networks.

The rest of the chapter is organized as follows: In Section 2.2, an algorithmic

background for BC and CC computation are given. The shattering and compression

techniques are explained in Sections 2.5 and 2.4. Section 2.6 gives experimental results

on various kinds of networks. We give the related work in Section 2.7 and summarize

the chapter with Section 2.8.

2.2 Notation and Background

Let G = (V,E) be a network modeled as an undirected graph with n = |V | vertices

and m = |E| edges where each node is represented by a vertex in V , and a node-node

interaction is represented by an edge in E. Let Γ(v) be the set of vertices which are

interacting with v. A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

A path is a sequence of vertices such that there exists an edge between consecutive

vertices. A path between two vertices s and t is denoted by s  t. Two vertices

u, v ∈ V are connected if there is a path from u to v. If this is the case dstG(u, v) =

dstG(v, u) shows the length of the shortest u v path in G. Otherwise, dstG(u, v) =

dstG(v, u) =∞. If all vertex pairs are connected we say that G is connected. If G is

not connected, then it is disconnected and each maximal connected subgraph of G is

a connected component, or a component, of G.
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Given a graph G = (V,E), an edge e ∈ E is a bridge if G − e has more number

of connected components than G, where G − e is obtained by removing e from E.

Similarly, a vertex v ∈ V is called an articulation vertex if G− v has more connected

components than G, where G − v is obtained by removing v and its adjacent edges

from V and E, respectively. The graph G is biconnected if it is connected and it

does not contain an articulation vertex. A maximal biconnected subgraph of G is a

biconnected component: if G is biconnected it has only one biconnected component,

which is G itself.

G = (V,E) is a clique if and only if ∀u, v ∈ V , {u, v} ∈ E. The subgraph induced

by a subset of vertices V ′ ⊆ V is G′ = (V ′, E ′ = {V ′ × V ′} ∩ E). A vertex v ∈ V

is a side vertex of G if and only if the subgraph of G induced by Γ(v) is a clique.

Two vertices u and v are identical if and only if either Γ(u) = Γ(v) (type-I) or

{u} ∪ Γ(u) = {v} ∪ Γ(v) (type-II). A vertex v is a degree-1 vertex if and only if

|Γ(v)| = 1.

2.2.1 Closeness Centrality

Given a graph G, the closeness centrality of u can be defined as

far[u] =
∑
v∈V

dstG(u,v)6=∞

dstG(u, v)

cc[u] =
1

far[u]

If u cannot reach any vertex in the graph cc[u] = 0.
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For a sparse unweighted graph G = (V,E) the complexity of CC computation is

O(n(m + n)) [29]. The pseudo-code is given in Algorithm 1. For each vertex s ∈ V ,

the algorithm initiates a breadth-first search (BFS) from s, computes the distances

to the other vertices, and accumulates to cc[s]. Since a BFS takes O(m + n) time,

and n BFSs are required in total, the complexity follows.

Algorithm 1: CC: Centrality computation kernel

Data: G = (V,E)
Output: cc[.]

1 for each s ∈ V do
2 Q← empty queue
3 Q.push(s)
4 dst[s]← 0
5 far ← 0
6 cc[s]← 0
7 dst[v]←∞,∀v ∈ V \ {s}
8 while Q is not empty do
9 v ← Q.pop()

10 for all w ∈ ΓG(v) do
11 if dst[w] =∞ then
12 Q.push(w)
13 dst[w]← dst[v] + 1
14 far ← far + dst[w]

15 cc[s]← 1
far

16 return cc[.]

2.2.2 Betweenness Centrality:

Given a connected graph G, let σst be the number of shortest paths from a source

s ∈ V to a target t ∈ V . Let σst(v) be the number of such s  t paths passing
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through a vertex v ∈ V , v 6= s, t. Let the pair dependency of v to s, t pair be the

fraction δst(v) = σst(v)
σst

. The betweenness centrality of v is defined by

bc[v] =
∑

s 6=v 6=t∈V

δst(v). (2.1)

Since there are O(n2) pairs in V , one needs O(n3) operations to compute bc[v] for

all v ∈ V by using (2.1). Brandes reduced this complexity and proposed an O(mn)

algorithm for unweighted networks [29]. The algorithm is based on the accumulation

of pair dependencies over target vertices. After accumulation, the dependency of v

to s ∈ V is

δs(v) =
∑
t∈V

δst(v). (2.2)

Let Ps(u) be the set of u’s predecessors on the shortest paths from s to all vertices

in V . That is,

Ps(u) = {v ∈ V : {u, v} ∈ E, ds(u) = ds(v) + 1}

where ds(u) and ds(v) are the shortest distances from s to u and v, respectively. Ps

defines the shortest paths graph rooted in s. Brandes observed that the accumulated

dependency values can be computed recursively:

δs(v) =
∑

u:v∈Ps(u)

σsv
σsu
× (1 + δs(u)) . (2.3)

To compute δs(v) for all v ∈ V \{s}, Brandes’ algorithm uses a two-phase approach

(Algorithm 2). First, a breadth first search (BFS) is initiated from s to compute σsv

and Ps(v) for each v. Then, in a back propagation phase, δs(v) is computed for all

v ∈ V in a bottom-up manner by using (2.3). Each phase considers all the edges at
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most once, taking O(m) time. The phases are repeated for each source vertex. The

overall complexity is O(mn).

Algorithm 2: Bc-Org

Data: G = (V,E)
1 bc[v]← 0,∀v ∈ V
2 for each s ∈ V do
3 S ← empty stack, Q← empty queue
4 P[v]← empty list, σ[v]← 0, dstv ← −1,∀v ∈ V
5 Q.push(s), σ[s]← 1, dsts← 0

.Phase 1: BFS from s
6 while Q is not empty do
7 v ← Q.pop(), S.push(v)
8 for all w ∈ Γ(v) do
9 if dstw < 0 then

10 Q.push(w)
11 dstw ← dstv + 1

12 if dstw = dstv + 1 then
1414 σ[w]← σ[w] + σ[v]
15 P[w].push(v)

.Phase 2: Back propagation
16 δ[v]← 1

σ[v] ,∀v ∈ V
17 while S is not empty do
18 w ← S.pop()
19 for v ∈ P [w] do
2121 δ[v]← δ[v] + δ[w]

22 if w 6= s then
2424 bc[w]← bc[w] + (δ[w]× σ[w]− 1)

25 return bc
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2.3 The BADIOS Framework

As mentioned in the introduction, closeness- and betweenness-based graph analy-

sis can be an expensive task. The size of the graph, in particular the size of the largest

component in the graph, is the main parameter that affects the practical computation

time of many distance-related graph metrics. Hence, compression techniques which

can reduce the number of vertices/edges in a graph are promising to make them

faster. Furthermore, splitting graphs into multiple connected components, and hence

reducing the largest component size, can also help in practice.

BADIOS uses bridges and articulation vertices for splitting graphs. These struc-

tures are important since for many vertex pairs s, t, all s  t (shortest) paths are

passing through them. It also uses three compression techniques, based on remov-

ing degree-1, side, and identical vertices from the graph. These vertices have special

properties: No shortest path is passing through a side-vertex unless the side-vertex

is one of the endpoints, all the shortest paths from/to a degree-1 vertex is passing

through the same vertex, and for two vertices u and v with identical neighborhoods,

bc[u] and bc[v] (cc[u] and cc[v]) are equal. A toy graph and a high-level description

of the splitting/compression process via BADIOS is given in Figure 2.1.

As shown in Figure 2.1, BADIOS applies a series of operations as a prepro-

cessing phase: Let G = G0 be the initial graph, and G` be the one after the `th

splitting/compression operation. The ` + 1th operation modifies a single connected

component of G` and generates G`+1. The preprocessing continues if G`+1 is amenable
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to further modification. Otherwise, it terminates and the final CC (or BC) compu-

tation begins.

a

b b
b'

c

d

c{d}

e

c{d,e} f

g

h

1 32 54

1,0

2,1

1,0

1,0

1,0

7,10
7,12

1,0

1,0

1,01,0

1,0

1,0

reach, ff

Figure 2.1: (1) a is a degree-1 vertex and b is an articulation vertex. The framework
removes a and create a clone b′ to represent b in the bottom component. (2) There is
no degree-1, articulation, or identical vertex, or a bridge. Vertices b and b′ are now side
vertices and they are removed. (3) Vertex c and d are now type-II identical vertices: d is
removed, and c is kept. (4) Vertex c and e are now type-I identical vertices: e is removed,
and c is kept. (5) Vertices c and g are type-II identical vertices and f and h are now
type-I identical vertices. The last reductions are not shown but the bottom component is
compressed to a singleton vertex. The 5-cycle above cannot be reduced. Rightmost figure
shows the situation of reach and ff values in the second stage of manipulation. Values are
shown next to each vertex.

Exploiting the existence of above mentioned structures on CC and BC computa-

tions can be crucial. For example, all non-leaf vertices in a binary tree T = (V,E) are

articulation vertices. When Brandes’ algorithm is used, the complexity of BC com-

putation is O(n2). One can do much better: Since there is exactly one path between
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each vertex pair in V , for v ∈ V , bc[v] is equal to the number of pairs communicating

via v, i.e., bc[v] = 2 × ((lvrv) + (n− lv − rv − 1)(lv + rv)) where lv and rv are the

number of vertices in the left and right subtrees of v, respectively. This approach

takes only O(n) time. These equations can also be modified for closeness-centrality

computations and a linear-time CC algorithm can easily be obtained for trees.

A novel feature of BADIOS is fully exploiting the above mentioned structures

by employing an iterative preprocessing phase. Specifically, a degree-1 removal can

create new degree-1, identical, and side vertices. Or, a splitting can reveal new

degree-1 and side vertices. Similarly, by removing an identical vertex, new identical,

degree-1, articulation, and side vertices can appear. And lastly, new identical and

degree-1 vertices can be discovered when a side vertex is removed from the graph. To

fully reduce the graph by using the newly formed structures, the framework uses a

loop where each iteration performs a set of manipulations on the graph.

2.4 BADIOS for Closeness Centrality

Based on the combinatorial structures mentioned above, we describe a set of

closeness-preserving graph manipulation techniques to make a graph smaller and

disconnected while preserving the information required to compute the distance-based

metrics by using some auxiliary arrays. The proposed techniques will especially be

useful on expensive distance-based graph kernels such as closeness centrality which

will be our main application while describing the proposed approach.
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For simplicity, we assume that the graph is initially connected. In order to cor-

rectly compute the shortest-path distances and closeness centrality values after re-

duction, we keep a representative vertex id for some of the vertices removed from the

graph during the process. We also assign two auxiliary attributes to all the vertices:

reach and ff (forwardable farness).

As explained above, BADIOS compresses the graph G, splits it into multiple

disconnected components, and obtains another graph G′ = (V ′, E ′) with several graph

manipulations. Let u be a vertex in V ′ and C ′ be the connected component of G′

containing u. Let Ru be the set of vertices v ∈ (V \C ′)∪{u} such that all the shortest

v  w paths in the original graph G are passing through u for all w ∈ C ′. In G′, all

the vertices Ru \ {u} are disconnected from the vertices in C ′. Hence, for each vertex

v ∈ Ru, u will act as a representative (or proxy) in C ′. During the CC computation,

it will be responsible to propagate the impact of v to the closeness centrality values

of all the vertices in C ′. We use reach[u] = |Ru| to denote the number of vertices

represented by u.

In addition to reach, we assign another attribute ff to each vertex where at any

time of the graph manipulation process

ff[u] =
∑
v∈Ru

dstG(u, v).

The correctness of the proposed approach heavily depends on the correctness of the

updates on these attributes during the process. Before the manipulations, reach[u]
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is set to 1 for each u ∈ V since there is only one vertex (itself) in Ru. Similarly, ff[u]

is set to 0 since dstG(u, u) = 0.

2.4.1 Closeness-preserving graph splits

We used two approaches to split the graphs into multiple disconnected compo-

nents; articulation vertex cloning and bridge removal. Indeed, a bridge exists only

between two articulation vertices but we still handle it separately, since we observed

that a bridge removal is cheaper and more effective than articulation vertex cloning

and the former does not increase the number of vertices but the latter does.

Articulation vertex cloning

Let u be an articulation vertex in a component C appeared in the preprocessing

phase where we perform graph manipulations. We split C into k components Ci

for 1 ≤ i ≤ k by removing u from G and adding a local clone u′i of u to each new

component Ci by connecting u′i to the same vertices u was connected in Ci as shown

in Figure 2.2. For CC computations, to keep the relation between the clones and

the original vertex, we use a mapping org from V ′ to V where org(u′i) is original

vertex u ∈ V for a clone u′i ∈ V . At any time of a CC preprocessing phase, a vertex

u ∈ V has exactly one representative u′ in each component C such that reach[u′] is

increased due to the existence of u. This vertex is denoted as rep(C, u). Note that

each local clone is a representative of its original.
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Figure 2.2: Articulation vertex cloning on a toy graph with three disconnected components
after the graph manipulation.

The cloning operation keeps the number of edges constant but increases the num-

ber of vertices in the graph. The reach value for each clone u′i is set to

reach[u′i] = reach[u] +
∑

v∈C\Ci

reach[v] (2.4)

and its forwardable farness is set to

ff[u′i] = ff[u] +
∑

1≤j≤k
j 6=i

∑
v∈Cj

dstCj
(u′j, v) (2.5)

for 1 ≤ i ≤ k. Note that these updates are only local to clone vertices, i.e., only their

reach and ff values are affected. For example, a clone vertex u′i sees the impact of

the dstC(u, v) on ff[u′i] even though v ∈ Cj, i 6= j, is in another component after the

split. However, the same is not true for a non-clone vertex w /∈ Cj. Hence, considering

v and w are not connected anymore, the original CC kernel in Algorithm 1 will not

compute the correct closeness centrality values. To alleviate this, we will modify the

original kernel later to propagate the forwardable farness values of the clone vertices
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to their components. With the modified kernel, we will have

cc[u] = cc′[u′i] (2.6)

for 1 ≤ i ≤ k. That is, all the vertices cloned from the same articulation vertex will

have the same CC after the execution of the modified kernel. Furthermore, this value

will be equal to actual centrality of the articulation vertex used for splitting.

Bridge removals

As mentioned above, bridges can only exist between two articulation vertices.

The graph can be split into three disconnected components via articulation vertex

cloning where one of the components will be a trivial one having a single edge and

two clone vertices. Here we show that removal of a bridge {u, v} can combine these

steps and does not form such unnecessary trivial components. Let Cu and Cv be the

two components after bridge removal which contain u and v, respectively. We update

the reach values of u and v as follows:

reach[u] = reach[u] +
∑
w∈Cv

reach[w], (2.7)

reach[v] = reach[v] +
∑
w∈Cu

reach[w]. (2.8)
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Consecutively, the ff values are updated as

ff[u] = ff[u] +

(
ff[v] +

∑
w∈Cv

dstCv(v, w)

)
+ reach[v],

ff[v] = ff[v] +

(
ff[u] +

∑
w∈Cu

dstCu(u,w)

)
+ reach[u],

where reach[v] and reach[v] are the recently updated values from (2.7) and (2.8).

Note that the above equations add the forwardable farness value to each other in

addition to the total distance we lose by disconnecting a connected component into

two. The last reach term is required since reach[v] (reach[u]) vertices added to

Ru (Rv), and for all these vertices, v (u) is one edge closer than u (v). Again these

values will be propagated to the other vertices in Cu and Cv by the modified CC

kernel that will be described later.

To update the reach and ff values, both the cloning and removal techniques

described above require a traversal within the component of the graph in which the

articulation vertex or bridge appears. Although it seems costly, the benefit of such

manipulations can be understood if the superlinear complexity of CC computation is

considered. Assume that a graph is split into k disconnected components each having

equal number of vertices and edges. Considering the O(n(m + n)) time complexity,

the CC computation for each of these components will take k2 times less time. Since

there are k of them, the split will provide a k fold speedup in total. Although such
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articulation vertices and bridges that evenly split the graph do not appear in real-

world graphs, even with imbalanced splits, one can obtain significant speedups since

the cost of a split is just a single BFS traversal.

2.4.2 Closeness-preserving graph compression

In this section, we present two closeness-preserving techniques which can be used

to reduce the number of vertices and edges in a graph: (1) degree-1 vertex removal

and (2) side-vertex removal.

Compression with degree-1 vertices

A degree-1 vertex is a special instance of a bridge and can be handled as explained

in the previous section. However, the previous approach traverses the entire compo-

nent once to update the reach and ff values. Here we propose another approach

with O(1) operations per vertex removal which requires a post-processing after the

CC scores of the remaining vertices are computed by the modified kernel.

Figure 2.3 shows a simple example where a degree-1 vertex u appears after the

subgraph G2 is compressed into a single vertex after a set of graph manipulations.

To remove u, which is connected to v, three operations need to be performed: (1) an

update on reach[v], (2) an update on ff[v], and (3) setting u as a dependent of v for

post-processing. When u is removed, all the vertices that were being represented by

u (which are the vertices in G2) will be represented by v. Hence, the new value of
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Figure 2.3: A toy graph where G2 is compressed via manipulations and a degree-1 vertex
u is obtained.

reach[v] is updated as

reach[v] = reach[v] + reach[u]. (2.9)

The forwardable farness of u, i.e., ff[u], needs to be added to ff[v] as

ff[v] = ff[v] + ff[u] + reach[u]. (2.10)

Similar to the bridge removal case, the last term reach[u] is required in the equation

since all the reach[u] vertices that changed their representative to v were one edge

closer to u compared to v. As the last operation, we mark that u is dependent to v
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and the difference between the overall farness values of u and v is set to

far[u]− far[v] = (|V | − reach[u])− reach[u] (2.11)

= |V | − 2× reach[u]. (2.12)

The first term (|V | − reach[u]) in the summation is added since all the vertices in

V are one edge far away, except the ones in Ru, to u compared to v. Similarly, all

the vertices in Ru are one edge closer to u. Thus we have an additional −reach[u]

in (2.11). Sum of these two terms give the dependency equation in (2.12), i.e., the

difference in u and v’s farness. Hence, once the overall farness value of v is computed,

the farness value of u can be computed via a simple addition during a post-processing

phase.

Compression with side vertices

Let u be a side vertex appearing in a component during the graph manipulation

process. Since Γ(u) is a clique, except the ones starting or ending at u, no shortest

path is passing through u, i.e., u is always on the sideways. Hence, we can remove u

if we compensate the effect of the shortest s  t paths where u is either s or t. To

do this, we initiate a BFS from u in the original graph G as shown in Algorithm 3.

The main difference between a BFS in side-vertex removal and in the original

implementation in Algorithm 1 is line 13 (of Algorithm 3) which adds dst[w] to far[w]

for each traversed vertex w. To do that, a single variable to store the farness value (as

in Algorithm 1) is not sufficient since side-vertex removals update the farness values
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Algorithm 3: Side-vertex removal BFS for closeness centrality

Data: side vertex u, G = (V,E), far[.]
1 Q← empty queue
2 Q.push(u)
3 dst[u]← 0
4 dst[v]←∞, ∀v ∈ V \ {u}
5 while Q is not empty do
6 v ← Q.pop()
7 for all w ∈ ΓG(v) do
8 if dst[w] =∞ then
9 Q.push(w)

10 dst[w]← dst[v] + 1
11 far[u]← far[u] + dst[w]
1313 far[w]← far[w] + dst[w]

14 cc[u]← 1/far[u]

partially and these updates need to be stored till the end of the graph manipulation

process. Hence, we used an additional far array to perform side-vertex removal

operations.

This compression technique has a little impact of the overall time since for a

side vertex removal, an additional BFS (Algorithm 3) is necessary and it is almost

as expensive as the original BFS (of Algorithm 1) we try to avoid. However, these

removals can make new special vertices appear during the manipulation process which

enable further splits and compression of the graph in a cheaper way.

2.4.3 Combining and post-processing

We continuously process a reduction on the graph with split and compression

operations until no further reduction possible. We first perform degree-1 removals
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since they are the cheapest to handle. Next, we split the graph by first bridges and

then articulation vertex clones. The order is important for efficiency since the former

is cheaper. We iteratively use these three techniques until no reduction is possible.

After that we remove the side vertices to discover new special vertices. The reason

behind delaying the side-vertex removals is that its additional BFS requirement makes

it expensive compared to the other graph manipulation techniques. Hence, we do not

use them until we really need them.

After all the graph manipulation techniques, the original CC kernel given in Al-

gorithm 1 cannot compute the correct centrality values since it does not forward the

ff values to the other vertices. We apply a modified version as shown in Algorithm 4

to compute the CC scores once the split and compression operations are done and

reach and ff attributes are fixed.

Theorem 1. Let G = (V,E) be the original graph and G′ = (V ′, E ′) is the reduced
graph after split and compression operations with reach, ff, and far attributes com-
puted for each vertex v ∈ V ′. Assuming these attributes are correct, for all the vertices
in V ′, the CC scores of G computed by Algorithm 1 is the same with the CC scores
of G′ computed by Algorithm 4.

Proof. For a source vertex s ∈ V ′ and another vertex w 6= s that is connected to
s in G′, ff[w] is forwardable to far[s] by using the equation at lines 10 and 12 of
Algorithm 4. Remember that for a vertex w ∈ G′, all the reach[w] vertices in Rw

are not connected to s. Hence, they are represented by w and from s (and from
any vertex in the same component), they are reachable only through w. Since the
shortest-path distance between s and w is dst[w], the vertices in Rw are dst[w] more
edges far away from s when compared to w. Thus an additional dst[w] × reach[w]
farness is required while forwarding the ff[w] value to far[s].

At the end of the algorithm (line 14), we have an extra addition of ff[s] to the
total farness value of s. It is required since while computing the total farness of s and
its cc score, we need to consider the farness due to the vertices in Rs.
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Algorithm 4: Cc-Reach: Modified closeness centrality computation

Data: G′ = (V ′, E′), ff[.], reach[.], far[.]
Output: cc[.]

1 for each s ∈ V ′ do
2 · · · .same as CC
3 while Q is not empty do
4 v ← Q.pop()
5 for all w ∈ ΓG′(v) do
6 if dst[w] =∞ then
7 Q.push(w)
8 dst[w]← dst[v] + 1

1010 fwd← ff[w] + (dst[w]× reach[w])
1212 far[s]← far[s] + fwd

1414 far[s]← far[s] + ff[s]
15 cc[s]← 1/far[s]

16 return cc[.]

Work filtering with identical vertices

If some vertices in G′ are identical, i.e., their adjacency lists are the same, the

forwardable farness values from other vertices to their overall farness will be the

same. Hence, it is possible to combine these vertices and avoid extra computation in

Algorithm 4. We use 2 types of identical vertices: Vertices u and v are type-I (or type-

II) identical if and only if Γ(u) = Γ(v) (or Γ(u) ∪ {u} = Γ(v) ∪ {v}), as exemplified

in Figure 2.4.

The compression works as follows: Let G′ = (V ′, E ′) be the reduced graph after

preprocessing operations, and let I ⊂ V ′ be a set of identical vertices. We select a

proxy vertex u ∈ I, compute its overall farness to other vertices and CC score as
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vu vu

Type I Type II

Figure 2.4: Type-I (left) and type-II (right) identical vertices u and v.

shown in Algorithm 4. Then for a vertex v ∈ I, we compute

far[v] = far[u]− k × (reach[v]− reach[u]), (2.13)

cc[v] = 1/far[v], (2.14)

where k, the shortest distance between two identical vertices, is 2 for a type-I identical

vertex set, and 1 for a type-II identical vertex set. Note that the only difference

between the farness values is k × (reach[v]− reach[u]) according to the lines 10, 12,

and 14.

Post-processing for the degree-1 vertices

Once Algorithm 4 is done, the only remaining part is computing the CC scores of

removed degree-1 vertices since they are not in G′ anymore. To do that, we resolve

the dependencies created when the degree-1 vertices are being removed. We do a loop

on the vertices and for each vertex u we visit, we check if u’s CC score is already com-

puted. If not, we recursively follow the dependencies to find the final representative
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vertex in G′. While coming back from the recursion path, we use Equation (2.12)

to find the farness and the CC score(s) of the removed degree-1 vertices. Since the

dependencies form a tree and at most O(1) operations are performed per vertex, we

need at most O(|V |) operations to resolve all the dependencies.

2.5 BADIOS for Betweenness Centrality

Here we propose a set of betweenness-preserving graph manipulation techniques

similar to the ones described for closeness centrality. The proposed techniques will

make the original graph G = (V,E) smaller and disconnected while preserving the

information required to compute the distance-based metrics by using some auxiliary

arrays.

2.5.1 Betweenness-preserving graph splits

To correctly compute the BC scores after splitting G, we use the reach attribute

as described above and set reach[v] = 1 for all v ∈ V before the manipulations.

Articulation vertex cloning

Let u be an articulation vertex in a component C obtained during the preprocess-

ing phase whose removal splits C into k (connected) components Ci for 1 ≤ i ≤ k. As

in CC, we remove u and keep a local clone u′i at each component Ci. For betweenness

centrality on BADIOS, the reach values for each local clone is set with

reach[u′i] =
∑

v∈C\Ci

reach[v] (2.15)
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for 1 ≤ i ≤ k.

Algorithm 5: Bc-Reach: Modified betweenness centrality computation

Data: G′ = (V ′, E′) and reach

1 bc′[v]← 0,∀v ∈ V ′
2 for each s ∈ V ′ do
3 · · · .same as Bc-Org
4 while Q is not empty do
5 · · · .same as Bc-Org

77 δ[v]← reach[v]− 1, ∀v ∈ V ′
8 while S is not empty do
9 w ← S.pop()

10 for v ∈ P[w] do

1212 δ[v]← δ[v] + σ[v]
σ[w] × (1 + δ[w])

13 if w 6= s then
1515 bc′[w]← bc′[w] + (reach[s]× δ[w])

16 return bc’

Algorithm 5 computes the BC scores of the vertices in a split graph. Note that

the only difference with Bc-Org are lines 7 and 15, and if reach[v] = 1 for all

v ∈ V , then the algorithms are equivalent. Hence, the complexity of Bc-Reach is

also O(mn) for a graph with n vertices and m edges.

Let G = (V,E) be the initial graph, |V | = n, and G′ = (V ′, E ′) be the split graph

obtained via preprocessing. Let bc and bc′ be the scores computed by Bc-Org(G)

and Bc-Reach(G′), respectively. We will prove that

bc[v] =
∑

v′∈V ′|org(v′)=v

bc′[v′], (2.16)
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when the graph is split at articulation vertices. That is, bc[v] is distributed to bc′[v′]s

where v′ is a local clone of v. Let us start with two lemmas.

Lemma 1. Let u, v, s be vertices of G such that all s  v paths contain u. Then,
δs(v) = δu(v).

Proof. For any target vertex t, if σst(v) is positive then

δst(v) =
σst(v)

σst
=
σsuσut(v)

σsuσut
=
σut(v)

σut
= δut(v)

since all s t paths are passing through u. According to (2.2), δs(v) = δu(v).

Lemma 2. For any vertex pair s, t ∈ V , there exists exactly one component C of G′

which contains a clone of t and a representative of s as two distinct vertices.

Proof. (by induction on the number of splits) Given s, t ∈ V , the statement is true for
the initial (connected) graph G since it contains one clone of each vertex. Assume that
it is also true after the `-th splitting. Let C be this component. When C is further
split via t’s clone, all but one newly formed (sub)components contains a clone of t
as the representative of s. For the remaining component C ′, rep(C ′, s) = rep(C, s)
which is not a clone of t.

For all components other than C, which contain a clone t′ of t, the representative
of s is t′ by the inductive assumption. When such components are further split, the
representative of s will be again a clone of t. Hence the statement is true for G`+1,
and by induction, also for G′.

The local clones of an articulation vertex v, created while splitting, are acting as

the original vertex v in their components. Once the reach value for each clone is

set as in (2.15), line 7 of Bc-Reach handles the BC contributions from each new

component (except the one containing the source), and line 15 of Bc-Reach fixes

the contribution of vertices reachable only via the source s.

Theorem 2. Eq. 2.16 is correct after splitting G with articulation vertices.

Proof. Let C be a component of G′, s′, v′ be two vertices in C, and s, v be their
original vertices in V , respectively. Note that reach[v′]− 1 is the number of vertices

39



t 6= v such that t does not have a clone in C and v lies on all s t paths in G. For all
such vertices, δst(v) = 1, and the total dependency of v′ to all such t is reach[v′]− 1.
When the BFS is started from s′, line 7 of Bc-Reach initiates δ[v′] with this value
and computes the final δ[v′] = δs′(v

′). This is the same dependency δs(v) computed
by Bc-Org.

Let C be a component of G′, u′ and v′ be two vertices in C, and u = org(u′),
v = org(v′). According to the above paragraph, δu(v) = δu′(v

′) where δu(v) and
δu′(v

′) are the dependencies computed by Bc-Org and Bc-Reach, respectively. Let
s ∈ V be a vertex, s.t. rep(C, s) = u′. According to Lemma 1, δs(v) = δu(v) = δu′(v

′).
Since there are reach[u′] vertices represented by u′ in C, the contribution of the BFS
from u′ to the BC score of v′ is reach[u′]× δu′(v′) as shown in line 15 of Bc-Reach.
Furthermore, according to Lemma 2, δs′(v

′) will be added to exactly one clone v′ of
v. Hence, (2.16) is correct.

Bridge removals

Let {u, v} be a bridge in a component C formed during graph manipulations.

Let u′ = org(u) and v′ = org(v). As stated above, a bridge removal operation is

similar to a splitting via an articulation vertex, however, no new clones of u′ or v′

are created. Instead, we let u and v act as a clone of v′ and u′ in the newly created

components Cu and Cv which contain u and v, respectively. Similar to (2.15), we

add
∑

w∈Cv
reach[w] and

∑
w∈Cu

reach[w] to reach[u] and reach[v], respectively, to

make u (v) the representative of all the vertices in Cv (Cu).

After a bridge removal, updating the reach values is not sufficient to make

Lemma 2 correct. No component contains a distinct representative of u′ (v′) and

clone of v′ (u′) anymore. Hence, δv(u
′) and δu(v

′) will not be added to any clone of

40



u′ and v′, respectively, by Bc-Reach. But we can compute the difference and add

δv(u) =

((∑
w∈Cu

reach[w]

)
− 1

)
×
∑
w∈Cv

reach[w],

to bc′[u] and add δu(v) to bc′[v], where δu(v) is computed by interchanging u and v

in the right side of the above equation. Note that Lemma 2 is correct for all other

vertex pairs.

Corollary 1. Eq. 2.16 is correct after splitting G with articulation vertices and
bridges.

2.5.2 Betweenness-preserving graph compression

Here we present BADIOS’s betweenness-preserving compression techniques: (1)

degree-1 vertex removal, (2) compression by identical vertices, and (3) side-vertex

removal.

Compression with degree-1 vertices

As stated before, although a degree-1 vertex removal is a special instance of a

graph split with a bridge, we handle them separately to avoid trivial components.

Let u be a degree-1 vertex connected to v and appeared in a component C formed

during the preprocessing. To remove u, we add reach[u] to reach[v] and increase
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bc′[u] and bc′[v], respectively, with

δv(u) = (reach[u]− 1)×
∑

w∈C\{u}

reach[w],

δu(v) =

 ∑
w∈C\{u}

reach[w]

− 1

× reach[u].

Corollary 2. Eq. 2.16 is correct after splitting G with articulation vertices and
bridges, and compressing it with degree-1 vertices.

Compression with identical vertices

Instead of basic work filtering applied for CC, BADIOS uses the type-I and type-

II identical vertices to compress the graph further for BC. Hence, it exploits these

vertices in a more complex way. To handle the complexity, an ident attribute is

assigned to each vertex where ident(v) denotes the number of vertices in G that are

identical to v in G′. Initially, ident[v] is set to 1 for all v ∈ V .

Let I be a set of identical vertices formed during the preprocessing phase. We

remove all vertices in I except one, which acts as a proxy for the others. Let v be

the proxy vertex for I. We increase ident[v] by
∑

v′∈I,v′ 6=v ident[v′], and associate

a list I\{v} with v. The integration of the identical-vertex compression is realized

in three modifications on Algorithm 2: During the first phase, line 14 is changed

to σ[w] ← σ[w] + σ[v] × ident[v], since v can be a proxy for some vertices other

than itself. Similarly, w can be a proxy, and line 21 is modified as δ[v] ← δ[v] +

σ[v]
σ[w]
× (δ[w] + 1) × ident[w] to correctly simulate w’s identical vertices. Finally,

the source s can be a proxy, and the current BFS phase can be a representative
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for ident[s] phases. To handle that, the BC updates at line 24 are changed to

bc′[w]← bc′[w] + ident[s]× δ[w]. The BC scores of all the vertices in I are equal.

The only paths ignored via these modifications are the paths between u ∈ I and

v ∈ I. If I is type-II the u  v path contains a single edge and has no effect on

dependency (and BC) values. However, if I is type-I, such paths have some impact.

Fortunately, it only impacts the immediate neighbors’ BC scores of I. Since there

are exactly
∑

u∈I(ident[u](
∑

v∈I,u6=v ident[v])) such paths, this amount is equally

distributed among the immediate neighbors of I.

The technique presented in this section has been presented without taking the

reach attribute into account. Both attributes can be maintained simultaneously.

The details are not presented here for brevity. The main challenge is to keep track of

the BC of each identical vertex since they can differ if the reach value of the identical

vertices are not equal to 1.

Corollary 3. Eq. 2.16 is correct after splitting G with articulation vertices and
bridges, and compressing it with degree-1, and identical vertices.

Compression with side vertices

Let u be a side vertex in a component C formed after a set of manipulations on

the original graph G. Since Γ(u) is a clique, no shortest path is passing through u.

Hence, we can remove u from C by compensating the effect of the shortest s  t

paths where u is either s or t. To do this, we initiate a BFS from u similar to the

one in Bc-Reach. As Algorithm 6 shows, the only differences are two additional

lines 12 and 14. Note that this extra BFS is as expensive as the original one we
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avoid by removing u. As in CC, BADIOS performs the side-vertex removals since

they can yield new special vertices in the graph, which will be used to improve the

performance.

Algorithm 6: Side-vertex removal BFS for betweenness centrality

Data: G` = (V`, E`), a side vertex s, reach, and bc′

1 · · · .same as Bc-Reach
2 while Q is not empty do
3 · · · .same as the BFS in Bc-Reach

4 δ[v]← reach[v]− 1,∀v ∈ V`
5 while S is not empty do
6 w ← S.pop()
7 for v ∈ P[w] do

8 δ[v]← δ[v] + σ[v]
σ[w](1 + δ[w])

9 if w 6= s then
10 bc′[w]← bc′[w] + (reach[s]× δ[w])+
1212 (reach[s]× (δ[w]− (reach[w]− 1))

1414 bc′[s]← bc′[s] + (reach[s]− 1)× δ[s]
15 return bc’

Let v, w be two vertices in C different than u. Although both vertices will keep

existing in C − u, since u will be removed, δv(w) will be reach[u]× δvu(w) less than

it should be. For all such v, the aggregated dependency will be

∑
v∈C,v 6=w

δvu(w) = δu(w)− (reach[w]− 1),

since none of the reach[w] − 1 vertices represented by w lies on a v  u path and

δvu(w) = δuv(w). The same dependency appears for all vertices represented by u.

Line 12 of Algorithm 6 takes into account all these dependencies.
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Let s ∈ V be a vertex s.t. rep(C, s) = v 6= u. When we remove u from C, due

to Lemma 2, δs(u) = δv(u) will not be added to any clone of org(u). Since, u is a

side vertex, δv(u) = reach[u]−1. Since there are
∑

v∈C−u reach[v] vertices which are

represented by a vertex in C − u, we add

(reach[u]− 1)×
∑
v∈C−u

reach[v]

to bc′[u] after removing u from C. Line 14 of Algorithm 6 compensates this loss.

Corollary 4. Eq. 2.16 is correct after splitting G with articulation vertices and
bridges, and compressing it with degree-1, identical, and side vertices.

2.5.3 Combining the techniques

For betweenness centrality, BADIOS first applies degree-1 removal since it is

the cheapest to handle. Next, it splits the graph by first removing the bridges, and

then articulation vertices. It then removes the identical vertices in the graph in

the order of type-II and type-I. Notice that type-II removals can reveal new type-

I identical vertices but the reverse is not possible. The framework iteratively uses

these 4 techniques until it reaches a point where no reduction is possible. At that

point, it removes the side vertices to discover new special vertices. Similar to CC, the

framework does not use side vertices until it really needs them.

2.6 Experiments

We implemented our framework in C++. The code is compiled with gcc v4.8.1

and optimization flag -O2. The graph is kept in memory in the Compressed Storage by
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Row format (essentially adjacency list which is compact in memory). The experiments

are run on a computer with Intel Xeon E5520 CPU clocked at 2.27GHz and equipped

with 48GB of main memory. All the experiments are run sequentially.

For the experiments, we used 13 real-world networks from the UFL Sparse Matrix

Collection (http://www.cise.ufl.edu/research/sparse/matrices/). Their prop-

erties are summarized in Table 2.1. They are from different application areas, such as

grid (power), router (as-22july06, p2p-Gnutella31), social (PGPgiantcompo, astro-ph,

cond-mat-2005, soc-sign-epinions, loc-gowalla, amazon0601, wiki-Talk), protein inter-

action (protein), and web networks (web-NotreDame, web-Google). We symmetrized

the directed graphs. We categorized the graphs into two classes; small and large

ones (separately shown in Table 2.1).

Our proposed techniques can be combined in many different ways. In this section

we use lower case abbreviations for representing these combined methods. We will

use lower case letters ‘o’ for the BFS ordering, ‘d’ for degree-1 vertices, ‘b’ for bridge,

‘a’ for articulation vertices, ‘i’ for identical vertices, and ‘s’ for side vertices. The

ordering is performed to improve the cache locality during centrality computation by

initiating a BFS from a random source vertex as in Algorithm 1 and renumbering

the vertices as their visit order. Using this scheme, for example, abbreviation das

means that the degree-1 removal is followed by the articulation vertex cloning, which

is followed by the side-vertex removal. This pattern is repeated until no further

modification is possible.
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Graph Time (in sec.)
name |V | |E| BC org. BC best BC Sp. CC org. CC best CC Sp.
as-22july06 22.9K 48.4K 43.72 8.78 4.9 17.03 5.49 3.1
astro-ph 16.7K 121.2K 40.56 19.41 2.0 14.10 9.15 1.5
cond-mat-2005 40.4K 175.6K 217.41 97.67 2.2 79.16 46.21 1.7
p2p-Gnutella31 62.5K 147.8K 422.09 188.14 2.2 180.27 65.13 2.8
PGPgiantcompo 10.6K 24.3K 10.99 1.55 7.0 4.63 0.75 6.2
power 4.9K 6.5K 1.47 0.60 2.4 0.78 0.27 2.8
protein 9.6K 37.0K 11.76 7.33 1.6 4.12 2.33 1.7

geometric mean 2.8 geometric mean 2.5
amazon0601 403K 2,443K 42,656 36,736 1.1 17,653 11,901 1.5
loc-gowalla 196K 950K 5,926 3,692 1.6 2,117 1,138 1.9
soc-sign-epinions 131K 711K 2,193 839 2.6 889 264 3.4
web-Google 875K 4,322K 153,274 27,581 5.5 83,821 22,935 3.7
web-NotreDame 325K 1,090K 7,365 965 7.6 2,736 517 5.3
wiki-Talk 2,394K 4,659K 452,443 56,778 7.9 279,548 22,029 12.7

geometric mean 3.4 geometric mean 3.7

Table 2.1: The graphs used in the experiments. Columns BC org. and CC org. show the
original execution times of BC and CC computation without any modification. And BC
best and CC best are the minimum execution times achievable via our framework for BC
and CC. The names of the graphs are kept short where the full names can be found in the
text.

2.6.1 Closeness centrality experiments

We first investigate the efficiency of BADIOS on reducing the graphs. We check

the number of remaining edges by applying our techniques on the test graphs. Fig-

ures 2.5(a) and 2.5(b) show the number of remaining edges in the reduced graph

normalized with respect to the original number of edges in G. We chose the variants,

d, da, and das since these manipulations are the only ones that reduce the number

of edges or make new articulation vertices appear. We measured the remaining num-

ber of edges in the largest connected component as well as the other components

(shown as “rest”). Degree-1 vertex removal (going from 1st bar to 2nd bar) provides
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13% and 14% average reductions in the sizes of small and large graphs, respectively.

This result shows that there is a significant amount of degree-1 vertices in real-world

graphs and they can be efficiently utilized by our techniques. When we measure the

impact of articulation vertex cloning on total number of connected components, we

observe two facts: (1) there is usually one giant (strongly) connected component in

real-world social networks, and (2) other components are small in size. As can be

seen from the 2nd and 3rd bars, articulation-vertex cloning increases the yellow col-

ored regions in the graph, i.e., splits the graphs. Lastly, we measure the effect of side

vertex removal. The differences between the 3rd and 4th bars show the reduction by

side vertex removal. We observe 9% and 5% average reductions in small and large

graphs.

Next, we measure the performance of BADIOS on CC computation time. We

evaluate the preprocessing and computation time separately. Figures 2.6(a) and 2.6(b)

present the runtimes for each combination normalized w.r.t. the implementation of

Algorithm 1. For each graph, we tested 6 different combinations of the improvements

proposed in this work: They are denoted with o, do, dao, dbao, dbaos, and dbaosi.

For each graph, each figure has 7 stacked bars for the 6 combinations in the order

described above plus the base implementation.

In many graph kernels, the order of edge accesses is important to due to cache

locality. Therefore, we order our graphs after split and compression operations. The

second bars for each graph at Figures 2.6(a) and 2.6(b) show the improvement gained
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(a) Normalized remaining edges for small graphs
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(b) Normalized remaining edges for large graphs

Figure 2.5: The plots on the left and right show the number of remaining edges on the
graphs which initially have less than and more than 500K edges, respectively. They show
the ratio of remaining edges of the variants, which consecutively reduce the number of
edges: base, d, da, das. The number of remaining edges are normalized w.r.t. total number
of edges in the graph and divided into two: largest connected component and rest of the
graph.
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(a) Normalized execution times for small graphs
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(b) Normalized execution times for large graphs

Figure 2.6: The plots on the left and right show the CC computation times on graphs
with less than and more than 500K edges, respectively. They show the normalized runtime
of the variants: base, o, do, dao, dbao, dbaos, dbaosi. The times are normalized w.r.t. base
and divided into two: preprocessing, and the CC computation.

by ordering the graphs. We have 13% and 34% improvements (over the baseline)

with ordering for small and big graphs, respectively. Especially larger graphs benefit

more from the graph ordering and the cache is utilized more efficiently.

In general, the preprocessing phase takes little time for all graphs. At most 7%

of the overall execution time is spent for graph manipulations on small graphs and

this value is 6% for large graphs. With split and compression operations, BADIOS

can obtain significant speedup values. When we only remove the degree-1 vertices,

we have 16% runtime improvement for small graphs and 54% improvement for large

graphs. When Figures 2.5(a) and 2.5(b), are compared with Figures 2.6(a) and 2.6(b),
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the correlation between the reduction on the number of edges and the improvement

on the performance becomes more clear. In addition to degree-1 removal, if we split

the input graph with articulation vertex cloning, the speedups increase: in large

graphs, this reduces the overall execution time up to 5%. As expected, when there

are more articulation vertices in the graph, the speedups are higher. As explained

in Section 2.4.1, a bridge always exists between two articulation vertices but bridge

removal is cheaper than articulation vertex cloning. We see the effect of cheap bridge

removals when we look at the combination odab (5th bar): in small graphs, we have

4% improvement with articulation vertex cloning plus bridge removal over only ar-

ticulation vertex cloning.

The side vertex removals turn out to be not efficient. We can not observe sig-

nificant speedups when we remove the side vertices in graphs. On the other hand,

filtering the work via identical vertices brings good improvements. We gain 8% and

10% in small and large graphs with identical vertex filtering. This shows that there

are significant amount of identical vertices in the reduced graph and they can be

utilized for faster solutions.

Overall, we have decent speedup numbers for CC when all the techniques are ap-

plied. Table 2.1 shows the runtime of the base algorithm, runtime of the combination

where all techniques are used, and the speedup obtained by that combination. For

the largest graph we have, wiki-Talk with 2.3M vertices and 4.6M edges, we reach a

speedup of 12.7 over the base implementation.
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2.6.2 Betweenness centrality experiments

Here we experimentally evaluate the performance of BADIOS for betweenness

centrality computations. As we did for CC, we measure the preprocessing time and

BC computation time separately. Figures 2.7(a) and 2.7(b) present the runtimes for

each combination normalized w.r.t. Brandes’ algorithm. For each graph, each figure

has 7 stacked bars for the 7 combinations in the order described in the caption. To

compare the reductions on the execution times with the reductions on the number

of edges and vertices, in Figures 2.7(c)–2.7(d), the number of edges remaining in the

graph after the preprocessing phase are given for the combinations d, da, dai, and

dasi.

As Figure 2.7 shows, there is a direct correlation between the amount of edges

remaining after the graph manipulations and the overall execution time (except for

soc-sign-epinions and loc-gowalla with 12% and 11% decrease in number of vertices,

respectively). This proves that our rationale behind investigating splitting and com-

pression techniques is valid also for BC.

Table 2.1 shows the runtime of the base BC algorithm as well as the runtime of

the combination that lead to the best improvement and the speedup obtained by that

combination. Almost for all graphs, BADIOS provides a significant improvement.

We observe up to 7.9 speedup on large graphs. For wiki-Talk, applying all techniques

reduced the runtime from 5 days to 16 hours.
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(d) #remaining edges for large graphs

Figure 2.7: The plots on the left and right show the results on graphs with less than and
more than 500K edges, respectively. The top plots show the runtime of the variants: base,
o, do, dao, dbao, dbaio, dbaiso. The times are normalized w.r.t. base and divided into three:
preprocessing, the first phase and the second phase of the BC computation. The bottom
plots show the number of edges in the largest 200 components after preprocessing.
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Although it is not that common, applying degree-1- and identical-vertex removal

can degrade the performance by a small amount. When the number of vertices

removed is small, their removal does not compensate the overhead induced by the

reach and ident attributes in the algorithms. The only graph BADIOS does not

perform well on is the co-purchasing network of Amazon website, amazon0601, where

it brings less than 20% of improvement. This graph contains large cliques formed

by the users purchasing the same item, and hence does not have enough number of

special vertices.

2.7 Related Work

Several techniques have been proposed to cope with large networks with limited

success either by using approximate computations [31, 69], or by throwing hardware

resources to the problem by parallelizing the computations on distributed memory

architectures [108], multicore CPUs [116], and GPUs [164, 90].

To the best of our knowledge, there are two concurrent works since our first

release, noted in our technical report [152]. However, their focus is limited to BC

computation only. The first work introduces degree-1 vertex removal for BC [17].

In the second, Puzis et al. propose to remove articulation vertices and structurally

equivalent vertices which correspond to our type-I identical vertices [137]. We did

not compare our speedups with theirs for three reasons: the techniques they use form

only a subset of the techniques we proposed in this work, they are not well integrated

as we did in BADIOS, and even our base implementation is already 40–45 times
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faster than their fastest algorithm (see the results for soc-sign-epinions [17] and p2p-

Gnutella31 [137]). We believe that an efficient implementation of a novel algorithm

is mandatory to evaluate any improvement.

2.8 Summary

In this work, we proposed the BADIOS framework to reduce the execution time

of betweenness and closeness centrality computations. It uses techniques that break

graphs into pieces while keeping the information to recompute the pair and source

dependencies, which are the building blocks of BC scores, and the information to pre-

serve closeness values, for CC. It also uses some compression techniques to reduce the

number of vertices and edges. Combining these techniques provides great reductions

in graph sizes and component numbers. An experimental evaluation with various

networks shows that the proposed techniques are highly effective in practice and they

can be a great arsenal to reduce the execution time for BC computation. For one of

our social networks, we saved 4 days.
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Chapter 3: Regularizing Centrality Computations

The centrality metrics play an important role in network and graph analysis since

they are related with several concepts such as reachability, importance, influence,

and power [48, 93, 121, 136, 164]. Betweenness and closeness (BC and CC) are two

such metrics. However, the complexity of the best algorithms to compute them are

unbearable for today’s large-scale networks: for unweighted networks, it is O(nm)

where n is the number of vertices and m is the number of edges in the correspond-

ing graph [29]. For weighted networks, the complexity is more, O(nm + n2 log n).

Although this already makes the problem hard even for medium-scale graphs, con-

sidering million- and even billion-scale ones, it is clear that we need efficient high

performance computing (HPC) techniques.

3.1 Introduction

There are several GPU-based algorithms and parallelization techniques for com-

puting betweenness [90, 148, 164, 135] and closeness [90, 164] centrality. However,

as we will show in this work, since these techniques process only a single graph

traversal at a time and employ pure fine-grain parallelism, they cannot fully utilize
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the GPU and reach the device’s peak performance. In addition to these studies,

parallel breadth-first search (BFS), which is the main building block to compute

closeness centrality values, has been widely studied on shared-memory systems such

as GPUs [84, 115, 122] and Intel Xeon Phi [158]. Since these work focus on the

parallelization of a single BFS, their natural extension to CC will yield the iterative

execution of a fine-grain parallel CC kernel responsible from a single graph traversal.

In this work, we propose novel and efficient algorithms and techniques to compute

betweenness centrality on GPU and closeness centrality on GPU and Intel Xeon Phi.

Although we agree that fine-grain parallelism is still necessary due to the memory

restriction of the cutting-edge many-core architectures at hand, we leverage the po-

tential of the hardware by enabling a hybrid coarse/fine-grain parallelism technique

that executes multiple simultaneous BFSs.

Although many of the existing techniques leverage parallel processing, one of the

most common parallelism available in almost all of today’s recent processors, namely

instruction parallelism via vectorization, is often overlooked due to nature of the

sparse graph kernels. Graph computations are notorious for having irregular memory

access pattern, and hence for many kernels that require a single graph traversal, the

available vectorization support, which is a great arsenal to increase the performance,

is usually considered not very effective. It can still be used, for a small benefit, at

the expense of some preprocessing that involves partitioning, ordering and/or use of

alternative data structures. To exploit its full potential and enable it for simultaneous
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graph traversal approach, we provide an ad-hoc CC formulation based on bitwise

operations and propose hardware and software vectorization for that formulation on

cutting-edge hardware. Our approach for closeness centrality serves as an example

to show how vectorization can be utilized for graph kernels that require multiple

BFS traversals. As a result, we experimentally show that compared to the existing

solutions, the proposed techniques can be significantly faster while computing exact

betweenness and closeness centrality values, on the same device, i.e., without using

an additional hardware resource. Furthermore, the proposed techniques can also be

used to compute approximate BC and CC values for which the graph traversals are

only initiated from a subset of vertices.

The rest of the chapter is organized as follows: Section 3.2 presents a summary

of the existing parallelization approaches including accelerator-based algorithms for

betweenness and closeness centrality. The proposed parallelization algorithms and

techniques are explained in Section 3.3 and their performance is evaluated in Sec-

tion 3.4. Section 3.5 concludes the chapter.

3.2 Parallelism for network centrality

Background on the closeness and betweenness centrality computation are given in

Section 2.2 of Chapter 2. Here, we summarize the existing work on parallel approaches

for centrality computation.

The centrality computations can be parallelized in two ways: coarse- and fine-

grain. In coarse-grain parallelism, the BFSs are shared among the threads, i.e., a
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shortest-path graph is constructed by a single thread. Hence, the threads need to work

with separate memory regions in SeqCC and SeqBC, e.g., σ, δ, pred, queue, stack,

and d. In fine-grain parallelism, a BFS is concurrently executed by multiple threads.

Ligra [165] and SNAP [166] are two state-of-the-art shared-memory graph processing

frameworks, both make use of fine-grain parallelism for BC computation and will serve

as baseline for our BC parallelization techniques. In fine-grain parallelism, although

the memory footprint is less compared to the coarse-grain parallelism, concurrency

can bring a significant overhead due to the necessity of (relatively) expensive tools

such as atomic operations and conflict resolution. That being said, for devices with

restricted memory and large potential for concurrent execution, such as GPUs, a

fine-grain parallelism is usually necessary.

There are existing studies on computing closeness and betweenness centrality us-

ing GPUs; Shi and Zhang developed a software package to do biological network

analysis [164]. Later, various parallelism techniques on GPUs for BC and CC com-

putations are experimented by Jia et al. [90]. Concurrently, Pande and Bader stud-

ied computing BC of small-world networks on a GPU [135]. Recently, a modified

graph storage scheme to obtain better speedups compared to existing solutions is

presented [148], which is also a part of this dissertation. Apart from the centrality

computation, Merrill et al. [122] propose different fine-grain parallelization techniques

for BFS computation, which is a building block for BC and CC computations, and

prove to be the fastest solution on GPU architectures. All these studies employ a
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pure fine-grain parallelism and level-synchronized BFSs. That is, while traversing the

graph, the algorithms initiate a GPU kernel for each level ` to visit the vertices/edges

on that level and find the vertices on level `+1. One interesting work which combines

fine-grain and coarse-grain parallelism is [124]. Although we use the same combina-

tion, in [124], a queue-based implementation is employed and hence the number of

simultaneous BFSs is limited due to the contention in the queue. Our work alleviates

this problem by not employing a queue.

Another recent work on betweenness centrality computation investigates the edge

and node parallelism on dynamic betweenness centrality computation [120]. In a

preliminary version of this paper, we introduced vectorization support for efficient

closeness centrality computation [154]. Other than that, to the best of our knowl-

edge, there is no prior work on computing centrality using hardware and/or software

vectorization.

In an earlier work, Saule and Çatalyürek had presented an early evaluation of the

scalability of several variants of BFS algorithm on Intel Xeon Phi coprocessor using

a pre-production card in which they had presented a re-engineered shared queue

data structure for many-core architectures [158]. In another study, they had also

investigated the performance of SpMV on Intel Xeon Phi coprocessor architecture,

and show that memory latency, not memory bandwidth, creates a bottleneck for

SpMV on Intel Xeon Phi [159].
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A similar problem to centrality computation is all-pairs shortest path computa-

tion. There are several studies on GPU-based parallelization of this problem [94, 117,

131]. A shared memory cache efficient GPU implementation to solve transitive clo-

sure and the all-pairs shortest-path problem on directed graphs for large datasets is

proposed in [94]. Their solution is able to handle graph sizes that are larger than the

DRAM memory of available on the GPU. Matsumoto et al. [117] proposed a blocked

algorithm for all-pairs shortest path problem to be used in a hybrid CPU-GPU sys-

tem where the communication between CPU and GPU is minimized. In [131], the

authors present an algorithm to accelerate the all-pairs shortest path computation on

GPUs by solving multiple single source shortest path problems at a time, allowing to

efficiently access graph data by sharing the data between processing elements in the

GPU. In our work, we focus on faster GPU parallelization of betweenness and close-

ness centrality computation on unweighted graph which have more regularity than the

all-pairs shortest path computation allowing finer synchronization and optimization.

3.2.1 Graph storage schemes and parallelization

Many sparse matrix and graph algorithms such as sparse matrix-vector multiplica-

tion (SpMV) and BFS are known to be memory bound. Hence, the speedup one can

achieve with a GPU significantly depends on to the irregularities in the graph such

as the connectivity pattern and degree distribution which can significantly damage

load balancing and memory coalescing. Thus, it may be beneficial to store the graph
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in the most suitable format that yields a better regularization of computation and

memory usage, hence a better performance.

Figure 3.1: a) Vertex-, edge-, and virtual-vertex-based parallelization for centrality com-
putation and the distribution of work to GPU threads which are shown with different colors.
∆ = 3 for virtual-vertex-based parallelization. b) The graph structure with virtual vertices.

There are three parallelization techniques that have been used and experimented

for closeness and betweenness centrality computations; vertex-based [90, 164], edge-

based [90], and virtual-vertex-based [148]. The difference between these techniques

is the granularity of the parallelism which impacts both load balancing and the need

for synchronization. One of the common storage format for graphs is compressed

adjacency list, where the adjacency lists of the vertices are stored consecutively with

a secondary pointer array that keeps the start/end pointers which require (m+n+1)

values in total. Another commonly used format stores the endpoints of each edge
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individually, hence 2m values are required. To ease the memory accesses, vertex-

based parallelism uses the former and each thread processes an adjacency list at

each kernel execution throughout a level-synchronized BFS. On the other hand, the

edge-based parallelism uses the latter and each thread processes only a single edge.

As Jia et al. shows, the vertex-based parallelism on GPU suffers from load bal-

ancing especially for the graphs with skewed degree distributions [90]. On the other

hand, the edge-based parallelism uses more memory and more atomic operations.

Sarıyüce et al. proposed the virtual-vertex-based parallelism which simply replaces

a problematic, high-degree vertex u with n∆(u) = dΓ(u)/∆e virtual vertices each

having at most ∆ edges. That is n∆(u) threads are responsible from processing the

edges of a vertex u. Figure 3.1 summarizes how the threads process the edges in

vertex-, edge-, and virtual-vertex-based parallelization for centrality computation. In

the figure, different threads are shown with different colors and ∆ = 3 is used. For

betweenness centrality, we also followed the virtual-vertex idea on GPU since as also

stated in [148], it performed better than the other techniques in our preliminary BC

experiments. We will use n∆ for the number of virtual vertices and adj∆(u∗) to de-

note the adjacency list of the arbitrary virtual vertex u∗ for an original vertex u in

G. For CC experiments, where we use hardware/software vectorization, we will use

the compressed adjacency list format and vertex-based parallelism, since with vector-

ization multiple simultaneous BFSs, the load balancing problem is resolved almost

automatically as we will describe later.
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Simply speaking, virtual-vertex-based parallelism replaces a problematic, high-

degree vertex u with n∆(u) = dΓ(u)/∆e virtual vertices each having at most ∆

edges. That is n∆(u) threads are responsible from processing the edges of a vertex

u; and these threads have the same amount of work which improves the load bal-

ance. Figure 3.1 summarizes how the threads process the edges in vertex-, edge-, and

virtual-vertex-based parallelization for centrality computation. In the figure, different

threads are shown with different colors and ∆ = 3 is used. One can see that the load

is imbalanced when vertex-based parallelism is used. The load is balanced using edge-

based parallelism but the granularity of the computation is very fine which increases

the synchronization cost (number of atomic operations). Using virtual vertices, each

thread has a more balanced amount of work and overall less synchronization (atomic

operations) are required. More details are available in [148].

For betweenness centrality, we use virtual-vertex parallelism on GPU since it

performed better than the other techniques in our preliminary experiments [148]. We

will use n∆ for the number of virtual vertices and adj∆(u∗) to denote the adjacency

list of the arbitrary virtual vertex u∗ for an original vertex u in G. For closeness

centrality, where we use hardware/software vectorization, we will use the compressed

adjacency list format and vertex-based parallelism, since with vectorization multiple

simultaneous BFSs, the load balancing problem is resolved almost automatically as

we will describe later.

64



3.3 Faster Network Centrality

Surprisingly, all the existing algorithms proposed for betweenness and closeness

centrality prefer a pure fine-grain parallelism that employs an iterative execution of a

kernel responsible from a single parallel graph traversal. This approach makes sense

for accelerators, since they are memory restricted especially considering the size of

today’s large scale networks. Hence, a coarse-grain approach in which each thread

executes a single BFS is unfeasible, and fine-grain BFSs are almost necessary for the

device. Yet, an immediate question still needs to be answered: why only one fine-

grain BFS at a time? We believe that there is no valid answer. Furthermore, as

we will show, doing otherwise can significantly enhance the BC and CC performance

without using any additional hardware resource or one with different characteristics.

3.3.1 A More Regular and Denser Betweenness Centrality
Kernel on GPU

For GPU-based BC, we propose a novel parallelization technique which employs

simultaneous BFSs where each thread is responsible for processing a (virtual) vertex

in a single BFS. On a GPU, there are several ways to do that including manually

partitioning the threads for the BFSs or using concurrent streams. In this work, we

use interleaved BFSs to achieve a better memory access pattern.

As stated above, all the existing studies that focus on parallel centrality compu-

tations employ level-synchronized BFSs: the `th kernel execution is responsible from

the `th level of the BFS, visits the vertices on it, and processes the corresponding
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adjacency lists to find the vertices in the `+ 1th level to update their distance infor-

mation. Note that there are at most L such kernel executions where L is the diameter

of the shortest path graph, i.e., the longest distance from the BFS source to a vertex

in G. However, the adjacency list of a specific (virtual) vertex u will be processed

only in one of these L kernel executions. For the other L− 1 executions, the thread

responsible for vertex u (u∗) in that BFS may be forced to wait for another thread in

the same warp.

Algorithm 7: VirBC (G = (V,E))

1 · · ·
2 `← 0
.Forward phase

3 visited←true

4 while visited =true do
5 visited← false

.Forward-step kernel
6 for each thread t in parallel do
7 if t ≤ n∆ then
8 u∗ ← t .virtual vertex
9 u← the vertex in G corresponding to u∗

10 if dst[u] = ` then
11 for each v ∈ adj∆(u∗) do
12 if dst[v] =∞ then
13 dst[v]← `+ 1, visited← true

14 if dst[v] = `+ 1 then
15 σ[v]←σ[v] + σ[u] .atomic

16 `← `+ 1

17 · · ·
.Backward phase

18 · · ·
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Algorithm 7 shows the baseline GPU implementation for the forward phase of

Brandes’ betweenness centrality algorithm that starts from level ` = 1 and ends at

` = L when no new vertex is visited in the previous kernel execution (the backward

phase starts with level ` = L and stops at ` = 1, and has a similar structure).

As described above, this baseline may not utilize the warps efficiently especially for

the networks with a large diameter. In fact, the virtual-vertex parallelism solves this

problem up to some level when the degrees in the network are considerably larger than

∆. In this case, the consecutive threads will be responsible for the virtual vertices u∗

each having ∆ edges and coming from the same origin vertex u. Hence, the threads

responsible from these virtual vertices will perform essentially the same amount of

operation at the same time independently from the BFS source. Since there is less

thread divergence, the warps, so the device, will be utilized more effectively.

Using virtual vertices is not a “be all and end all” solution to accelerate BC on

a GPU. As we will show in the experiments, the performance it yields is not close

the peak performance of the device for many cases. There are several reasons for this

low performance: first, when the average degree in the network is low, which may be

the case for many sparse networks, its impact on the execution scheme is minimal

and considering its overhead, it can be even negative. Furthermore, virtual-vertex-

based parallelism does not regularize the uncoalesced memory access pattern which is

usually the most important problem of the memory-bounded GPU-based algorithms

on sparse matrices, graphs, and networks.
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Figure 3.2: A toy example given to show the uncoalesced and coalesced memory access
patterns of the virtual-vertex-based scheme (left) and the proposed approach (right) respec-
tively. On the left, three memory transactions are required whereas on the right a single
transaction is sufficient (assuming the virtual vertex u1 is on the same level in all the BFSs).

In a GPU, the threads in half-warps coordinate global memory accesses into a

single transaction. If these accesses are uncoalesced (coalesced to many memory

blocks), the required information is transferred via multiple 32B, 64B, and 128B

transactions which drastically reduce the performance. Consider the toy example in

Fig. 3.2(a), where 4 consecutive threads in the same warp (and in the same half-warp)

visit their virtual vertices and process the first (neighbor) vertices in the correspond-

ing adjacency lists. Since these adjacency lists are different, the memory locations

the threads access, e.g., dst[.], can be in different blocks. Considering how level-

synchronized BFSs work, 3 transactions are required for the coordinated memory

access in Fig. 3.2(a).

The key idea in this work is deviating from the pure fine-grain, single-BFS par-

allelism to a hybrid, coarse/fine-grain parallelism with a motivation to regularize

memory access patterns by employing multiple BFSs in batches. For GPU-based BC,
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we aim for sets of consecutive threads that process a (virtual) vertex simultaneously

for multiple BFSs. That way the memory access patterns will gain some regularity

in BC kernels which, typically, a single parallel BFS lacks.

Algorithm 8: VirBC-Multi (G = (V,E))

.B: number of BFSs performed in a batch
1 · · ·
2 `← 0
.Forward phase

3 visited← true

4 while visited = true do
5 visited← false

.Forward-step kernel
6 for each thread t in parallel do
7 if t ≤ B × n∆ then
8 u∗ ← d tBe .virtual vertex
9 b← t mod B .BFS id

10 u← the vertex in G corresponding to u∗
11 ωu ← u× B + b
12 if dst[ωu] = ` then
13 for each v ∈ adj∆(u∗) do
14 ωv ← v × B + b
15 if dst[ωv] =∞ then
16 dst[ωv]← `+ 1, visited← true

17 if dst[ωv] = `+ 1 then
18 σ[ωu]← σ[ωv] + σ[ωu] .atomic

19 `← `+ 1

20 · · ·
.Backward phase

21 · · ·

Let B be the number of BFSs in a batch. One can execute a kernel with B × n∆

threads where the ith BFS is executed by the n∆ threads starting from the thread (i−
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1)×n∆. However, this only handles the work in less kernel calls without regularizing

the memory accesses. For this reason, we employ interleaved BFSs. Algorithm 8

implements the idea for the forward phase of BC. Its most important difference from

Algorithm 7 lies within the memory accesses to the arrays dst[.] and σ[.]: in VirBC,

the neighbor vertex ids have a very high impact in the locality of memory accesses by

consecutive threads. Since they can be different, the blocks that need to be accessed

by a half-warp can be at various places of the memory. On the other hand, in VirBC-

Multi, the memory index ωv computed for a vertex/BFS pair will differ only by one

for two consecutive threads processing the same virtual vertex. Hence, B consecutive

threads will access consecutive memory locations and a single transaction may be

sufficient for the coordinated memory access as Fig 3.2(b) shows for our toy example.

In Algorithm 8, the arrays dst[.] and σ[.] are of length B×n. Hence, except the graph

G, the memory footprint of VirBC-Multi is B times larger than that of VirBC

which is one of the drawbacks of our solution. That being said, a small B would be

sufficient to increase the performance as the experiments will show.

We are aware that a vertex will not appear exactly in the same level for all B

BFSs in a batch. Hence, although B consecutive threads are responsible from the

same (virtual) vertex, it is not guaranteed that all these threads will process the

adjacency lists in the same kernel execution. But even in the original virtual-vertex-

based scheme with a single BFS execution, such a guarantee was there only for the

consecutive virtual vertices generated from the same original vertex. For the warps
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processing such vertices, our modification on the parallelism can be considered as a

trade-off of warp utilization (occupancy) and the ratio of coalesced memory accesses.

On the other hand, for the warps which already process the original vertices with

degree ∆ or less, the utilization will probably not be harmed. Furthermore, recent

studies show that most of the vertices in G appear only in the middle levels of any

BFS for the networks with small-world properties, which typically includes social

networks [25, 153]. Thus the proposed scheme can even increase the warp occupancy.

The overhead of the proposed technique increases when the maximum level L for

the BFSs fluctuates, i.e., when the variance of their distribution is high. If this is the

case the BFSs in a pack that are already completed will stay in the process and wait

for the one in the pack with the highest L value. Fortunately, the real-life networks

exhibit small-world network characteristics and have small diameters, hence L does

not fluctuate for the BFSs.

3.3.2 A More Regular and Denser Closeness Centrality Ker-
nel on GPU and Intel Xeon Phi

Having irregular memory access and computation that prevent a proper vectoriza-

tion is a common problem of sparse kernels. The most emblematic sparse computation

is certainly the multiplication of a sparse matrix by a dense vector (SpMV). In SpMV,

the problem of improving vector-register (also called SIMD register) utilization and

regularizing the memory access pattern was deeply studied and methods such as reg-

ister blocking [36, 175] or by using different matrix storage formats [26, 111] have
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been proposed. Arguably, the most efficient method to regularize the memory access

pattern is to multiply a sparse matrix by multiple vectors if this is possible. When

the multiple vectors are organized as a dense matrix, the problem becomes the mul-

tiplication of a sparse matrix by a dense matrix (SpMM). While each nonzero of the

sparse matrix causes the multiplication of a single element of the vector in SpMV, it

causes the multiplications of as many consecutive elements of the dense matrix as its

number of columns in SpMM.

Adapting that idea in closeness centrality essentially boils down to the computing

multiple sources at the same time, simultaneously. But contrarily to SpMV, where the

vector is dense hence each non-zero induces exactly one multiplication, in BFS, not all

the non-zeros will induce operations. In other words, a vertex in BFS may or may not

be traversed depending on which level is currently being processed. Therefore, the

traditional queue-based implementation of BFS does not seem to be easily extendable

to support multiple BFSs in a vector-friendly manner.

An SpMV-based formulation of closeness centrality

The main idea is to revert to a more basic definition of level synchronous BFS

traversal. Vertex v is part of level ` if and only if one of the neighbor of v is part of

level ` − 1 and v is not part of any level `′ < `. This formulation is commonly used

in parallel implementation of BFS on GPU [90, 135, 164] but also in some shared

memory [3] and distributed memory implementations [35].
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The algorithm is better represented using binary variables. Let x`i be the binary

variable that is true if vertex i is part of the frontier at level ` for a BFS. The

neighbors of level ` is represented by a vector y`+1 computed by

y`+1
k = ORj∈Γ(k)x

`
j.

The next level is then computed with

x`+1
i = y`+1

i AND not (OR`′≤`x
`′

i ).

Using these variables, one can update the closeness centrality value of vertex i by

adding
x`i
`

if i is at level `. One can remark that y`+1 is the result of the “multiplica-

tion” of the adjacency matrix of the graph by x` in the (OR,AND) semi-ring.

Implementing BFS using such an SpMV-based algorithm changes its asymptotic

complexity. The traditional queue-based BFS algorithm has a complexity of O(|E|).

But the complexity of the SpMV-based algorithm described above depends on how

the adjacency matrix is stored. If it is stored column-wise, then it is easy to traverse

column j only if the value of x`j is true. This leads to an O(|E|) implementation of

BFS, and such an implementation is not essentially different from the queue-based

implementation of BFS: they both follow a top-down approach. However, when x`j

is true, the updates on the entries of y`+1 vector cause scattered writes to memory

which are problematic when executed in parallel.

On the other hand, by storing the adjacency matrix row-wise, different values

of x` are gathered to compute a single element of y`+1. This yields a bottom-up
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implementation of BFS which has a natural write access pattern. However, it becomes

impossible to only traverse the relevant nonzero of the matrix and the complexity of

the algorithm becomes O(|E| × L), where L is the diameter of the graph. This

is the implementation that we favor and we do not feel that this asymptotically

worse complexity is a problem since it has been noted many times before that social

networks have small world properties. So, their diameter tends to be low. Note that

the small world property only informs on the average distance between two vertices

is proportional to log(|V |) while we are interested in the maximum distance. There

could be small world graphs with a long chain on where our technique might not

apply as gracefully.

An SpMM-based formulation of closeness centrality

It is easy to derive an algorithm from the formulation given above for closeness

centrality that processes multiple sources at once (see Algorithm 9). The algorithm

processes sources by batches of B. For each level `, it builds a binary matrix x` where

x`i,s indicates if vertex i is at distance ` of source vertex s where 0 ≤ s < B is the

relative source id in the batch. The first part of the algorithm is Init which computes

x0.

After Init, the algorithm performs a loop that iterates over the levels of the BFSs.

The second part is SpMM which builds the matrix y`+1 by multiplying the adjacency

matrix with x`. After each SpMM, the algorithm enters its Update phase where x`+1 is
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Algorithm 9: CC-SpMM: SpMM-based centrality computation

Data: G = (V,E), B
Output: cc[.]
.Init

1 cc[v]← 0,∀v ∈ V
2 `← 0
3 partition V into k batches Π = {V1, V2, . . . , Vk} of size B
4 for each batch of vertices Vp ∈ Π do
5 x0

s,s ← 1 if s ∈ Vp, 0 otherwise

6 while
∑

i

∑
s x

`
i,s > 0 do

.SpMM

7 y`+1
i,s = ORj∈Γ(i)x

`
j,s, ∀s ∈ Vp,∀i ∈ V

.Update

8 x`+1
i,s = y`+1

i,s AND not(OR`′≤`x
`′
i,s), ∀s ∈ Vp,∀i ∈ V

9 `← `+ 1
10 for all v ∈ V do

11 cc[v]← cc[v] +
∑

s x
`
v,s

`

12 return cc[.]

computed and then the closeness centrality values are updated using the information

of level `+ 1.

By letting B be the size of the vector register of the machine used, a row of the x

and y matrices exactly fits in a vector-register, and all the operations become vector-

wide OR, AND and not and bit-count operations. Figure 3.3 presents an implementation

of this algorithm using AVX instructions (B = 256). We use similar codes to leverage

32-bit integer types, SSE registers and Xeon Phi’s 512-bit registers in the experiments.

The code uses three arrays to store the internal state of the algorithm. current stores
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x` for the current level `, neighbor stores y`+1 and visited stores ORl′≤`x
`′ . The

function bitCount 256(.) calls the appropriate bit-counting instructions.

A potential drawback of the SpMM variant of the closeness centrality algorithm is

that each traversal of the graph now accesses a wider memory range than the one used

in an SpMV approach. This can harm the cache locality of the algorithm. To see the

impact on cache-hit ratio, we wrote a simulator to emulate the cache behavior during

the SpMM operation. The simulator assumes that the computation is sequential; the

cache is fully associative; it uses cache-lines of 64 bytes; only the x vector (current

array in the code) is stored in the cache; and the cache is completely flushed between

iterations.

Figure 3.4 presents the cache-hit ratios with a cache size of 512K (the size of Intel

Xeon Phi’s L2 cache) for different number of BFSs and for the seven graphs we will

later use in the experimental evaluation. The cache hit-ratio degrades by about 20%

to 30% when the number of concurrent BFSs goes from 32 to 512. This certainly

introduces a significant overhead, but we believe it should be widely compensated by

reducing the number of iterations of the outer loop by a factor of 16.

Software vectorization

The hardware vectorization of the SpMM kernel presented above limits the num-

ber of concurrent BFS sources to the size of the vector registers available on the

architecture. However, there is no reason to limit the method to the size of a single

register. One could use two registers instead of one and perform twice more sources
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void cc_cpu_256_spmm (int* xadj, int* adj, int n, float* cc)
{
  int b = 256;
  size_t size_alloc = n * b / 8;
  char* neighbor = (char*)_mm_malloc(size_alloc, 32);
  char* current = (char*)_mm_malloc(size_alloc, 32);
  char* visited = (char*)_mm_malloc(size_alloc, 32);
  for (int s = 0; s < n; s += b) {
    //Init
    ...
    int cont = 1, level = 0;
    while (cont != 0) {
      cont = 0; level++;
      //SpMM
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
      for (int i = 0; i < n; ++i) {
        __m256 vali = _mm256_setzero_ps();
        for (int j = xadj[i]; j<xadj[i+1]; ++j) {
          int v = adj[j];
          __m256 state_v = _mm256_load_ps((float*)(current + 32 * v));
          vali = _mm256_or_ps (vali, state_v);
        }
        _mm256_store_ps ((float*)(neighbor + 32 * i), vali);
      }
      //Update
      float flevel = 1.0f / (float) level;
#pragma omp parallel for schedule (dynamic, CC_CHUNK)
      for (int i = 0; i < n; ++i) {
        __m256 nei = _mm256_load_ps ((float *)(neighbor + 32 * i));
        __m256 vis = _mm256_load_ps ((float *)(visited + 32 * i));
        __m256 cu = _mm256_andnot_ps (vis, nei);
        vis = _mm256_or_ps (nei, vis);
        int bcnt = bitCount_256(cu);
        if (bcnt > 0) {
          cc[i] += bcnt * flevel; cont = 1;
        }
        _mm256_store_ps ((float *)(visited + 32 * i), vis);
        _mm256_store_ps ((float *)(current + 32 * i), cu);
      }
    }
  }
  _mm_free(neighbor); _mm_free(current); _mm_free(visited);
}

Figure 3.3: Hardware vectorization using AVX for the SpMM-based formulation of close-
ness centrality.
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Figure 3.4: Simulated cache-hit ratio of the SpMM variant on a 512K cache (e.g., Intel
Xeon Phi’s L2 cache).

at once. The penalty on the cache locality will certainly increase, but probably not

by a factor of two.

Since we want to try various number of simultaneous BFS, the implementation

effort for manual vectorization of each version becomes prohibitive. Therefore, we

developed a unique code that allows to easily change the number of concurrent source

traversed. Figure 3.5 presents a fragment of this code which has been carefully written

to allow the compiler to leverage vector instructions where possible. The key of this

code is to specify the number of simultaneous traversals as a C++ template parameter

instead of using a function parameter. This forces the compiler to generate a different
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object code for each value of the template parameter vector size (expressed in

number of 32-bit words). Therefore, it allows the compiler on a CPU architecture to

utilize the SSE instructions if vector size is 4 or to utilize the AVX instructions if it

is more than 8. The right template parameter is selected in a wrapper function (not

shown here).

Instead of using explicit registers, this compiler vectorized code expresses the state

of the x vector as an array of 32-bit integers. The compiler is hinted at unrolling these

accesses to prevent a loop and expose their vectorial nature. Though, the C++ lan-

guage does not directly allow that vectorization to take place because the various

pointers of the function might point to overlapped memory. The restrict lan-

guage extension is used to instruct the compiler that none of the arrays will ever

overlap, allowing the compiler to generate the vector instructions when it believes

that they are appropriate. As the experiments will show, the compiler-based vector-

ization in Figure 3.5 perform almost as good as the manually vectorized code given in

Figure 3.3 which is useful in practice since the compiler-based vectorization is much

more flexible to change the number of simultaneous BFSs.

Closeness centrality on GPU

The SpMM-based approach for closeness centrality can be directly adapted for

GPU since the hardware is already modeled for SIMD execution. Simply put, one

can consider one operation on a CUDA warp as one Xeon Phi SIMD operation. For

our implementation, we used 64-bit integers to store parts of current, neighbor, and
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template<int vector_size>
void cc_cpu_spmm_soft_vec_t (int* __restrict__ xadj,
                             int* __restrict__ adj,
                             int n, float* __restrict__ cc)
{
  int b = vector_size * 32, n_align = b / 8;
  size_t size_alloc = n * b / 8;
  char* __restrict__ neighbor = (char*)_mm_malloc(size_alloc, n_align);
  char* __restrict__ current = (char*)_mm_malloc(size_alloc, n_align);
  char* __restrict__ visited = (char*)_mm_malloc(size_alloc, n_align);
  for (int s = 0; s < n; s += b) {
    //Init
    ...
    int cont = 1, level = 0;
    while (cont != 0) {
      cont = 0; ++level;
      //SpMM
#pragma omp parallel for schedule (dynamic,CC_CHUNK)
      for (int i = 0; i < n; ++i) {
        int vali[vector_size];
#pragma unroll
        for (int k = 0; k < vector_size; ++k)
          vali[k] = 0;
        for (int j = xadj[i]; j < xadj[i+1]; ++j) {
          int v = adj[j];
#pragma unroll
          for (int k = 0; k < vector_size; k++)
            vali[k] = vali[k] | ((int*)current)[v*vector_size+k];
        }
#pragma unroll
        for (int k = 0; k < vector_size; ++k)
          ((int*)neighbor)[i*vector_size+k] = vali[k];
      }
      //Update
      ...
    }
  }
  _mm_free(neighbor); _mm_free(current); _mm_free(visited);
}

Figure 3.5: Compiler vectorization for the SpMM-based formulation of closeness centrality.

80



visited arrays per thread. Thus, each thread can use a bitwise operation to process

64 BFSs simultaneously. When a vertex is assigned to a single GPU warp (containing

32 threads), B = 32× 64 = 2, 048 BFSs can be handled simultaneously. For memory-

bound kernels such as a graph traversal, only a half-warp (16 threads) may also

be considered as a counterpart of a SIMD operation on Xeon Phi, since the GPU

coordinates the global memory accesses of the threads in a half-warp into a single

transaction. Or similar to software vectorization, one can go wider and use more

than a warp per vertex to support more than 2, 048 BFSs. We experimented with

these three options and assign a vertex to 16, 32, and 64 threads. A similar direction

one can follow to increase B is assigning more work to each thread. That is, by

doubling the work of a single thread and assigning 128 BFSs to a thread and a

vertex to a warp, one can handle B = 4, 096 BFSs at once, and hence, halves the

number of kernel executions. However, while following any of these approaches, we

are always limited by the memory footprint of the kernel which is a problem for a

memory-restricted device such as GPU.

For our GPU-based CC implementation, we used the traditional compressed ad-

jacency list format instead of virtual-vertices we employed in our GPU-based BC

implementation. As explained in Section 3.2.1, virtual vertices are proposed to im-

prove the load balance inside a CUDA warp for a single BFS. Since each thread is

responsible for a single BFS and when a vertex is not on the current level ` of the

corresponding BFS, the thread needs to wait the others in the warp. However, in
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our CC implementation, since a thread is responsible for multiple BFSs (i.e., 64 of

them) it is more likely that at least in one of these BFSs, the thread will need to

work. Thus, warp occupancy is expected to be high for the SpMM-based CC. Fur-

thermore, when a single vertex is assigned to a warp, each thread will visit the same

adjacency list. Thus, there will not be a load balancing problem and the memory

accesses will be highly coalesced. In our experiments, we compared the performance

of the SpMM-based implementation (GPU-SpMM) with the virtual-vertex-based ones

with one BFS at a time (GPU-VirCC) and multiple BFSs (GPU-VirCC-Multi), where

the latter adapts the parallelization techniques we explained for BC in Section 3.3.1.

Implementation details

We improved the performance of the SpMM-based implementation given in Fig-

ure 3.3 (as well as the compiler-vectorized one in Figure 3.5 and GPU-based imple-

mentation), by employing two simple modifications. In the first modification, which

is in the SpMM part of Figure 3.3, before traversing the adjacency list of the ith vertex,

the algorithm checks that if all the B = 256 visited bits corresponding to B BFSs

assigned to the thread were already set to 1 by the previous or current level expan-

sions. If this is the case, since the vertex has already been visited in all the BFSs,

the thread skips the SpMM part and directly goes to the Update part. For the GPU

implementation, each thread checks the corresponding 64 bits in the visited array.

Note that, a warp in the SpMM kernel can terminate only when the 32× 64 = 2, 048

visited bits are already equal to 1.
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The second modification is similar to the first one but this time it is in the Update

part of Figure 3.3: when all the B bits in the visited array were already set to 1,

the code sets the corresponding current bits to 0 and ends the Update part without

any other bitwise operations or bit counting. Similar to the first modification, in the

GPU-based CC implementation, each thread in a warp takes this shortcut by using

the 64 bits corresponding to the visited information of the 64 BFSs and sets the

corresponding 64 bits in the current array to 0.

3.4 Experiments

The experiments were carried out on a system equipped with two Intel Sandybridge-

EP CPUs clocked at 2.00Ghz and 256GB of memory split across two NUMA domains.

Each CPU has eight-cores (16 cores in total) and HyperThreading is enabled. Each

core has its own 32kB L1 cache and 256kB L2 cache. The 8 cores on a CPU share

a 20MB L3 cache. The machine is equipped with an NVIDIA Tesla K20c GPU fea-

turing 13 Streaming Multiprocessors, 192 cores per SM clocked at 700 MHz (for a

total of 2496 CUDA cores), and 4.8GB of global memory clocked at 2.6 GHz. ECC

is enabled. The system also has an Intel Xeon Phi coprocessor with 8 memory con-

trollers and 61 cores clocked at 1.05GHz. There is a 32kB L1 data cache, a 32kB L1

instruction cache, and a 512kB L2 cache associated with each core. The bandwidth

of each core is 8.4GB/s where the cores’ memory interface are 32-bit wide with two

83



channels. Although the cores are expected to provide 512.4GB/s, the bandwidth be-

tween the memory controllers and they are limited by the ring network in between

which theoretically supports at most 220GB/s.

On the software side, we run a 64-bit Debian with Linux 2.6.39-bpo.2-amd64. All

the codes are compiled with GCC with the -O3 optimization flag in version 4.4.4.

Xeon Phi codes are compiled with the Intel C++ Compiler in version 13.1 using

-O3 optimization flag. CUDA 5.0 is used with flag -arch sm 20. We have carefully

implemented all the algorithms using C++. To have a base-line comparison, we im-

plemented OpenMP versions of the CPU-based betweenness and closeness centrality

algorithms. Note that, our system has 16 cores. When implementing the CPU based

closeness centrality code, we made use of the direction optimization technique, pre-

sented in [25]. Other than direction optimization, no particular optimizations have

been applied to the CPU codes except the ones performed by the compiler. We also

used various studies from the literature to evaluate the practical performance of our

GPU-based betweenness centrality implementation with virtual vertices and multiple

BFSs and SpMM-based closeness centrality implementation.

For the experiments, we used a set of graphs from the SNAP dataset1. Directed

graphs were made undirected and the largest connected component is extracted and

used in the experiments. The list of graphs and the properties of the largest compo-

nents that are used in our experiments can be found in Table 3.1.

1http://snap.stanford.edu/data/index.html
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Avg. Max.
Graph |V | |E| |Γ(v)| |Γ(v)| Diam.

Amazon 403K 2,443K 6.0 2,752 19
Gowalla 196K 950K 4.8 14,730 12
Google 855K 4,291K 5.0 6,332 18
NotreDame 325K 1,090K 3.3 10,721 27
WikiTalk 2,388K 4,656K 1.9 100,029 10
Orkut 3,072K 117,185K 38.1 33,313 9
LiveJournal 4,843K 42,845K 8.8 20,333 15

Table 3.1: Properties of the largest connected components of the graph used in the exper-
iments.

All the results presented in this section are computed by using the total application

time from the moment where the graph is fully loaded into the main memory of the

machine to the moment where the final centrality values are available in the main

memory of the node. In particular, the time excludes reading the graph from the

hard drive; but it includes the transformations such as virtualization and all the

communications between the host and the device. Using these times, we computed

the traversed edges per second (TEPS) values and report them on the figures in this

section. Given the total application time (in seconds) for K sources/BFSs on a graph

with m (undirected) edges, the TEPS value is equal to (m × K)/time. Note that

to process K sources, the algorithm needs K/B kernel executions where each of the

kernels handles B sources.
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3.4.1 Evaluating the proposed betweenness centrality algo-
rithm VirBC-Multi

In this section, we investigate the efficiency of our virtual-vertex based BC algo-

rithm. We first analyze the VirBC-Multi algorithm with different parameters, then

present the absolute numbers on its performance by a comparison with existing work

in the literature. We used ∆ = 8 for virtualization. Since the computations can be

extremely long (months), we did not used all the n BFS sources in the graphs and

measured the time for 1, 024 sources/BFSs in total. We observed that the runtimes

of single kernel executions to be very stable, allowing us to make a meaningful ex-

trapolation. Thus, if necessary, the results can be used to linearly extrapolate the

runtime for the whole graph.

Analysis of VirBC-Multi

We first investigate the validity of one of the assumptions we make: batching

multiple traversals is useful because a vertex only appears in a small number of

levels. This assumption is expected to lead to a high number of threads within a

warp concurrently expending the same vertex. It should improve the computation

by increasing the reutilization of the graph data structure and by structuring the

memory accesses made by a warp into regular patterns. To verify this, we computed

two indices.

The first indice is the number of working warps; in each kernel call, a thread is

said to be working if it passes the condition line 12 of VirBC-Multi (Algorithm 8);
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that is to say, if that vertex is expended. Similarly, a warp is said to be working if one

of its 32 threads passes that line. When B grows, the structure of the warps change

leading to differences in the number of working warps. The more working warps there

are, the more computation the GPU will need to perform (this simplification may not

be true for all the kernels that run on GPUs, but since we employ virtual vertices

for BC, each warp takes essentially the same number of operations which makes

the simplification valid). In Figure 3.6(a), we present how the number of working

warps within the BC computation is impacted by B. Surprisingly, the number of

working warps evolves differently for different graphs. For some graphs, e.g., Amazon,

NotreDame, and Google, the number initially decreases but then either stabilizes or

increases. For some other graphs, e.g., WikiTalk, Orkut, Gowalla, and LiveJournal,

the number increases. However, overall, the variation of the number of working warps

is fairly small; the decrease is never more than 20% and the increase is never more

than 75%. This indicates that batching sources has little impact on thread divergence,

but that impact is mostly negative.

The second index measures how many times a virtual vertex is non-simultaneously

traversed. When B = 1, each virtual vertex is traversed exactly once per source and

each of these traversals is performed by a different warp. But when B increases then

a virtual vertex might be traversed multiple times by a single warp, and we say that

these two virtual vertices are traversed simultaneously. What we are interested in,

overall, is how many different warps traverse a given virtual vertex. Figure 3.6(b)
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(b) Non simultaneous virtual vertex traversal

Figure 3.6: Analyzing the behavior of VirBC-Multi. The values are normalized rela-
tively to the case B = 1 and accumulated over the iterations of a batch.

shows that the number of non-simultaneous traversals sharply decreases for all the

graphs when B increases. This number improves by more than 85% for all the graphs.

This should significantly improve the coalescing of the memory operations performed

by various kernels.

We can conclude that the previous increase in the number of working warps is

most likely linked to the fact that the warps were naturally well structured because

the consecutive vertices are close in the graph and are typically traversed in the

same level, thanks to the virtualization. We show the actual impact of varying the

number of simultaneous sources B in performance is in Figure 3.7. All the values

are normalized to the time taken by the variant that executes one BFS at a time.

A first observation is that all the graphs benefit from executing multiple sources in

a batch. But the rate of improvement is different. For instance the improvement
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Figure 3.7: Impact of B on VirBC-Multi run on an NVIDIA Tesla K20

seen on Orkut is very similar to the improvement in non-simultaneous virtual vertex

traversal (Fig. 3.6(b)). On the other hand, other graphs, such as Amazon, incur lesser

improvements. Finally for some graphs, the normalized time is V-shaped. We guess

that the increase in memory occupation with large B values is detrimental for some

cases. Alternatively, it is possible that for some cases, the memory accesses were

already fairly well organized and the proposed techniques only have a limited impact.

Evaluating the absolute performance

We experimentally evaluated the algorithms given in Section 3.3.1 on betweenness

centrality kernels. There are mainly three variants: OpenMP-based parallel CPU im-

plementation (Cpu-BC), GPU implementation with virtual vertices (VirBC) and
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Figure 3.8: Evaluation of the algorithms in terms of MTEPS. The values for the proposed
algorithms are the best ones we obtained with different B values.

VirBC-Multi. We also compared our techniques with the betweenness centrality

kernels in the state-of-the-art shared-memory graph processing frameworks Ligra [165]

and SNAP [166]. Comparisons are done in terms of million traversed edges per sec-

ond (MTEPS) which is computed as (1, 024 × |E|)/(106 × time), where |E| is the

number of (undirected) edges and time is the time required to complete all the 1, 024

BFSs we perform for a configuration. For VirBC-Multi, we only report the per-

formance achieved using the best value for B. This value is representative of the

performance one can get on a real application since it can easily be discovered at

runtime during the first few iterations of the overall algorithm.

Figure 3.8 presents the MTEPS for BC algorithms when executed on the seven

networks given in Table 3.1. As Fig. 3.8 shows, VirBC-Multi is superior to the
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Figure 3.9: The compiler- and manually-vectorized implementation reach similar perfor-
mance.

others on 6 of 7 graphs. On average, VirBC-Multi is 35 times faster than SNAP,

4.7 times faster than Ligra, 68% faster than Cpu-BC and 96% faster than VirBC.

In terms of the performance, VirBC-Multi reaches to 1 GTEPS on Orkut network.

3.4.2 Evaluating the proposed SpMM-based closeness cen-
trality algorithm

The closeness centrality experiments are performed using a total of 16, 384 sources.

Hence, for a configuration with B simultaneous BFSs uses 16, 384/B kernel executions.

Similar to BC experiments, we did not observe a significant variance among the

execution times of these executions. The presented TEPS results in the figures are

computed by linear extrapolation for the entire graph.
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SpMM-based closeness centrality on x86-based architectures

We will first have a look at the performance of our techniques on CPU and Intel

Xeon Phi. Since they present similar patterns and Intel Xeon Phi obtains a better

performance, we will only present the results for that architecture in this subsec-

tion. As a first experiment, we compare the manual and compiler-based hardware

vectorization options. For manual vectorization, we implemented 32-bit, 128-bit SSE,

256-bit AVX (see Figure 3.3), and 512-bit Intel Xeon Phi versions with various in-

trinsics supported by the hardware for a concurrent execution of 32, 128, 256 and 512

BFSs, respectively. For compiler-based vectorization, we used the code (partially)

given in Figure 3.5 without the modifications and let the compiler optimize it with

-O3 flag. Figure 3.9 gives the performance results in terms of billions of traversed

edges per second (GTEPS). The bars in the figure with -comp keyword are the ones

with the compiler-vectorized versions. For almost all the graphs, 512-bit Intel Xeon

Phi vectorization gives the best results. For Gowalla, NotreDame, and WikiTalk,

256-bit versions are better. Overall, manual vectorization is only slightly better than

compiler-based vectorization. This shows that if the code is properly written, the

compiler does its job and optimizes relatively well. We will mainly use the compiler-

vectorized implementation in the rest of the text, since it is more flexible and its

performance is comparable to the manually-vectorized one.
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The implementation on Intel Xeon Phi uses the offload mode. The memory trans-

fer time is optimized by using large memory pages whose size is set with an envi-

ronment variable MIC USE 2MB BUFFERS = 4K. The memory allocation is performed

in two phases; as usual in Linux systems, the memory allocation routine is called

to allocate the virtual pages and the physical pages are allocated when the mem-

ory is touched for the first time. On Intel Xeon Phi, the physical page allocation is

fairly slow. To give a point of reference, in our preliminary experiments, the physical

memory allocation required to perform 8, 192 BFSs on Google (2.44 GB) takes 0.88

seconds; while performing the BFSs takes 1.44 seconds. Still, this overhead increases

only with 8, 192 and it does not change with the number of sources used for centrality

computation. Hence, considering the number of vertices, n, is much larger than B,

the overhead are small compared to the time required to process the whole graph for

exact centrality computation (we remark that the presented results are extrapolated

taking the memory allocation time into consideration). However, their impact can be

higher while using sampling and approximation techniques for closeness centrality.

We experimented with values of B from 32 to 8, 192 (higher values of B would

lead to out-of-memory for the larger graphs). We present the performance of the

compiler-vectorized implementation that benefits from the modifications presented

at the end of Section 3.4 in Figure 3.10. In short, the performance increases with B.

We can observe that the rate of improvement is higher when hardware vectorization is

leveraged, i.e., when B is smaller than the register size of Intel Xeon Phi, compared to
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Figure 3.10: Impact of the number of simultaneous BFS on the performance obtained
on Intel Xeon Phi with the mofications described in Section 12. The separation between
hardware and software vectorization is marked.

the case when when software vectorization is leveraged. Yet, software vectorization

still provides significant performance improvements for all the graphs. In the rest

of the experiments, we will use the configuration with 8, 192 simultaneous traversals

since it obtains best performance.

To put the results into perspective, in Figure 3.11, we compare the performance of

the fine-grain BFS technique developed for Intel Xeon Phi presented in [158] (PHI-BFS-block),

a coarse-grain (32 threads) CC code (PHI-DO) that uses direction-optimized BFS

idea [25], the hardware-vectorized code with B = 512 (PHI-SpMM-512), the compiler-

vectorized version using B = 8, 192 BFSs with (PHI-SpMM-opt-comp-8192) and with-

out (PHI-SpMM-comp-8192) the modifications described at the end of Section 3.4.
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Figure 3.11: Performance of the configurations on Xeon Phi.

The first two methods do not use the proposed densification techniques and obtain

low performance: the performance of PHI-BFS-block ranges from 600 MTEPS to

2.1 GTEPS, while PHI-DO sees its performance range from 311 MTEPS to 2.4 GTEPS.

On the other hand, PHI-SpMM-opt-comp-8192 is, on the average, 22.1 times faster

than PHI-DO and its performance is between 16.8 GTEPS to 68.2 GTEPS. Also, the

modifications to take shortcuts bring a 1.75 factor of improvement on the average.

As the other SpMM-based codes, PHI-SpMM-opt-comp-8192 is composed of three

phases: Init, SpMM and Update. The relative proportions of the execution times of

these phases depend on the structure of the graph as shown in Figure 3.12. For all

the graphs, the time required for Init is smaller compared to other phases. However,

the relative time for SpMM and Update drastically changes with the graph, e.g., see

NotreDame and Orkut. Figure 3.13 shows how the time of the SpMM phase and the
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Figure 3.12: Proportion of each section of the execution time of PHI-SpMM-comp-opt-8192

Update phase vary with the iterations among the levels of the BFSs and how many

vertices are actually processed in each of these phases. One can see that the time

spent in the SpMM phase is fairly well correlated to the number of vertices processed in

this phase (thanks to the modifications at the end of Section 3.4). A similar pattern

exists on the Update phase. The non-modified version, which is not shown here,

has much flatter execution times for these two phases; the amount of improvement

provided by the modifications depends on the distribution of these skipped vertices

which varies from one graph to the other.

SpMM-based closeness centrality on GPU

The performance of the SpMM-based approach on the GPU depends on how

many traversals are performed simultaneously, the data type used, and how many

threads/warps are used per vertex. Overall, as in Xeon Phi experiments, when B

increases so does the performance. In addition to 64-bit integers, we also tried using
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SpMM.

97



32-bit ones in our preliminary experiments which performed almost always worse

than the 64-bit version. Therefore, Figure 3.14 uses the 64-bit version and shows the

performance of the GPU-based algorithm using different number of threads/warps

per vertex. Since the NVIDIA Tesla K20 has a relatively small memory, which is

6GB, B, the maximum number of simultaneous BFSs, is set to 2, 048 for Orkut

and LiveJournal, 4, 096 for WikiTalk and 8, 192 for Amazon, Gowalla, Google, and

NotreDame. The figure does not contain 2-warp per vertex (64 threads) configuration

for Orkut and LiveJournal since there are only 2, 048/64 = 32 integers due to the

memory restriction. Hence, even we assign 2-warps per vertex, one of the warps will

stay idle.

The performance of the SpMM-based approach varies with the number of threads

per vertex. The performance usually increases when we use a single warp (32 threads)

instead of a half-warp (16 threads) per vertex (except LiveJournal). This is expected

since although the memory accesses of the threads in each half are coordinated, a half

still need to wait the other especially when the lengths of the adjacency lists assigned

to these halves significantly differ. Using two warps (64 threads) also increases the

performance but less frequently. For example, the increase for Amazon and WikiTalk,

are not significant, and there is a performance decrease for Google. We will use 32

threads per each vertex in the rest of the text while presenting the performance of

GPU-based implementation.
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Figure 3.15: Comparison of GPU-based CC algorithms.

We compare the performance of GPU-SpMM with multiple baselines from the liter-

ature in Figure 3.15. GPU-LinearBFS is the linear-time, fine-grain, parallel BFS imple-

mentation proposed for GPU [122]. GPU-VirCC is a direct adaptation of GPU-VirBC (from

[148]), and GPU-VirCC-Multi is a direct adaptation of GPU-VirBC-Multi (from Sec-

tion 3.3.1) to closeness centrality. Similar to BC experiments, we used ∆ = 8 for

virtualization. With the help of simultaneous BFSs, GPU-VirCC-Multi performs bet-

ter than the single-BFS variant GPU-VirCC. However, the GPU-SpMM algorithm per-

forms one order of magnitude faster than the rest thanks to vectorization and a more

compact formulation.
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Figure 3.16: Vectorization works: CPU-SpMM is the compiler-vectorized implementation
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variant with B = 8, 192. For the GPU-based implementation, the maximum possible B
value is used for each graph, and a vertex is assigned to a warp (32 threads).

Summary of the closeness centrality experiments

In Figure 3.16, we present the performance of the SpMM-based CC implementa-

tion on all the three architectures with the best non-vectorized algorithm from the

literature and the best vectorized algorithm described in this work. On CPU and

Xeon Phi, 4, 096 and 8, 192 simultaneous BFSs, respectively, are used. On GPU, the

maximum possible simultaneous BFSs is used for each graph as described above. For

the non-vectorized variants, the direction optimized CC variant performs the best on

CPU and Xeon Phi, while the GPU-VirCC algorithm with simultaneous BFSs per-

forms best on the GPU. On average, the vectorized algorithm is 5.9 times faster than
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the non-vectorized one on CPU, 21.0 times faster on Intel Xeon Phi, and 70.4 times

faster on NVIDIA Tesla K20c than the best existing ones.

3.5 Summary and Future Work

In this work, we proposed new algorithms and parallelization techniques to make

betweenness and closeness centrality computations faster on commonly available cut-

ting edge hardware. There are two traditional ways to execute centrality computa-

tions in parallel. Either each thread traverses the graph from a single source, or all

the threads collaboratively traverse the graph from a unique source. We deviated

from the traditional approaches by using all the threads in the system to collabora-

tively traverse the graph from many sources simultaneously. This scheme makes the

computations more regular and allows a better utilization of modern computing de-

vices. The experimental evaluation of the proposed algorithms shows that significant

improvements can be obtained over the best known algorithms for centrality compu-

tation on the same device, without using an additional hardware: an improvement of

a factor 5.9 on CPU architectures, 70.4 on GPU architectures and 21.0 on Intel Xeon

Phi.

The techniques can be applied to these architectures at the same time. Hence,

they are suitable for heterogeneous computing which is straightforward for centrality

computations as we have shown in [148]. Furthermore, the proposed approach is also

suitable to compute approximate centrality values. In the future, we want to analyze

the impact of vectorization in the streaming setting for dynamic networks. But more

101



importantly, we want to investigate whether other common graph computations can

be regularized.
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Chapter 4: Incremental Closeness Centrality Algorithms and
Parallelization

Dynamic nature of today’s networks requires new algorithms. Maintaining the

exact centrality scores is a challenging problem which has been studied in the lit-

erature [76, 104, 151]. The problem can also arise for applications involving static

networks such as the power grid contingency analysis and robustness evaluation of

a network. The findings of such analyses and evaluations can be very useful to be

prepared and take proactive measures if there is a natural risk or a possible adversar-

ial attack that can yield undesirable changes on the network topology in the future.

In some applications, similarly, one might be interested in trying to find the mini-

mal topology modifications on a network to set the centrality scores in a controlled

manner.

4.1 Introduction

In this chapter, we focus on incremental closeness centrality computation problem.

We propose incremental algorithms which efficiently update the closeness centralities

upon edge insertions and deletions. Compared with the existing algorithms, our
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algorithms have a low-memory footprint which makes them practical and applicable

to very large graphs. For random edge insertions/deletions to the Wikipedia users’

communication graph, we reduced the centrality (re)computation time from 2 days to

16 minutes. And for the real-life temporal DBLP coauthorship network, we reduced

the time from 1.3 days to 4.2 minutes.

Furthermore, we propose the first distributed-memory framework Streamer for

the incremental centrality computation problem which employs a pipelined paral-

lelism to achieve computation-computation and computation-communication overlap.

In our experiments, the worker nodes we used in the experiments have 8 cores. In ad-

dition to the distributed-memory parallelization, we also leverage the shared-memory

parallelization and take NUMA effects into account. The framework appears to scale

linearly: when 63 worker nodes (8 cores/node) are used, for the networks amazon0601

and web-Google, Streamer obtains 456 and 497 speedups, respectively, compared

to a single worker node-single thread execution. The Streamer framework is mod-

ular which makes it easily extendable. When the number of used nodes increases, the

computation inevitably reaches a bottleneck on the extremities of the analysis pipeline

which are not parallel. We show how the computation can be made parallel by lever-

aging the modularity of dataflow middleware. Furthermore, using an SpMM-based

BFS formulation, we significantly improved the incremental CC computation per-

formance and show that the dataflow programming model makes Streamer highly
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modular and easy to enhance with novel algorithmic techniques. Those additional

techniques provide an improvement of a factor between 2.2 to 9.3 times.

Background on closeness centrality computation can be found in Section 2.2 of

Chapter 2. Rest of this chapter is organized as follows: Our algorithms are explained

in detail in Section 4.2. Streamer is explained in Section 4.4. An experimental anal-

ysis is given in Section 4.5. Related works are given in Section 4.6 and Section 4.7

concludes the chapter.

4.2 Maintaining Centrality

Many real-life networks are scale free. The diameters of these networks grow pro-

portional to the logarithm of the number of nodes. That is, even with hundreds of

millions of vertices, the diameter is small, and when the graph is modified with minor

updates, it tends to stay small. Combining this with the power-law degree distribu-

tion of scale-free networks, we obtain the spike-shaped shortest-distance distribution

as shown in Figure 4.1. We use work filtering with level differences and utilization of

special vertices to exploit these observations and reduce the centrality computation

time. In addition, we apply SSSP hybridization to speedup each SSSP computation.

4.2.1 Work Filtering with Level Differences

For efficient maintenance of the closeness centrality values in case of an edge

insertion/deletion, we propose a work filter which reduces the number of SSSPs in

Algorithm 1 and the cost of each SSSP by utilizing the level differences.
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Figure 4.1: The probability of the distance between two (connected) vertices is equal to
x for four social and web networks.

Level-based filtering detects the unnecessary updates and filter them out. Let

G = (V,E) be the current graph and uv be an edge to be inserted to G. Let G′ =

(V,E ∪ uv) be the updated graph. The centrality definition in (2.2.1) implies that

for a vertex s ∈ V , if dstG(s, t) = dstG′(s, t) for all t ∈ V then cc[s] = cc′[s]. The

following theorem is used to detect such vertices and filter their SSSPs.

Theorem 3. Let G = (V,E) be a graph and u and v be two vertices in V s.t. uv /∈ E.
Let G′ = (V,E ∪uv). Then cc[s] = cc′[s] if and only if |dstG(s, u)− dstG(s, v)| ≤ 1.

Proof. If s is disconnected from u and v, uv’s insertion will not change cc[s]. Hence,
cc[s] = cc′[s]. If s is only connected to one of u and v in G the difference |dstG(s, u)−
dstG(s, v)| is ∞, and cc[s] needs to be updated by using the new, larger connected
component containing s. When s is connected to both u and v in G, we investigate
the edge insertion in three cases as shown in Figure 4.2:

Case 1: dstG(s, u) = dstG(s, v): Assume that the path s
P
 u–v

P ′
 t is a shortest

s t path in G′ containing uv. Since dstG(s, u) = dstG(s, v), there exists a shorter

path s
P ′′
 v

P ′
 t with one less edge. Hence, ∀t ∈ V , dstG(s, t) = dstG′(s, t).

Case 2: |dstG(s, u) − dstG(s, v)| = 1: Let dstG(s, u) < dstG(s, v). Assume that

s
P
 u–v

P ′
 t is a shortest path in G′ containing uv. Since dstG(s, v) = dstG(s, u)+1,
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there exists another path s
P ′′
 v

P ′
 t with the same length. Hence, ∀t ∈ V ,

dstG(s, t) = dstG′(s, t).
Case 3: |dstG(s, u) − dstG(s, v)| > 1: Let dstG(s, u) < dstG(s, v). The path

s  u–v in G′ is shorter than the shortest s  v path in G since dstG(s, v) >
dstG(s, u) + 1. Hence, ∀t ∈ V \ {v}, dstG′(s, t) ≤ dstG(s, t) and dstG′(s, v) <
dstG(s, v), i.e., an update on cc[s] is necessary.

Figure 4.2: Three cases of edge insertion: when an edge uv is inserted to the graph
G, for each vertex s, one of them is true: (1) dstG(s, u) = dstG(s, v), (2) |dstG(s, u) −
dstG(s, v)| = 1, and (3) |dstG(s, u)− dstG(s, v)| > 1.

Although Theorem 3 yields to a filter only in case of edge insertions, the following

corollary which is used for edge deletion easily follows.

Corollary 1. Let G = (V,E) be a graph and u and v be two vertices in V s.t. uv ∈ E.
Let G′ = (V,E \{uv}). Then cc[s] = cc′[s] if and only if |dstG′(s, u)−dstG′(s, v)| ≤
1.

With this corollary, the work filter can be implemented for both edge insertions

and deletions. The pseudocode of the update algorithm in case of an edge insertion

is given in Algorithm 10. When an edge uv is inserted/deleted, to employ the filter,
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we first compute the distances from u and v to all other vertices. And, we filter the

vertices satisfying the statement of Theorem 3.

Algorithm 10: Simple work filtering

Data: G = (V,E), cc[.], uv
Output: cc′[.]

1 G′ ← (V,E ∪ {uv})
2 dstu[.]← SSSP(G, u) . distances from u in G
3 dstv[.]← SSSP(G, v) . distances from v in G
4 for each s ∈ V do
5 if |dstu[s]− dstv[s]| ≤ 1 then
6 cc′[s] = cc[s]

7 else
. use the computation in Algorithm 1 with G′

8 return cc′[.]

In theory, filtering by levels can reduce the update time significantly. However,

in practice, its effectiveness depends on the underlying structure of G. Many real-life

networks have been repeatedly shown to possess unique characteristics such as a small

diameter and a power-law degree distribution [119]. And the spread of information

is extremely fast [52, 53]. The proposed filter exploits one of these characteristics for

efficient closeness centrality updates: the distribution of shortest-path lengths. Its

efficiency is based on the phenomenon shown in Figure 4.1 for a set of graphs used

in our experiments: the probability distribution function for a shortest-path length

being equal to x is unimodular and spike-shaped for many real-life networks. This is

the outcome of the short diameter and power-law degree distribution. On the other

108



hand, for some spatial networks such as road networks, there are no sharp peaks and

the shortest-path distances are distributed in a more uniform way. The work filter

we propose here prefers the former.

4.2.2 Utilization of Special Vertices

We exploit some special vertices to speedup the incremental closeness centrality

computation further. We leverage the articulation vertices and identical vertices in

networks. Although it has been previously shown that articulation vertices in real

social networks are limited and yield an unbalanced shattering [152], we present the

related techniques here to give a complete view.

Filtering with biconnected components

Our filter can be assisted by maintaining a biconnected component decomposi-

tion (BCD) of G = (V,E). A BCD is a partitioning Π of E where Π(e) is the

component of each edge e ∈ E.

When uv is inserted to G and G′ = (V,E ′ = E ∪ {uv}) is obtained, we check if

{Π(uw) : w ∈ ΓG(u)} ∩ {Π(vw) : w ∈ ΓG(v)}

is empty or not: if the intersection is not empty, there will be only one element in

it, cid, which is the id of the biconnected component of G′ containing uv (otherwise

Π is not a valid BCD). In this case, Π′(e) is set to Π(e) for all e ∈ E and Π′(uv) is

set to cid. If there is no biconnected component containing both u and v , i.e., if the
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intersection above is empty, we construct Π′ from scratch and set cid = Π′(uv). Π

can be computed in linear, O(m+n) time [85]. Hence, the cost of BCD maintenance

is negligible compared to the cost of updating closeness centrality.

Filtering with identical vertices

Our preliminary analyses show that real-life networks can contain a significant

amount of identical vertices with the same/a similar neighborhood structure. We

investigate two types of identical vertices.

Definition 1. In a graph G, two vertices u and v are type-I-identical if and only if
ΓG(u) = ΓG(v).

Definition 2. In a graph G, two vertices u and v are type-II-identical if and only if
{u} ∪ ΓG(u) = {v} ∪ ΓG(v).

Both types form an equivalence class relation since they are reflexive, symmetric,

and transitive. Hence, all the classes they form are disjoint.

Let u, v ∈ V be two identical vertices. One can see that for any vertex w ∈

V \ {u, v}, dstG(u,w) = dstG(v, w). Then the following is true.

Corollary 2. Let I ⊆ V be a vertex-class containing type-I or type-II identical ver-
tices. Then the closeness centrality values of all the vertices in I are equal.

To construct these equivalance classes for the initial graph, we first use a hash

function to map each vertex neighborhood to an integer:

hashI [u] =
∑

v∈ΓG(u)

v.

We then sort the vertices with respect to their hash values and construct the type-I

vertex-classes by eliminating false positives due to collisions on the hash function.
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A similar process is applied to detect type-II vertex classes. The complexity of

this initial construction is O(n log n+m) assuming the number of collisions is small

and hence, false-positive detection cost is negligible.

Maintaining the equivalance classes in case of edge insertions and deletions is easy:

For example, when uv is added to G, we first subtract u and v from their classes and

insert them to new ones (or leave them as singletons if none of the vertices are now

identical with them). The cost of this maintenance is O(n+m).

While updating the closeness centrality values of the vertices in V , we execute an

SSSP for at most one vertex from each identical-vertex class. For the rest of the ver-

tices, we use the same closeness centrality value. The improvement is straightforward

and the modifications are minor. For brevity, we do not give the pseudocode.

4.2.3 SSSP Hybridization

The spike-shaped distribution given in Figure 4.1 can also be exploited for SSSP

hybridization. Consider the execution of Algorithm 1: while executing an SSSP

with source s, for each vertex pair {u, v}, u is processed before v if and only if

dG(s, u) < dG(s, v). That is, Algorithm 1 consecutively uses the vertices with distance

k to find the vertices with distance k + 1. Hence, it visits the vertices in a top-down

manner. SSSP can also be performed in a a bottom-up manner. That is to say, after

all distance (level) k vertices are found, the vertices whose levels are unknown can be

processed to see if they have a neighbor at level k. The top-down variant is expected
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to be much cheaper for small k values. However, it can be more expensive for the

upper levels where there are much less unprocessed vertices remaining.

Following the idea of Beamer et al. [25], we hybridize the SSSPs. While processing

the nodes at an SSSP level, we simply compare the number of edges need to be

processed for each variant and choose the cheaper one.

4.2.4 Simultaneous source traversal

The performance of sparse kernels is mostly hindered by irregular memory ac-

cesses. The most famous example for sparse computation is the multiplication of

a sparse matrix by a dense vector (SpMV). Several techniques, like register block-

ing [36, 175] and usage of different matrix storage formats [26, 111], are proposed

to regularize the memory access pattern. However, multiplying a sparse matrix by

multiple vectors is the most efficient and popular technique to regularize the mem-

ory access pattern. Once the multiple vectors are organized as a dense matrix, the

problem becomes the multiplication of a sparse matrix by a dense matrix (SpMM).

Each nonzero of the sparse matrix causes the multiplication of a single element of the

vector in SpMV, and it results in the multiplications of as many consecutive elements

of the dense matrix as its number of columns in SpMM.

Accommodating that idea for closeness centrality computation turns out to be

concurrently computing the multiple sources at the same time. However, as opposed

to SpMV, in which the vector is dense and therefore each non-zero induces exactly

one multiplication, in BFS, not all the non-zeros will induce operations. That is
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to say, a vertex in BFS may or may not be traversed depending on which level is

currently being processed. Thus, the traditional queue-based implementation of BFS

does not seem to be easily extendable to support concurrent BFSs (co-BFS) in a

vector-friendly manner. We developed this method in [154, 156] and present here the

main idea.

An SpMV-based formulation of closeness centrality

The idea is to convert to a simpler definition of level synchronous BFS: If one

of the neighbor of v is part of level ` − 1 and v is not part of any level `′ < `, then

vertex v is part of level `. This formulation is used in parallel implementations of BFS

on GPU [90, 135, 164], on shared memory systems [3] and on distributed memory

systems [35].

The algorithm is better represented using binary variables. Let x`i be the binary

variable that is true if vertex i is part of the frontier at level ` for a BFS. The

neighbors of level ` is represented by a vector y`+1 computed by y`+1
k = ORj∈Γ(k)x

`
j.

The next level is then computed with x`+1
i = y`+1

i AND not (OR`′≤`x
`′
i ). Using these

variables, one can increase the farness of the source by ` if i is at level ` (i.e., if x` = 1).

One can remark that y`+1 is the result of the “multiplication” of the adjacency matrix

of the graph by x` in the (OR,AND) semi-ring.
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An SpMM-based formulation of closeness centrality

It is easy to derive an algorithm from the formulation given above for closeness

centrality computation that processes multiple sources concurrently. Instead of ma-

nipulating a single vector x and y where each element is a single bit, one can encode

32-bit vectors for 32 BFSs so that one int can encode the state of a single vertex

across the 32 BFSs. The algorithm becomes quite efficient as it does not use more

memory and process 32 BFS concurrently. All the operations become simple bit-wise

and, or and not.

Theoretically, the asymptotic complexity changes when BFS is implemented using

an SpMM approach. The complexity of the traditional queue-based BFS algorithm is

O(|E|). If the adjacency matrix is stored row-wise, the SpMM-based implementation

boils down to a bottom-up implementation of BFS which has a natural write access

pattern. However, it becomes impossible to only traverse the relevant nonzero of

the matrix and the complexity of the algorithm becomes O(|E| × L), where L is the

diameter of the graph. Social networks have small world properties which implies

that their diameter is low and we do not feel that this asymptotic factor of L will

hinder performance.

Moreover, multiple BFSs are performed concurrently (here 32) which can recoup

for the loss. In [154, 156], the algorithm computes the impact of the sources on

all the vertices of the graph. What we presented in this section does the reverse

and compute the impact of all the vertices of the graph on the sources. Despite
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worse asymptotic complexity the performance of co-BFS outperforms traditional BFS

approach [154, 156]. Moreover, such algorithm is compatible with the decomposition

of the graph in biconnected components [152] which can lead to further improvement.

Because this algorithm computes the farness of the sources, it can be used to compute

centrality incrementally.

4.3 DataCutter

Streamer employs DataCutter [27], our in-house dataflow programming frame-

work for distributed memory systems. In DataCutter, the computations are carried

by independent computing elements, called filters, that have different responsibilities

and operate on data passing through them. DataCutter follows the component-based

programming paradigm which has been used to describe and implement complex ap-

plications [79, 80, 81, 153] by way of components - distinct tasks with well-defined

interfaces. This is also known as the filter-stream programming model [27] (a spe-

cific implementation of the dataflow programming model). A stream denotes a uni-

directional data flow from some filters (i.e., the producers) to others (i.e., the con-

sumers). Data flows along these streams in untyped databuffers so as to minimize

various system overheads. A layout is a filter ontology which describes the set of

application tasks, streams, and the connections required for the computation. By

describing these components and the explicit data connections between them, the ap-

plications are decomposed along natural task boundaries according to the application

domain. Therefore, the component-based application design is an intuitive process
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with explicit demarcation of task responsibilities. Furthermore, the communication

patterns are also explicit; each component includes its input data requirements and

outputs in its description.

Applications composed of a number of individual tasks can be executed on parallel

and distributed computing resources and gain extra performance over those run on

strictly sequential machines. This is achieved by specifying a placement which is an

instance of a layout with a mapping of the filters onto physical processors. There are

three main advantages of this scheme: first, it exposes an abstract representation of

the application which is decoupled from its practical implementation. Second, the

coarse-grain dataflow programming model allows replicated parallelism by instanti-

ating a given filter multiple times so that the work can be distributed among the

instances to improve the parallelism of the application and the system’s performance.

And third, the execution is pipelined, allowing multiple filters to compute simultane-

ously on different iterations of the work. This pipelined parallelism is very useful to

achieve overlapping of communication and computation.

Additionally, provided the interfaces exposed by a task to the rest of the applica-

tion, different implementations of tasks, possibly on different processor architectures

can co-exist in the same application deployment, allowing developers to take full

advantage of modern, heterogeneous supercomputers. Figure 4.3 shows an exam-

ple filter-stream layout and placement. In this work, we used both distributed- and

shared-memory architectures. However, thanks to filter-stream programming model,
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many-core systems such as GPUs and accelerators can also be used easily and effi-

ciently if desired [81].

Figure 4.3: A toy filter-stream application layout and its placement.

As mentioned above, one of the DataCutter’s strengths is that it enables pipelined

parallelism, where multiple stages of the pipeline (such as A and B in the layout in

Figure 4.3) can be executed simultaneously, and replicated parallelism can be used at

the same time if some computation is stateless (such as filter B in the same figure).

DataCutter makes all this parallelism is possible by mapping each placed filter to a

POSIX thread of the execution platform.
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Figure 4.4: Layout of Streamer.

4.4 Streamer

Streamer is implemented in the DataCutter framework. We propose to use the

four-filter layout shown in Figure 4.4. InstanceGenerator is responsible for sending

the updates to all the other components. StreamingMaster does the work filtering

for each update, and generates the workload for following components. ComputeCC

component executes the real work and computes the updated CC scores for each

incoming update. Aggregator does the necessary adjustments related to identical

vertex sets and biconnected component decomposition. While computing the CC

scores, the main portion of the computation comes from performing SSSPs for the

vertices whose scores need to be updated. If there are many updates (we use the

term “update” to refer to the SSSP operation which updates the CC score of a

vertex), that part of the computation should occupy most of the machine. A typical

synchronous decomposition of the application makes the work filtering of a streaming

event (handling a single edge change) wait for the completion of all the work incurred
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by a previous streaming event. Since the worker nodes will wait for the work filtering

to be completed, there can be a large waste of resources. We argue that the pipelined

parallelism should be used to overlap the process of filtering the work and computing

the updates on the graph. In this section, we explain each component in detail and

define their responsibilities.

The first filter is the InstanceGenerator which first sends the initial graph to all the

other filters. It then sends the streaming events as 4-tuples (t, oper, u, v) to indicate

that edge uv has been either added or removed (specified by oper) at a given time t.

(In the following, we only explain the system for edge insertion, but it is essentially

the same for an edge removal.) In a real world application, this filter would be

listening on the network or on a database trigger for topology modifications; but in

our experiments, all the necessary information is read from a file.

StreamingMaster is responsible for the work filtering after each network modifica-

tion. Upon inserting uv at time t, it first computes the shortest distances from u and

v to all other vertices at time t−1. Then, it adds the edge uv into its local copy of the

graph and updates the identical vertex sets. It partitions the edges of the graph to

its biconnected components by using the algorithm in [85] and finds the component

containing uv. For each vertex s ∈ V , it decides whether its CC score needs to be

recomputed by checking the following conditions: (1) dst(s, u) and dst(s, v) differ

by at least 2 units at time t − 1, (2) s is adjacent to an edge which is also in uv’s
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biconnected component, (3) s is the representative of its identical vertex set. Stream-

ingMaster then informs the Aggregator about the number of updates it will receive

for time t. Finally, it sends the list of SSSP requests to the ComputeCC filter, i.e.,

the corresponding source vertex ids whose CC scores need to be updated.

ComputeCC performs the real work and computes the new CC scores after each

graph modification. It waits for work from StreamingMaster, and when it receives a

CC update request under the form of a 2-tuple (t, s) (update time and source vertex

id), ComputeCC advances its local graph representation to time t by using the ap-

propriate updates from InstanceGenerator. If there is a change on the local graph,

the biconnected component of uv is extracted, and a concise information of the graph

structure and the set of articulation vertices are updated (as described in [151]). Fi-

nally, the exact CC score cc[s] at time t is computed and sent to the Aggregator as

a 3-tuple (t, s, cc[s]). ComputeCC can be replicated to fill up the whole distributed

memory machine without any problem: as long as a replica reads the update requests

in the order of non-decreasing time units, it is able compute the correct CC scores.

The Aggregator filter gets the graph at a time t from InstanceGenerator. Then,

it obtains the number of updates for that time from StreamingMaster. It computes

the identical vertex sets as well as the BCD. It gets the updated CC scores from

ComputeCC. Due to the pipelined parallelism used in the system and the replicated

parallelism of ComputeCC, it is possible that updates from a later time can be re-

ceived; Streamer stores them in a backlog for future processing. When a (t, s, cc[s])
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tuple is processed, the CC score of s is updated. If s is the representative of an iden-

tical vertex set, the CC scores of all the vertices in the same set are updated as well.

If s is an articulation point, then the CC scores of the vertices which are represented

by s (and are not in the biconnected component of uv) are updated as well, by using

the difference in the CC score of s between time t and t− 1. Since Aggregator needs

to know the CC scores at time t − 1 to compute the centrality scores at time t, the

system must be bootstrapped: the system computes explicitly all the centrality scores

of the vertices for time t = 0.

4.4.1 Exploiting the shared memory architecture

The main portion of the execution time is spent by the ComputeCC filter. There-

fore, it is important to replicate this filter as much as possible. Each replica of the

filter will end up maintaining its own graph structure and computing its own BCD.

Modern clusters are hierarchical and composed of distributed memory nodes where

each node contains multiple processors featuring multiple cores that share the same

memory space. For instance, the nodes used in our experiments are equipped with

two processors, each having 4 cores.

It is a waste of computational power to recompute the data structure on each core.

But it is also a waste of memory. Indeed, the cores of a processor typically share a

common last level of cache and using the same memory space for all the cores in a

processor might improve the cache utilization. We propose to split the ComputeCC

filter in two separate filters which is transparent to the rest of the system thanks to

121



DataCutter being component-based. The Preparator filter constructs the decomposed

graph for each Streaming Event it is responsible for. The Executor filter performs

the real work on the decomposed graph. In DataCutter, the filters running on the

same physical node act run in separate pthreads within the same MPI process making

sharing the memory as easy as communicating pointers. The release of the memory

associated with the decomposed graph is handled by atomically decreasing a counter

by the Executor.

The decoupling of the graph management and the CC score computation allows

to either creating a single graph representation on each distributed memory node or

having a copy of the graph on each NUMA domain of the architecture. This is shown

in Fig. 4.5.

4.4.2 Parallelizing StreamingMaster

When the number of cores used for ComputeCC increases, the relative importance

of ComputeCC in the total runtime decreases. Theoretically, with an infinite number

of cores for ComputeCC, the time required by it will drop to zero. In this case, the

bottleneck of the application becomes the maximum rate at which StreamingMaster

can generate updates request and the rate at which Aggregator can merge the com-

puted results. To improve these rates, we replace them with a construct that allow

parallel execution.

StreamingMaster is decomposed in three filters which are laid out according to

Figure 4.6. Most of the work done by StreamingMaster is done by a filter (we still call
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Figure 4.5: Placement of Streamer using 2 worker nodes with 2 quad-core processors.
(The node 2 is hidden). The remaining filters are on node 0.

it StreamingMaster for convenience) which supports replication. Each of the replica

receives the list of edges it has to compute the filtering from a WorkDistributor.

This WorkDistributor just listens the modifications on the graph and distribute the

Streaming Events among different StreamingMasters.

It is important that ComputeCC receives the update requests in non-decreasing

order of streaming events. StreamCoordinator is responsible for enforcing that order.

StreamCoordinator sits between the StreamingMaster and the ComputeCC (and the

Aggregator) and relays messages to them. The StreamCoordinator tells Streaming-

Master which streaming event is the next one. In other words, before outputting the
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Figure 4.6: Replicating StreamingMaster for a better scaling when the number of proces-
sors is large.

list of updates (and metadata for the Aggregator), the StreamingMaster reads from

the StreamCoordinator whether it is time to output.

4.4.3 Parallelizing Aggregator

One of the challenges in parallelizing the Aggregator is that there can be only

one filter that actually stores the centrality values of the network. Fortunately, most

of the computation time spent by the Aggregator is spent in preparing the network

rather than in applying the updates. We modify the layout of the Aggregator to match

that of Figure 4.7.

Therefore only a single filter, we will call Aggregator for the sake of simplicity, is

responsible for applying the updates, and is only responsible for this. It takes three

kinds of input: the updates on the graph itself, the information of how many updates

will be applied for each streaming event and information on the graph (the graph

itself, its biconnected decomposition and identical vertices).
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Figure 4.7: Replicating Aggregator for a better scaling when the number of processors is
large.

The graph information is constructed by another filter called AggregatorPreparator

which can be replicated. It listens to the Streaming Events and receive work assign-

ments. It then computes the sets of identical vertices and the graph’s biconnected

component decomposition and send them through its downstream.

The work in the AggregatorPreparator is distributed in a way similar to the par-

allelization of the StreamingMaster. Also the graph information must reach the Ag-

gregator in the order of the Streaming Event. An AggregatorCoordinator is used to

regulate the order in which the graph information is sent. It behaves under the same

principle as StreamCoordinator.

4.5 Experiments

We investigate the performance our algorithms and systems in two sections. First,

we look at the impact of pure sequential algorithms on the performance, then we test
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our Streamer framework and compare its performance with respect to sequential

algorithms.

4.5.1 Sequential Incremental Closeness Centrality

We implemented the algorithms in C and compiled with gcc v4.6.2 with the

optimization flags -O2 -DNDEBUG. The graphs are kept in the compressed row stor-

age (CRS) format. The experiments are run in sequential on a computer with two

Intel Xeon E5520 CPU clocked at 2.27GHz and equipped with 48GB of main memory.

For the experiments, we used 10 networks from the UFL Sparse Matrix Collec-

tion2 and also extracted the coauthor network from the current set of DBLP pa-

pers. Properties of the graphs are summarized in Table 4.1. They are from different

application areas, such as social (hep-th, PGPgiantcompo, astro-ph, cond-mat-2005,

soc-sign-epinions, loc-gowalla, amazon0601, wiki-Talk, DBLP-coauthor), and web net-

works (web-NotreDame, web-Google). The graphs are listed by increasing number of

edges and a distinction is made between small graphs (with less than 500K edges)

and the large graphs (with more than 500K) edges.

Although the filtering techniques can reduce the update cost significantly in the-

ory, their practical effectiveness depends on the underlying structure of G. Since the

diameter of the social networks are small, the range of the shortest distances is small.

Furthermore, the distribution of these distances is unimodal. When the distance with

2http://www.cise.ufl.edu/research/sparse/matrices/
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Graph Time (in sec.)
name |V | |E| Org. Best Speedup
hep-th 8.3K 15.7K 1.41 0.05 29.4
PGPgiantcompo 10.6K 24.3K 4.96 0.04 111.2
astro-ph 16.7K 121.2K 14.56 0.36 40.5
cond-mat-2005 40.4K 175.6K 77.90 2.87 27.2

geometric mean 43.5
soc-sign-epinions 131K 711K 778 6.25 124.5
loc-gowalla 196K 950K 2,267 53.18 42.6
web-NotreDame 325K 1,090K 2,845 53.06 53.6
amazon0601 403K 2,443K 14,903 298 50.0
web-Google 875K 4,322K 65,306 824 79.2
wiki-Talk 2,394K 4,659K 175,450 922 190.1
DBLP-coauthor 1,236K 9,081K 115,919 251 460.8

geometric mean 99.8

Table 4.1: The graphs used in the experiments. Column Org. shows the initial closeness
computation time of CC and Best is the best update time we obtain in case of streaming
data.

the peak (mode) is combined with the ones on its right and left, they cover a sig-

nificant amount of the pairs (56% for web-NotreDame, 65% for web-Google, 79% for

amazon0601, and 91% for soc-sign-epinions). We expect the filtering procedure to

have a significant impact on social networks because of their structure. Besides, that

specific structure is also important for the SSSP hybridization.

Handling topology modifications

To assess the effectiveness of our algorithms, we need to know when each edge

is inserted to/deleted from the graph. Our datasets from the UFL collection do not

have this information. To conduct our experiments on these datasets, we delete 1,000

edges from a graph chosen randomly in the following way: A vertex u ∈ V is selected
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randomly (uniformly), and a vertex v ∈ ΓG(u) is selected randomly (uniformly).

Since we do not want to change the connectivity in the graph (having disconnected

components can make our algorithms much faster and it will not be fair to CC), we

discard uv if it is a bridge. If this is not the case we delete it from G and continue. We

construct the initial graph by deleting these 1,000 edges. Each edge is then re-inserted

one by one, and our algorithms are used to recompute the closeness centrality scores

after each insertion.

In addition to the random insertion experiments, we also evaluated our algorithms

on a real temporal dataset of the DBLP coauthor graph3. In this graph, there is an

edge between two authors if they published a paper together. We used the publication

dates as timestamps and constructed the initial graph with the papers published

before January 1, 2013. We used the coauthorship edges of the later papers for edge

insertions. Although we used insertions in our experiments, a deletion is a very similar

process which should give comparable results.

In addition to CC, we configure our algorithms in four different ways: CC-B

only uses BCD, CC-BL uses BCD and filtering with levels, CC-BLI uses all three

work filtering techniques including identical vertices. And CC-BLIH uses all the

techniques described in this work including the SSSP hybridization.

Table 4.2 presents the results of the experiments. The second column, CC, shows

the time to run the full base algorithm for computing the closeness centrality values

3http://www.informatik.uni-trier.de/~ley/db/
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Time (secs) Speedups Filter
Graph CC CC-B CC-BL CC-BLI CC-BLIH CC-B CC-BL CC-BLI CC-BLIH time (secs)
hep-th 1.413 0.317 0.057 0.053 0.048 4.5 24.8 26.6 29.4 0.001
PGPgiantcompo 4.960 0.431 0.059 0.055 0.045 11.5 84.1 89.9 111.2 0.001
astro-ph 14.567 9.431 0.809 0.645 0.359 1.5 18.0 22.6 40.5 0.004
cond-mat-2005 77.903 39.049 5.618 4.687 2.865 2.0 13.9 16.6 27.2 0.010
Geometric mean 9.444 2.663 0.352 0.306 0.217 3.5 26.8 30.7 43.5 0.003
soc-sign-epinions 778.870 257.410 20.603 19.935 6.254 3.0 37.8 39.1 124.5 0.041
loc-gowalla 2,267.187 1,270.820 132.955 135.015 53.182 1.8 17.1 16.8 42.6 0.063
web-NotreDame 2,845.367 579.821 118.861 83.817 53.059 4.9 23.9 33.9 53.6 0.050
amazon0601 14,903.080 11,953.680 540.092 551.867 298.095 1.2 27.6 27.0 50.0 0.158
web-Google 65,306.600 22,034.460 2,457.660 1,701.249 824.417 3.0 26.6 38.4 79.2 0.267
wiki-Talk 175,450.720 25,701.710 2,513.041 2,123.096 922.828 6.8 69.8 82.6 190.1 0.491
DBLP-coauthor 115,919.518 18,501.147 288.269 251.557 252.647 6.2 402.1 460.8 458.8 0.530
Geometric mean 13,884.152 4,218.031 315.777 273.036 139.170 3.2 43.9 50.8 99.7 0.146

Table 4.2: Execution times in seconds of all the algorithms and speedups when compared
with the basic closeness centrality algorithm CC. In the table CC-B is the variant which
uses only BCDs, CC-BL uses BCDs and filtering with levels, CC-BLI uses all three work
filtering techniques including identical vertices. And CC-BLIH uses all the techniques
described in this work including SSSP hybridization.

on the original version of the graph. Columns 3–6 of the table present absolute run-

times (in seconds) of the centrality computation algorithms. The next four columns,

7–10, give the speedups achieved by each configuration. For instance, on the average,

updating the closeness values by using CC-B on PGPgiantcompo is 11.5 times faster

than running CC. Finally the last column gives the overhead of our algorithms per

edge insertion, i.e., the time necessary to filter the source vertices and to maintain

BCD and identical-vertex classes. Geometric means of these times and speedups are

also given to provide a comparison across all the instances.

The times to compute the closeness values using CC on the small graphs range be-

tween 1 to 77 seconds. On large graphs, the times range from 13 minutes to 49 hours.

Clearly, CC is not suitable for real-time network analysis and management based
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on shortest paths and closeness centrality. When all the techniques are used (CC-

BLIH), the time necessary to update the closeness centrality values of the small

graphs drops below 3 seconds per edge insertion. The improvements range from a

factor of 27.2 (cond-mat-2005) to 111.2 (PGPgiantcompo), with an average improve-

ment of 43.5 across small instances and a factor of 42.6 (loc-gowalla) to 458.8 (DBLP-

coauthor), on large graphs, with an average of 99.7. For all graphs, the time spent

for overheads is below one second which indicates that the majority of the time is

spent for SSSPs. Note that this part is pleasingly parallel since each SSSP is inde-

pendent from each other. Hence, by combining the techniques proposed in this work

with a straightforward parallelism, one can obtain a framework that can maintain the

closeness centrality values within a dynamic network in real time.

The overall improvement obtained by the proposed algorithms is significant. The

speedup obtained by using BCDs (CC-B) are 3.5 and 3.2 on the average for small

and large graphs, respectively. The graphs PGPgiantcompo, and wiki-Talk benefits

the most from BCDs (with speedups 11.5 and 6.8, respectively). Clearly using the

biconnected component decomposition improves the update performance. However,

filtering by level differences is the most efficient technique: CC-BL brings major

improvements over CC-B. For all social networks, when CC-BL is compared with

CC-B, the speedups range from 4.8 (web-NotreDame) to 64 (DBLP-coauthor). Over-

all, CC-BL brings a 7.61 times improvement on small graphs and a 13.44 times

improvement on large graphs over CC.

130



For each added edge uv, let X be the random variable equal to |dstG(u,w) −

dstG(v, w)|. By using 1,000 uv edges, we computed the probabilities of the three cases

we investigated before and give them in Fig. 4.8. For each graph in the figure, the sum

of the first two columns gives the ratio of the vertices not updated by CC-BL. For the

networks in the figure, not even 20% of the vertices require an update (Pr(X > 1)).

This explains the speedup achieved by filtering using level differences. Therefore,

level filtering is more useful for the graphs having characteristics similar to small-

world networks.

0	  
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0.4	  

0.6	  

Pr(X	  =	  0)	  
Pr(X	  =	  1)	  
Pr(X	  >	  1)	  

Figure 4.8: The bars show the distribution of random variable X = |dstG(u,w) −
dstG(v, w)| into three cases we investigated when an edge uv is added.

Filtering with identical vertices is not as useful as the other two techniques in the

work filter. Overall, there is a 1.15 times improvement with CC-BLI on both small

and large graphs compared to CC-BL. For some graphs, such as web-NotreDame and

web-Google, improvements are much higher (30% and 31%, respectively).

131



The algorithm with the hybrid SSSP implementation, CC-BLIH, is faster than

CC-BLI by a factor of 1.42 on small graphs and by a factor of 1.96 on large graphs.

Although it seems to improve the performance for all graphs, in some few cases,

the performance is not improved significantly. This can be attributed to incorrect

decisions on SSSP variant to be used. Indeed, we did not benchmark the architecture

to discover the proper parameter. CC-BLIH performs the best on social network

graphs with an improvement ratio of 3.18 (soc-sign-epinions), 2.54 (loc-gowalla), and

2.30 (wiki-Talk).

All the previous results present the average single edge update time for 1,000 suc-

cessively added edges. Hence, they do not say anything about the variance. Figure 4.9

shows the runtimes of CC-B and CC-BLIH per edge insertion for web-NotreDame

in a sorted order. The runtime distribution of CC-B clearly has multiple modes.

Either the runtime is lower than 100 milliseconds or it is around 700 seconds. We

see here the benefit of BCD. According to the runtime distribution, about 59% of

web-NotreDame’s vertices are inside small biconnected components. Hence, the time

per edge insertion drops from 2,845 seconds to 700.

Indeed, the largest component only contains 41% of the vertices and 76% of the

edges of the original graph. The decrease in the size of the components accounts for

the gain of performance.

The impact of level filtering can also be seen on Figure 4.9. 60% of the edges in

the main biconnected component do not change the closeness values of many vertices
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Figure 4.9: Sorted list of the runtimes per edge insertion for the first 100 added edges of
web-NotreDame.

and the updates that are induced by their addition take less than 1 second. The

remaining edges trigger more expensive updates upon insertion. Within these 30%

expensive edge insertions, using identical vertices and SSSP hybridization provide a

significant improvement (not shown in the figure).

Better Speedups on Real Temporal Data The best speedups are obtained on

the DBLP coauthor network which uses real temporal data. Using CC-B, we reach

6.2 speedup w.r.t. CC, which is bigger than the average speedup on all networks.

Main reason for this behavior is that 10% of the inserted edges are actually the new

vertices joining to the network, i.e., authors with their first publication, and CC-B

handles these edges quite fast. Applying CC-BL gives a 64.8 speedup over CC-B,

which is drastically higher than all other graphs. Indeed, only 0.7% of the vertices

require to run a SSSP algorithm when an edge is inserted on the DBLP network.
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For the synthetic cases, this number is 12%. Overall, speedups obtained with real

temporal data reach 460.8, i.e., 4.6 times greater than the average speedup on all

graphs. Our algorithms appear to perform much better on real applications than on

synthetic ones.

4.5.2 Streamer

Streamer runs on the Owens cluster in the Department of Biomedical Infor-

matics at The Ohio State University. For the experiments, we used all the 64 com-

putational nodes, each with dual Intel Xeon E5520 Quad-core CPUs (with 2-way

Simultaneous Multithreading, and 8MB of L3 cache per processor), 48 GB of main

memory. The nodes are interconnected with 20 Gbps InfiniBand. The algorithms

were run on CentOS 6, and compiled with GCC 4.5.2 using the -O3 optimization

flag. DataCutter uses an InfiniBand-aware MPI to leverage the high performance

interconnect: here we used MVAPICH 1.1.

For testing purposes, we picked 4 large social network graphs from the SNAP

dataset to perform the test at scale. The properties of the graphs are summarized in

Table 4.3. For simulating the addition of the edges, we removed 50 edges from the

graphs and added them back one by one. The streamed edges were selected randomly

and uniformly. For comparability purposes, all the runs performed on the same graph

use the same set of edges. The number of updates induced by that set of edges when

applying filtering using identical vertices, biconnected component decomposition, and

level filtering is given in Table 4.3. In the experiments, the data comes from a file,
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speedup w.r.t speedup
Name |V | |E| # updates time(s) [149] seq. non- w.r.t. [149] seq.

incremental incremental

web-NotreDame 325,729 1,090,008 399,420 3.29 43,237 805
amazon0601 403,394 2,443,308 1,548,288 33.16 22,471 449
web-Google 916,428 4,321,958 2,527,088 71.20 45,860 578
soc-pokec 1,632,804 30,622,464 4,924,759 816.73 - -

Table 4.3: Properties of the graphs we used in the experiments and execution time on a
64 node cluster.

and the Streaming Events are pushed to the system as quickly as possible so as to

stress the system.

All the results presented in this section are extracted from a single run of Streamer

with proper parameters. The regularity in the plots indicates there would be a small

variance on the runtimes, which induces a reasonable confidence in the significance

of the quoted numbers. In the experiments, StreamingMaster and Aggregator run on

the same node, apart from all the computational filters. Therefore, we report the

number of worker nodes, but an extra node is always used.

To give an idea of the actual amount of computation, in the fourth column of

Table 4.3, we report the time Streamer spends to update the CC scores upon 50

edge insertions by using all 63 worker nodes. We also present the speedup of parallel

implementation on 64 nodes with respect to sequential non-incremental computation

and sequential incremental computation. The Streamer framework is never sequen-

tial due to its distributed-memory nature and the pipelined parallelism, i.e., different
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filters are always handled by different threads even in the most basic setting with no

filter replication. (Streamer uses at least the four filters of Figure 4.4, so at least

four POSIX threads are always used.) Therefore, there is no sequential runtime for

the Streamer framework. When we mention the sequential time, it refers to our

previous work [149], which runs sequentially using a single core of the same cluster.

As all the execution times given in this section, the times in Table 4.3 do not contain

the initialization time. That is the time measurement starts once Streamer is idle,

waiting to receive Streaming Events.

Basic performance results

Figure 4.10 shows the performance and scalability of the system in different

configurations. The performance is expressed in number of updates per second.

The framework obtains up to 11, 000 updates/sec on amazon0601 and web-Google,

49, 000 updates/sec on web-NotreDame, and more than 750 updates/sec on the largest

tested graph soc-pokec. It appears to scale linearly on the graphs amazon0601 and

web-Google, soc-pokec. For the first two graphs, it reaches a speedup of 456 and

497, respectively, with 63 nodes and 8 threads/node compared to the single node-

single thread configuration. (The incremental centrality computation on soc-pokec

with a single node was too long to run the experiment, but the system is clearly

scaling well on this graph.) The last graph, web-NotreDame, does not exhibit a linear

scaling and obtains a speedup of only 316.
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Figure 4.10: Scalability: the performance is expressed in the number of updates per
second. Different worker-node configurations are shown. “8 threads, 1 graph/thread” means
that 8 ComputeCC filters are used per node. “8 threads, 1 graph” means that 1 Preparator
and 8 Executor filters are used per node. “8 threads, 1 graph/NUMA” means that 2
Preparators per node (one per NUMA domain) and 8 Executors are used.
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Table 4.4: The performance of Streamer with 31 worker nodes and different node-level
configurations normalized to 1 thread case (performance on soc-pokec is normalized to 8
threads, 1 graph/thread). The last column is the advantage of Shared Memory awareness
(ratio of columns 5 and 3).

Name 4 threads 8 threads, 1 graph per Shared Mem.
thread node NUMA awareness

web-NotreDame 3.69 6.46 7.13 6.99 1.08
amazon0601 3.26 6.75 6.81 7.45 1.10
web-Google 3.69 7.77 7.55 8.06 1.03
soc-pokec - 1.00 0.92 1.01 1.01

Let us first evaluate the performance obtained under different node-level config-

urations. Table 4.4 presents the relative performance of the system using 31 worker

nodes while using 1, 4, or 8 threads per node. When compared with the single thread

configuration, using 4 threads (the second column) is more than 3 times faster, while

using 8 threads (columns 3–5) per node usually gives a speedup of 6.5 or more. Over-

all, having multiple cores is fairly well exploited. Properly taking the shared-memory

aspect of the architecture into account (column 5) brings a performance improvement

between 1% to 10% (the last column). In one instance (web-Google with a graph

for each NUMA domain), we observed that the normalized performance is more than

the number of cores. This can be explained by the fact that actually 10 threads are

running on each computing node (8 Executor and 2 Preparator) which can lead to a

higher parallelism.
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(b) 15 worker nodes
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Figure 4.11: Execution logs for web-NotreDame on different number of nodes. Each
plot shows the total number of updates sent by StreamingMaster and processed by the
Executors, respectively (the two lines), and the times at which StreamingMaster starts to
process Streaming Events (the set of ticks).
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Execution-log analysis

Here we discuss the impact of pipelined parallelism and the sub-linear speedup

achieved on web-NotreDame. In Figure 4.11, we present the execution logs for that

graph obtained while using 3, 15, and 63 worker nodes. Each log plot shows three data

series: the times at which StreamingMaster starts to process the Streaming Events,

the total number of updates sent by StreamingMaster, and the number of updates

processed by the Executors collectively. The three different logs show what happens

when the ratio of update produced and update consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 4.11(a)) shows the amount

of the updates emitted and processed as two perfectly parallel almost straight lines.

This indicates that the runtime of the application is dominated by processing the

updates. As the figure shows, the times at which the master starts processing the

Streaming Events are not evenly distributed. As mentioned before, StreamingMaster

starts filtering for the next Streaming Event as soon as it sends all the updates for the

current one. In other words, the amount of updates emitted for a given Streaming

Event can be read from the execution log as the difference of the y-coordinates of

two consecutive “update emitted” points (the first line). In the first plot, we can

see that 6 out of 50 Streaming Events (the ticks at the end of each partial tick-

lines) incurred significantly much more updates than the others. While these events

are being processed, the two lines stay straight and parallel, because in DataCutter,
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writing to a downstream filter is a buffered operation. Once the buffer is full, the

operation becomes blocking.

The second execution log with 15 worker nodes (Fig. 4.11(b)) shows a different

picture. Here, the log is about 4 times shorter and the lines are not perfectly parallel.

The number of updates emitted shows three plateaus for more than a second around

times 0, 5, and 16 seconds. These plateaus exist because many consecutive Streaming

Events do not generate a significant amount of updates; therefore, the master spends

all its time by filtering the work for these Streaming Events.

The second plateau around time 5 seconds of the execution log with 15 worker

nodes lasts 1.2 secs, and less than 100 updates are sent during that interval. How-

ever, as the plot shows, the worker nodes do not run out of work and process more

than 25, 000 updates during the plateau. This is possible because the computation

in Streamer is pipelined. If the system were synchronous the worker nodes would

spend most of that plateau waiting which yields a longer execution time and worse

performance. In addition to the three large plateaus, cases with a few consecutive

Streaming Events that lead to barely no updates are slightly visible around times 3

and 9. These two smaller cases are hidden by the pipelined parallelism. The third

plateau is much longer than the second one (20 Streaming Events, 2.1 secs) and the

worker nodes eventually run out of work halfway through the plateau. As can be seen

in Fig. 4.10(b), the performance does not show linear scaling at 15 worker nodes; But

it is still good, thanks to the pipelined parallelism.
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Figure 4.12: Parallelizing StreamingMaster and Aggregator: the number of updates per
second for web-NotreDame with 50 and 1, 000 streaming events, respectively. The best node
configuration from Figure 4.10, i.e., 8 threads, 1 graph/NUMA, is used for both cases.

When 63 worker nodes are used, the execution log (Fig. 4.11(c)) presents another

picture. With the increase on the workers’ processing power, StreamingMaster is

now the main bottleneck of the computation. Two additional, considerably large

plateaus appeared, and StreamingMaster starts to spend more than half of its time

with the work filtering. However, during these times, the workers keep processing the

updates, but at varied rates, due to temporary work starvation. The work filtering

and the actual work are being processed mostly simultaneously showing that pipelined

parallelism is very effective in this situation. Without the pipelined parallelism, the

computation time would certainly be 2 secs longer, and 25% worse performance would

be achieved.
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We used the techniques described in Sections 4.4.2 and 4.4.3 (Figures 4.6 and 4.7)

to replicate the StreamingMaster and Aggregator filters, respectively, and obtain a

better performance when these filters becomes bottleneck throughout the incremental

closeness centrality computation. The results on the web-NotreDame graph are given

for 50 and 1, 000 Streaming Events in Figure 4.12. As the figure shows, using four

StreamingMaster and Aggregator filters instead of one yields around 6% improvement

for 50 Streaming Events when 63 working nodes in the cluster are fully utilized.

This small improvement is due to a lack of sufficient number of Streaming Events

which generates a large amount of updates (see Figure 4.11). Hence, even with a

large number of StreamingMaster and Aggregator filters, due to the load balancing

problem on these filters, one cannot improve the performance more with 50 Streaming

Events by just replicating them. Fortunately, in practice this number is usually much

higher. In Figure 4.12(b), we repeated the same experiment for 1, 000 Streaming

Events. As the figure shows, the performance significantly increases when the filters

are replicated. Furthermore, the percentage of the improvement increases when more

nodes are used and reaches to 58% with 63 working nodes. This is expected since,

with more cores for the Executor filters, the time spent for StreamingMaster and

Aggregator becomes (relatively) more important. When applied on the other graphs,

going from one StreamingMaster and Aggregator to four have not yield significant

difference since these components were not bottlenecks. Therefore, we omitted those

results here.
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4.5.3 Plug-and-play filters: co-BFS

As stated above, thanks to filter-stream programming model, different filter im-

plementations and various hardware such as GPUs can be used easily and efficiently

if desired. Here, we show that using the SpMM-based approach described in Sec-

tion 4.2.4, one can modify the ComputeCC filter in Figure 4.4 (or the Executor filters

in Figure 4.5) to increase the performance. For this experiment, we swapped the Ex-

ecutor filter with one that uses the co-BFS algorithm which computes 32 BFSs from

different sources concurrently. The results of the experiments with 15, 31, and 63

working nodes are shown in Figure 4.13. Using co-BFS (and coupled with multiple

StreamingMaster and Aggregator) improves the performance of the regular version

by a factor ranging from 2.2 to 9.3 depending on the graph and number of working

nodes.

4.5.4 Illustrative example for closeness centrality evolution

In this section, we present a real world example to show how the closeness cen-

trality scores of four researchers change over time in the temporal coauthor network

obtained from DBLP4. We selected the four authors of this manuscript which have

different experiences and looked at their closeness centrality score evolution from De-

cember 2009 to August 2014. We report the closeness centrality scores at the end of

every 3 months by our incremental algorithms.

4http://dblp.uni-trier.de/xml/
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Figure 4.13: co-BFS: the performance is expressed in the number of updates per sec-
ond. The best worker-node configuration, “8 threads, 1 graph/NUMA”, is used for the
experiments.
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Figure 4.14: Closeness centrality score evolution in DBLP coauthor network

Figure 4.14 shows how the CC score changes when time passes. Researcher 4 is

a PhD student who started in September 2010 and his first paper was published at

the beginning of 2011. Point A shows the impact of the first paper on his CC score.

Researcher 3 joined the team as a postdoc in September 2011. His first paper with

the team members was published in early 2012 (Point B). We can observe that this

publication increased his CC score, making him more central in the DBLP coauthor

network. This publication also effected the centrality score of Researcher 2, who was

another postdoc of the team at the time. Another significant point in the figure

is point C, which corresponds to the publication of Researcher 4 as a result of his

internship in an different institute. This publication made Researcher 4 more central

since he is connected to new researchers in the DBLP coauthor network. Apart from
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those important milestones, we can see that there is a steady increase in CC scores

of the four researchers.

Summary of the experimental results

The experiments we conducted shows that Streamer can scale up and efficiently

utilize our entire experimental cluster. By taking the hierarchical composition of the

architecture into account (64 nodes, 2 processors per node, 4 cores per processor) and

not considering it as a regular distributed machine (a 512-processor MPI cluster),

we enabled processing of larger graphs and obtained 10% additional improvement.

Furthermore, the pipelined parallelism proved to be extremely necessary while using

a large amount of nodes in a concurrent fashion.

Replicating the ComputeCC filter leads to significant speedup. Yet, the bottleneck

eventually becomes the filters that cannot be replicated automatically. For filters

where the ordering of the messages is important, we can substitute an alternative

filter architecture to alleviate the bottleneck and make the whole analysis pipeline

highly parallel.

The flexibility of the filter-stream programming model allows to easily substitute

a component of the application by an alternative implementation. For instance, one

can use modern vectorization techniques to improve the performance by a significant

factor. Similarly, one could have an alternative implementation which use different

type of hardware such as accelerators.
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For the three of the graphs web-NotreDame, amazon0601 and web-Google, a ref-

erence sequential time is known from [149] for both the non-incremental and the

incremental cases. Streamer using 63 worker nodes (8 cores per node), 4 Stream-

ingMaster and 4 Aggregators and co-BFS computing filters improved the runtime of

the incremental algorithm by a factor of 805, 449 and 578 respectively on the three

graphs. Compared to a sequential non-incremental computation of the closeness cen-

trality value, Streamer improves the runtime by a factor ranging from 22471 to

45860. These numbers are reported in Table 4.3.

4.6 Related Work

To the best of our knowledge, there are only two works on maintaining centrality

in dynamic networks. Yet, both are interested in betweenness centrality. Lee et al.

proposed the QUBE framework which uses a BCD and updates the betweenness

centrality values in case of edge insertions and deletions in the network [104]. Un-

fortunately, the performance of QUBE is only reported on small graphs (less than

100K edges) with very low edge density. In other words, it only performs signifi-

cantly well on small graphs with a tree-like structure having many small biconnected

components.

Green et al. proposed a technique to update the betweenness centrality scores

rather than recomputing them from scratch upon edge insertions (can be extended

to edge deletions) [76]. The idea is to store the whole data structure used by the

previous computation. However, as the authors stated, it takes O(n2 + nm) space to
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store all the required values. Compared to their work, our algorithms are much more

practical since the memory footprint of linear.

4.7 Summary

In this chapter, we propose the first algorithms to achieve fast updates of exact

closeness centrality values on incremental network modification at such a large scale.

Our techniques exploit the spike-shaped shortest-distance distributions of these net-

works, their biconnected component decomposition, and the existence of nodes with

identical neighborhood. In large networks with more than 500K edges, the proposed

techniques bring 99 times speedup on average. For the temporal DBLP coauthorship

graph, which has the most edges, we reduced the centrality update time from 1.3

days to 4.2 minutes.

Furthermore, we parallelized our algorithms and proposed Streamer, a dis-

tributed memory framework which guarantees the correctness of the CC scores, ex-

ploits replicated and pipelined parallelism, and takes the hierarchical architecture of

modern clusters into account. Using Streamer on a 64 nodes, 8 cores/node cluster,

we reached a speedup of 497. Furthermore, the system is fully scalable as each of its

components can be made to use an arbitrary number of nodes. Also, we showed that

we can easily use alternative implementation of the BFS computations to allow the

use of novel algorithmic techniques or hardware. Using Streamer on a 64 nodes,

8 cores/node cluster, we reached almost linear speedup in the experiments and the

performance are orders of magnitude higher than the non-incremental computation.
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Maintaining the closeness centrality of large and complex graph in real-time is now

within our grasp.
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Chapter 5: Streaming k-core Decomposition

The k-core decomposition of a graph maintains, for each vertex, the max-k value:

the maximum k value for which a k-core containing the vertex exists. This decompo-

sition enables one to quickly find the k-core containing a given vertex for a given k.

Algorithms for creating k-core decomposition of a graph in time linear to the num-

ber of edges in the graph exist [22]. For applications that manage dynamic graphs,

applying such algorithms for every edge insertion and removal is prohibitive in terms

of performance. Furthermore, batch processing takes away the ability to react to

changes quickly – one of the key benefits of stream processing [172].

5.1 Introduction

In this chapter, we develop streaming algorithms for k-core decomposition of

graphs. In particular, we develop algorithms to update the decomposition as edges

are inserted into and removed from the graph (vertex additions and removals are

trivial extensions). There are a number of challenges in achieving this. The first is a

theoretical one: determining a small subset of vertices that are guaranteed to contain

all vertices that may have their max-k values changed as a result of an insertion or
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removal. The second is a practical one: finding algorithms that can efficiently update

the max-k values using this subset. Last but not the least, we have to understand

the impact of the graph structure on the performance of such streaming algorithms.

We address these challenges by developing the first incremental k-core decomposi-

tion algorithm for streaming graph data, where we efficiently process a small subgraph

for each change. We develop a number of variations of our algorithm and empirically

show that incremental processing provides a significant reduction in run-time com-

pared to non-incremental alternatives, reaching 6 orders of magnitude speedup for a

graph of size of around 16 million. We showcase the efficiency of our algorithms on

different types of real and synthetic graphs at different scales and study the impact

of graph structure on the performance of algorithm variations.

In summary, we make the following major contributions:

• We identify a small subset of vertices that have to be visited in order to update

the max-k values in the presence of edge insertions and deletions.

• We develop various algorithms to update the k-core decomposition incremen-

tally. To the best of our knowledge, these are the first such incremental algo-

rithms.

• We present a comparative experimental study that evaluates the performance

of our algorithms on real-world and synthetic data sets.

The rest of this chapter is organized as follows. Section 5.2 gives the background

on k-core decomposition of graphs. Section 5.3 introduces our theoretical findings that
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facilitate incremental k-core decomposition. Section 5.4 introduces several new algo-

rithms for incremental maintenance of a graph’s k-core decomposition. Section 5.5

provides discussions on implementation details. Section 5.6 gives a detailed experi-

mental evaluation of our algorithms. Section 5.7 reports related work, and Section 5.8

concludes the chapter.

5.2 Background

In this work, we focus on incremental maintenance of k-core decomposition of large

networks modeled as undirected and unweighted graphs. Here, we start by giving

several definitions that are used throughout the chapter as part of our theorems and

proofs.

Let G be an undirected and unweighted graph. For a vertex-induced subgraph,

which consists of some of the vertices of the original graph and all of the edges that

connect them in the original, H ⊆ G, δ[H] denotes the minimum degree of H, defined

as the minimum number of neighbors a vertex in H has (i.e., δ[H] = min{δH(u) : u ∈

H}, where δH(u) denotes the number of neighbors of a vertex u in H). As a result,

any vertex in H is adjacent to at least δ[H] other vertices in H and there is no other

value larger than δ[H] that satisfies this property.

Definition 3. If H is a connected graph with δ(H) ≥ k, we say that H is a seed k-core
of G. Additionally, if H is maximal (i.e., @H ′ s.t. H ⊂ H ′ ∧H ′ is a seed k-core of G),
then we say that H is a k-core of G.

Observation 1. Let H be a k-core that contains the vertex u. Then, H is unique in
the sense that there can be no other k-core that contains u.
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We denote the unique k-core that contains u as Hu
k .

Definition 4. The maximum k-core associated with a vertex u, denoted by Hu, is
the k-core that contains u and has the largest k = δ[Hu] (i.e., @H s.t. u ∈ H ∧
H is an l-core ∧ l > k). The maximum k-core number of u (also called the K value
of u), denoted by K(u), is defined as K(u) = δ[Hu].

Observation 2. If H is a k-core in graph G, then there exists one and only one
(k − 1)-core H ′ ⊇ H in G.

Observation 3. A vertex u with K(u) = k takes part in cores Hu
k ⊆ Hu

k−1 ⊆
Hu
k−2, . . . ,⊆ Hu

1 by Observation 2.

Building the core decomposition of a graph G is basically the same problem as

finding the set of maximum k-cores of all vertices in G. The following corollary shows

that given the K values of all vertices, k-core of any vertex can be found for any k.

Algorithm 11: findKCoreDecomposition(G(V,E))

Data: G: the graph
1 Compute δG(v) (i.e., the degree) for all vertices v ∈ V
2 Order the set of vertices v ∈ V in increasing order of δG(v)
3 for each v ∈ V do
4 K(v)← δG(v)
5 for each (v, w) ∈ E do
6 if δG(w) > δG(v) then
7 δG(w)← δG(w)− 1

8 Reorder the rest of V accordingly

9 return K

Corollary 5. Given K(v) for all vertices v ∈ G and assuming K(u) ≥ k, the k-core
of a vertex u, denoted by Hu

k , consists of u as well as any vertex w that has K(w) ≥ k
and is reachable from u via a path P such that ∀v∈P , K(v) ≥ k. Hu

k can be found by
traversing G starting at u and including each traversed vertex w to Hu

k if K(w) ≥ k.
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Figure 5.1: Illustration of k-core concepts.

Intuitively, in Corollary 5, all the traversed vertices are in Hu
k due to maximality

property of k-cores, and all the vertices in Hu
k are traversed due to the connectivity

property of k-cores, both based on Definition 3.

Thus, the problem of maintaining the k-core decomposition of a graph is equiv-

alent to the problem of maintaining its K values, by Corollary 5. The algorithm

for constructing the k-core decomposition of a graph from scratch is based on the

following property [161]: To find the k-cores of a graph, all vertices of degree less

than k and their adjacent edges are recursively deleted. We provide its pseudo-code

in Algorithm 11 for completeness.

Figure 5.1 illustrates concepts related to k-core decomposition. In the sample

graph, we see the K values of the vertices printed next to them, which is simply the

k-core decomposition of the graph. We see a vertex labeled u. A seed 2-core that
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contains u is also shown. Moreover, the entire graph is the 2-core of u, i.e., G = Hu
2 .

The figure further shows a 3-core of u, that is Hu
3 , which happens to be its max-k

core, that is Hu
3 = Hu. Note that Hu

3 ⊆ Hu
2 .

5.3 Theoretical Findings

In this section, we introduce our theoretical findings. These results facilitate incre-

mental maintenance of the k-core decomposition of a graph. Since our incremental

algorithms rely on finding a subgraph and processing it, we prove a number of theo-

rems that can be used to find a small subgraph that is guaranteed to contain all the

vertices whose K values change after an update.

Observation 4. Let G = (V,E) be a graph and u, v ∈ V . If there is an edge e ∈ E
between u and v and if K(u) > K(v), then e 6∈ Hu and e ∈ Hv, by Corollary 5.

Theorem 4. If an edge is inserted to or removed from graph G = (V,E), then the
K value of vertex u ∈ V can change by at most 1.

Proof. We first prove the insertion case. Assume that after the insertion of edge e,
K(u) = m is increased by n to K+(u) = m + n, where n > 1. Let us denote the
max k-core of u after the insertion as Hu

+, and before insertion as Hu. It must be
true that e ∈ Hu

+, as otherwise Hu
+ forms a seed m + n-core before the insertion as

well, which is a contradiction. Let Z = Hu
+ \ e. If Z is not disconnected, then it must

form an m+n− 1-core, since the degree of its vertices can decrease by at most 1 due
to removal of a single edge. This leads to a contradiction since m + n − 1 > m and
Hu is maximal. In the disconnection case, each one of the resulting two connected
components must be a seed m + n − 1-core as well, since the degree of a vertex
can reduce by at most one in each component. Furthermore, since e is the only
edge between the two disconnected components, the vertices must still have at least
m+ n− 1 neighbors in their respective components. One of these components must
contain u, which is again contradiction

Next, we prove the removal case. Assume K(u) is decreased by n after edge e is
removed, where n > 1. Adding e back to the graph increases the K value of u by n,
which is not possible, as shown in the first part of the proof (i.e., a contradiction).
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Theorem 5. If an edge (u, v) is inserted to or removed from G = (V,E), where
u, v ∈ V and K(u) < K(v), then K(v) cannot change.

Proof. We first prove the insertion case. Assume that K(v) = n increases and so
becomes K+(v) = n+ 1 by Theorem 4. Then we have e ∈ Hv

+ and consequently u ∈
Hv

+. However, K(u) < n before insertion and K+(u) can be at most n after insertion
(Theorem 4), implying that u cannot be in a seed n+ 1-core, i.e., a contradiction.

For the removal case, assume that K(v) = n decreases and becomes K−(v) = n−1
by Theorem 4. Inserting (u, v) back to the graph should increase the K value of v to
K(v) = n. We must also have e ∈ Hv and thus u ∈ Hv. But this is a contradiction
due to Observation 4, since K(u) < K(v) and u 6∈ Hv.

From Theorem 5, we can say that when an edge (u, v) is inserted into or removed

from the graph, K(u) can change by at most 1 if K(u) ≤ K(v), or stay the same

otherwise.

Theorem 6. If an edge (u, v) is inserted into G = (V,E), where u, v ∈ V , then
all of the vertices whose K values have changed should form a connected subgraph
G

′ ⊂ G ∪ (u, v). Similarly, if an edge (u, v) is removed from G = (V,E), where
u, v ∈ V , then all the vertices whose K values have changed should form a connected
subgraph G

′′ ⊂ G.

Proof. We prove the insertion case first. Assume that the updated vertices do not
form a connected subgraph. Then, there are at least 2 non-overlapping subgraphs
of updated vertices, S1 and S2. Since there is only one edge insertion, only one of
these subgraphs, say S1, can have a vertex who gets a new neighbor in G. Then
S2 does not have any vertex that has its degree changed. This is a contradiction,
because if a vertex has its K value increased, then it must have either gained a new
neighbor (increased degree) or at least one of its existing neighbors must have its K
value increased. Applying this recursively, we must reach a vertex whose K value is
increased due to gaining a new neighbor. However, for S2, there is no such vertex
since only reachable vertices whose K values have increased are in S2 and none of
them have their degrees changed.

For the removal case, assume that the updated vertices do not form a connected
subgraph. Then, there are at least 2 non-overlapping subgraphs of updated vertices,
S1 and S2. Since there is only one edge removal, only one of these subgraphs, say
S1, can have a vertex who loses a neighbor in G. Then S2 does not have any vertex
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that has its degree changed. This is a contradiction, because if a vertex has its K
value decreased, then it must have either lost a neighbor (decreased degree) or at
least one of its existing neighbors must have its K value decreased. Applying this
recursively, we must reach a vertex whose K value is decreased due to losing an
existing neighbor. However, for S2, there is no such vertex since only vertices that
can be reached and whose K value has decreased are in S2 and none of them have
their degrees changed.

Theorem 7. Given a graph G = (V,E), if an edge (u, v) is inserted (removed)
and K(u) ≤ K(v), then only the vertices w ∈ V , that have K(w) = K(u) and are
reachable from u via a path that consists of vertices with K values equal to K(u),
may have their K values incremented (decremented).

Proof. Before looking at the insertion and removal, we note that if the K value of any
vertex in G increases (decreases) due to the insertion (removal) of (u, v), then K(u)
must have increased (decreased) as well. This follows from the recursive argument in
Theorem 6, as otherwise none of the vertices that have their K values changed will
have their degree changed.

For the insertion case, we first prove that for a vertex w ∈ V such that K(w) 6=
K(u), K(w) = m cannot change. We consider two cases: (i) where K(w) < K(u)
and (ii) where K(w) > K(u).

For the K(w) > K(u) case, assume K(w) increases (K+(w) = m + 1). We must
have (u, v) ∈ Hw

+ , as otherwise Hw would not be a max m-core before insertion.
However, this is not possible since K+(w) > K+(u), i.e., a contradiction.

For the K(w) < K(u) case, assume K(w) increases (K+(w) = m + 1). Then
we have (u, v) ∈ Hw

+ , as otherwise Hw would not be a max m-core before insertion.
We know that m + 1 ≤ K(u) ≤ K(v), which implies K+(w) < K+(u) ≤ K+(v).
Removing (u, v) from Hw

+ decreases the degrees of u and v by one, which can reduce
their K value to at least m + 1. This means Hw

+ \ (u, v) is a seed m + 1-core before
the insertion, which is a contradiction.

We proved that only vertices with K(w) = K(u), say L ⊆ V , can have their K
values incremented. Furthermore, we know that all those vertices form a connected
subgraph (Theorem 6). Since we have u ∈ L as well, the insertion proof is complete.

We use similar arguments for the removal case. Again, we consider two cases.
For the K(w) < K(u) case, assume K(w) decreases (K−(w) = m − 1). Say that

we insert (u, v) back into the graph. The K value of w cannot increase in this case
since K−(w) < K−(u), and this is a contradiction, as shown in insertion part above.
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For the K(w) > K(u) case, assume K(w) decreases (K−(w) = m− 1). We know
that (u, v) /∈ Hw since u /∈ Hw due to K(u) < K(w). Thus, Hw is still an m-core
after the removal, creating a contradiction.

We proved that only the vertices that have K(w) = K(u), say L ⊆ V , may
have their K values decremented. Furthermore, by Theorem 6, we know that all
those vertices form a connected subgraph. Since we have u ∈ L, the removal proof is
complete.

Summary In this Section, we showed that if an edge (u, v) is inserted into/removed

from a graph, then the K value of u can change only if K(u) ≤ K(v). Let us call u

the root. In case K(u) = K(v), then either u or v is taken as the root. In addition,

we showed that any vertex that may have its K value updated must have a K value

that is equal to that of the root, and must be connected to the root via a path that

contains only the vertices that have the same K value. We rely on these results in

the next section.

5.4 Incremental Algorithms

In this section, we introduce four algorithms to incrementally maintain the K values

of vertices when a single edge is inserted or removed. The subcore (Section 5.4.1)

and purecore (Section 5.4.2) algorithms are basic applications of the theoretical results

given in the previous section, are easy to implement, and form a baseline for evaluating

the performance of the traversal algorithm (Section 5.4.3). The traversal algorithm

relies on additional ideas that aggressively cut the search space, but is more involved

than the earlier two. For edge insertion case, we also introduce the generic multihop
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traversal algorithm (Section 5.4.4) which generalizes the traversal algorithm to utilize

multihop information residing on vertices.

5.4.1 The Subcore Algorithm

Our first algorithm for maintaining the K values of vertices when a single edge is

inserted or removed is based on Theorem 7. We define a new subgraph as follows:

Definition 5. Given a graph G = (V,E) and a vertex u ∈ V , the subcore of u, also
denoted as Su, is a set of vertices w ∈ V that have K(w) = K(u) and are reachable
from u via a path that consists of vertices with their K values equal to K(u).

Given a graph G = (V,E) and the K values of all w ∈ V , if an edge (u1, u2) is

inserted to E, Algorithm 13 updates the K values. Similarly, if an edge (u1, u2) is

removed from E, Algorithm 14 updates the K values. Both algorithms make use of

Definition 5.

The basic idea is to locate the subcore of the root vertex and apply a process very

similar to Algorithm 11 on the subcore. Algorithm 12 provides the pseudo code for

finding the subcore. To find the subcore, we perform a BFS traversal and collect all

vertices reachable from the root through vertices having the same K value as the root.

During this process, we also collect the core degree (cd) values for each vertex in the

subcore. The core degree of a vertex is its degree in its max-core and determines if a

vertex can change its K value or not. As a result, the cd of a vertex simply counts

the number of its neighbors with a K value equal to or greater than the K value

of the root. Core degrees help us eliminate vertices that cannot be part of a k + 1

core, where k is the core value of the root. In particular, if the core degree is not
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Algorithm 12: findSubcore(G(V,E), K(), u)

Data: G: the graph, K: max-k values, u: the vertex
1 H(V ′, E′)← empty graph; Q← empty queue
2 cd[v] = 0; visited[v] = false,∀v ∈ V . Lazy init
3 k ← K(u) . Remember K value of the root
4 Q.push(u); visited[u]← true
5 while not Q.empty() do
6 v ← Q.pop(); V ′.push(v)
7 for each (v, w) ∈ E do
8 if K(w) ≥ k then
9 cd[v]← cd[v] + 1

10 if K(w) = k and not visited[w] then
11 Q.push(w); E′.push((v, w))
12 visited[w]← true

13 return H and cd

larger than k, we can eliminate the vertex from consideration. Once it is eliminated,

it results in decrementing the core degree values of its neighbors in the subcore and

the process can be repeated. Similar to Algorithm 11, this has to be performed in

increasing order of the core degree values.

Algorithm 13 shows how the subcore and the cd values are used to update the K

values on an edge insertion. We order the cd values of the vertices in the subcore in

increasing order. At each step, we pick the unprocessed vertex with the smallest cd

value from the subcore. If it has a cd value less than or equal to the root’s K value,

say k, then it cannot be part of a k + 1-core. Thus, for each of its neighbors in the

subcore that have a higher cd, we decrement the neighbor’s cd by 1, since the vertex

being processed cannot be part of a higher core. We reorder the remaining vertices
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Algorithm 13: SUBCORE: insertEdge(G(V,E), K(), u1, u2)

Data: G: the graph, K: max-k values, (u1, u2): inserted edge
1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2

3

4 G← G ∪ (u1, u2) . Add the edge into G
5 H, cd← findSubcore(G,K, r) . Find subcore
. Now update the K values of the vertices in H

6 k ← K(r) . Remember K value of the root
7 Sort cd values in increasing order (using bucket sort)
8 for each v ∈ H in order do
9 if cd[v] ≤ k then . Cannot be part of a k+1-core

10 for each (v, w) ∈ H do
11 if cd[w] > cd[v] then
12 cd[w]← cd[w]− 1
13 Reorder cd values accordingly

14 else . All remaining vertices become part of k+1-core
15 for each w ∈ H do
16 K(w)← k + 1

17 break

based on their updated cd values. Otherwise, that is if the current vertex has a cd

value larger than k, all remaining vertices must also have their cd values larger than

k, which means we can form a seed k + 1 core with them. We increment their K

values, completing the insertion.

Algorithm 14 shows how the subcore and the cd values are used to update the

K values in the case of a removal. Unlike Algorithm 13, here we need to perform

two subcore searches when the K values of the vertices incident upon the removed

edge are the same, since the removal separates them. Once we locate the subcore,

the process is very similar to that of the insertion. We pick the unprocessed vertex
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with the smallest cd value from the subcore and if it has a cd value less than the K

value of the root, say k, then it cannot be part of a k-core anymore. As a result, we

decrement its K value and for each of its neighbors in the subcore that have a higher

cd, we decrement the neighbor’s cd by one, since the vertex currently being processed

cannot be part of a higher core. After this, we reorder the remaining vertices based

on their cd values. Otherwise, if the current vertex has a cd value larger than or

equal to k, then all remaining vertices must also have their cd values larger than or

equal to k, which means that we can still form a seed k core with them. Thus, we

stop processing and complete the removal.

5.4.2 The Purecore Algorithm

In Section 5.4.1, the subcore algorithm relied only on the K values of the vertices to

locate a small subgraph that contains all the vertices that can have their K values

changed. In this section, we look at the purecore algorithm that takes advantage of

additional information about each vertex, so that a smaller set of candidate vertices

can be located, reducing the overall cost of the algorithm. For this purpose, we define

the maximum-core degree of a vertex.

Definition 6. The maximum-core degree of a vertex u, denoted as MCD(u), is
defined as the number of u’s neighbors, w, such that K(u) ≤ K(w).

The maximum-core degree of a vertex differs from the core degree of a vertex by

the fact that it is not defined in terms of the root vertex of an insertion. If the MCD

value of a vertex is not greater than its K value, and no new adjacent edge is inserted,
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Algorithm 14: SUBCORE:removeEdge(G(V,E), K(), u1, u2)

Data: G: the graph, K: max-k values, (u1, u2): inserted edge
1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2

3

4 G← G \ (u1, u2) . Remove the edge from G
5 if K(u1) 6= K(u2) then
6 H, cd← findSubcore(G,K, r) . Find subcore

7 else
8 H1, cd1 ← findSubcore(G,K, u1) . Find subcore of u1

9 H2, cd2 ← findSubcore(G,K, u2) . Find subcore of u2

10 H ← H1 ∪H2; cd← cd1 ∪ cd2

. Now update the K values of the vertices in H
11 k ← K(r) . Remember K value of the root
12 Sort cd values in increasing order (using bucket sort)
13 for each v ∈ H in order do
14 if cd[v] < k then . Cannot be part of a k-core anymore
15 K(v)← k − 1
16 for each (w, v) ∈ H do
17 if cd[w] > cd[v] then
18 cd[w]← cd[w]− 1
19 Reorder cd values accordingly

20 else break . All remaining vertices still in a k-core
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then there is no way for this vertex to increment its K value, because the number of

neighbor vertices in a higher core will not be enough. Therefore, it is used to test

whether a vertex can increment its K value or not, upon a new edge insertion.

Observation 5. For a given graph G = (V,E) and a vertex u ∈ V , MCD(u) ≥ K(u).

The observation follows simply from the definition of k-core, since MCD(u) <

K(u) would mean u cannot participate in a k-core with K(u) = k, leading to a

contradiction. Note that MCD(u) is simply an upper bound on K(u).

We reduce the subcore, described in Definition 5, to a purecore by putting an extra

condition regarding MCD values. The basic idea is that, if a vertex in the subcore

does not have a MCD value greater than the K value of the root, it means that the

vertex does not have enough neighbors that can participate in a higher core.

Definition 7. Given a graph G = (V,E) and a vertex u ∈ V , the purecore of u,
denoted as Pu, is the set of vertices w ∈ V that have K(w) = K(u) and MCD(w) >
K(u), and are reachable from u via a path that consists of vertices with K values
equal to K(u) and MCD values greater than K(u).

Algorithm 15 finds the purecore Pu of a vertex u.

Theorem 8. Given a graph G = (V,E), if an edge (u, v) is inserted and K(u) ≤
K(v), then only the vertices w ∈ Pu may have their K values incremented.

Proof. When an edge (u, v) is inserted to the graph and K(u) ≤ K(v), then the K
value of a vertex w ∈ Su, where w 6= u, cannot increment if MCD(w) = K(w).
Assume K(w) increments, then MCD(w) has to increment as well, and for this to
happen either w should get a new neighbor, which is not possible since w 6= u, or
some of its neighbors should have their K values decreased, which is not possible as
no edges were removed.
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Algorithm 15: findPurecore(G(V,E), K(), u)

Data: G: the graph, K: max-k values, u: the vertex
1 H(V ′, E′)← empty graph; Q← empty queue
2 cd[v] = 0; visited[v] = false, ∀v ∈ V . Lazy init
3 k ← K(u) . Remember K value of the root
4 Q.push(u); visited[u]← true
5 while not Q.empty() do
6 v ← Q.pop(); V ′.push(v)
7 for each (v, w) ∈ E do
8 if K(w) > k or (K(w) = k and
9 MCDegree(G,K,w)> k) then

10 cd[v]← cd[v] + 1
11 if K(w) = k and not visited[w] then
12 Q.push(w); E′.push((v, w));
13 visited[w]← true

14 return H and cd

With purecore, the algorithm to update the K values of vertices, when edge (u, v)

is inserted, is the same as Algorithm 13, except that Algorithm 15 (findPurecore)

is used in place of Algorithm 12 (findSubcore).

When an edge (u, v) is removed from the graph and K(u) ≤ K(v), then the K

value of any vertex w ∈ Su can potentially decrement. Note that MCD(w) can

decrease if either w loses a neighbor, which is the case for u, or K value of some

neighbor of w decrements, which is the case for neighbors of u when K(u) decrements.

As a result, for removal, we do not rely on the purecore.

166



5.4.3 The Traversal Algorithm

We now present the traversal algorithm that visits an even smaller subgraph to up-

date the k-value decompostion. First, we introduce an optimization to speedup the

computation of the MCD values and then an additional metric to further scope the

search.

Residential Core Degrees

In Section 5.4.2, we find a smaller set of candidate vertices to be updated by using

more information about each vertex. Using more information, such as the MCD

values, requires more computation in Algorithm 15. Thus, for a vertex u, when the

size of Pu is large and close to the size of Su, Algorithm 15 turns out to be more

expensive than Algorithm 12. To alleviate this problem, we make two types of core

degree values to constantly reside in memory (i.e., residential). We maintain the

MCD values, introduced in Definition 6, and the PCD values of vertices defined as

follows.

Definition 8. The purecore degree of a vertex u, denoted as PCD(u), is the number
of u’s neighbors, w, such that either K(u) = K(w) and MCD(w) > K(u) or
K(u) < K(w).

For a vertex v, its purecore degree PCD(v) is the number of neighbors w it has

that either has a higher K value than v or has the same K value but in turn has

enough neighbors to potentially increase its K value (in case an insertion was made

and the K values are to be updated). The PCD value of a vertex represents its

potential number of neighbors in a next max-core. It is a stronger indicator than its
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MCD value for showing eligibility to increase the K value and also useful, because

if PCD(v) ≤ k where k is the K value of the root, then v cannot increment its K

value.

Maintaining the MCD and PCD values of vertices after each insertion and re-

moval should be done efficiently so that unnecessary updates of those values are

avoided. In general, the MCD value of a vertex is based on the K values of its neigh-

bors, as seen from Definition 6, and the PCD value of a vertex is based on the K

and MCD values of its neighbors, as described in Definition 6. Observation 6 gives

a rule of thumb for MCD and PCD maintenance.

Observation 6. For a graph G = (V,E), when the K value of a vertex u ∈ V
changes, the MCD values of vertices u, v can change, where (u, v) ∈ E. When the
MCD value of a vertex u ∈ V changes, the PCD values of vertices v can change,
where (u, v) ∈ E. As a result, when the K value of a vertex u ∈ V changes, the PCD
values of vertices u, v, w can change, where (u, v), (v, w) ∈ E.

In summary, the observation says that a K value update can result in changes in

the MCD values within the 1-hop neighborhood of the vertex, whereas changes in

the PCD values can happen within the 2-hop neighborhood.

Based on Observation 6, when an edge (u, v) is inserted into or removed from a

graph G = (V,E), we first recompute the MCD value of the root vertex u and the

PCD values of its neighbors. Next, we apply the algorithm to update the K values

of vertices. Last, we do the following two operations to adjust the MCD and PCD

values:
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• Recomputing the MCD values of vertices w, x ∈ V for which K(w) is updated

and (w, x) ∈ E.

• Recomputing the PCD values of vertices w, x, y ∈ V for which K(w) is updated

and (w, x), (x, y) ∈ E

Further shortcuts are possible, based on the K and MCD values of the updated

vertices, to minimize the number of MCD and PCD re-computations. We defer the

details to “Generic RCD Maintenance” Section.

Root Aware Edge Insertion

So far, in all our incremental algorithms, we first find a subgraph and its corresponding

cd values by a BFS traversal (phase 1). In a second phase, we process that subgraph

by reordering the vertices with respect to their cd values and remove the vertex with

the minimum cd at each step. Traversing the subgraph and computing the cd values

should be done prior to the second phase, since we need all the vertex degrees in the

subgraph. However, Theorem 7 says that if the K value of some vertex changes, then

the K value of at least one extremity of the inserted/removed edge, named as the

root vertex (say u), must change. For the insertion algorithm, this fact suggests a

root-aware approach, in which all vertices know whether the root still has a chance

to change its K value. Additional operations are avoided once the algorithm detects

that PCD(u) ≤ K(u), i.e., u cannot increment its K value. This condition implies

that there is no chance for the root to increase its K value.
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Algorithm 16: TRAVERSAL: insertEdge(G(V,E), K(), u1, u2)

Data: G: the graph, K: max-k values, MCD: max-core degrees, PCD: purecore
degrees, (u1,u2): inserted edge

1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2

3

4 G← G ∪ (u1, u2) . Add the edge into G
5 prepareRCDs
. Perform a traversal over vertices that have root’s K value, while evicting the ones

that cannot be a part of a k+1-core
6 S ← empty stack . To perform DFS
7 visited[v] = false,∀v ∈ V . To perform DFS (lazy init)
8 evicted[v] = false,∀v ∈ V . To remember evicted vert. (lazy init)
9 cd[v] = 0, ∀v ∈ V . To find vertices to be evicted (lazy init)

10 k ← K(r) . Remember the K value of the root
11 cd[r]← PCD(r) . Set cd of root
12 S.push(r); visited[r]← true
13 while not S.empty() do . Do a DFS traversal
14 v ← S.pop()
15 if cd[v] > k then . Vertex is currently part of a k+1-core
16 for each (v, w) ∈ E do

. Neighbouring vertex currently part of a k+1-core
17 if K(w) = k and MCD(w) > k and
18 not visited[w] then
19 S.push(w); visited[w]← true

. Use + as cd[w] may be < 0 due to evictions
20 cd[w]← cd[w] + PCD(w)

21 else . Vertex cannot be part of a k+1-core
22 if not evicted[v] then . Recursively perform eviction
23 propagateEviction(G,K, cd, evicted, k, v)

24 for each v s.t. visited[v] do . Find visited vertices
25 if not evicted[v] then . If not evicted as well
26 K(v)← K(v) + 1 . The vertex is part of a k+1-core

27 recomputeRCDs
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Algorithm 17: propagateEviction(G(V,E), K(), cd[], evicted[], k, v)

Data: G: the graph, K: max-k values, cd: cd values, evicted: evicted values, k:
max-k of root, v: evicted vertex

1 evicted[v]← true
2 for each (v, w) ∈ E do
3 if K(w) = k then
4 cd[w]← cd[w]− 1
5 if cd[w] = k and not evicted[w] then
6 propagateEviction(G,K, cd, evicted, k, v)

We realize this root-aware approach by applying a Depth-First Search (DFS) with

an eviction mechanism, where the vertices v ∈ V are evicted if PCD(v) ≤ K(v). By

doing that, we combine phases 1 and 2.

The root-aware insertion procedure does not need the cd values of all the vertices

in the subgraph. As a result, we create the cd values for each vertex on-the-fly during

DFS, avoiding the first phase of our previous algorithms completely. We leverage the

residential core degrees, introduced in Section 5.4.3, to speed up the creation of cd

values. On-the-fly creation of cd values makes the insertion algorithm more efficient.

Algorithm 16 updates the K values of vertices by utilizing Algorithm 17, when

edge (u, v) is inserted into the graph G = (V,E). We start with preparing residential

core degrees as explained in Section 5.4.3. Then we do a DFS starting from the root,

say r, and at each step we pop the vertex v from the top of the stack and push some

of its neighbors, say w, into the stack, if v and w are candidates to be in a k+ 1-core,

where k = K(r). If v cannot be in a k+1-core, then we mark it as evicted and initiate

a recursive eviction from v. In a recursive eviction, the cd values of vertices x are

171



decremented, for (v, x) ∈ E and K(x) = k. If the cd value of x turns out to be equal

to k and x is not already marked as evicted, then we start another eviction from x.

When DFS finishes, we increment the K values of all vertices that were visited but

not evicted. Last, we adjust the residential core degrees as discussed in Section 5.4.3.

Theorem 9. Algorithm 16 finds the vertices whose K values needs to be updated.

Proof. First, we prove that after an edge is inserted, if PCD(u) ≤ K(u) for a vertex
u ∈ V , then it cannot increase its K value as shown in lines labeled 15 and 5 in
Algorithms 16 and 17, respectively. Assume it does and say that k = K(u). Then,
after K(u) increases, u must have at least k + 1 neighbors with greater or equal K
value, by Observation 5. However, at most k neighbors of u can have their K values
greater than or equal to k after K(u) increases, since PCD(u) ≤ K(u) before K(u)
is increased, i.e., a contradiction.

Second, we prove that if PCD(u) ≤ K(u), where u is the visited vertex, then
PCD(w) must be decremented as shown in line labeled 4 in Algorithm 17, where w is
a neighbor of u having K value of K(u). Assume that PCD(w) is not decremented.
Then u is supposed to be in the max-core of w, if w increases its K value. However,
u cannot be in the max-core of w, since it cannot increase its K value as proved in
the first paragraph of proof, contradiction.

We traverse the graph starting from the root and evict the vertices as shown in
above proofs. Non-evicted and traversed vertices increment their K values at the end
of the algorithm.

Edge Removal

Edge removal using the traversal algorithm employs a similar on-the-fly updating

of the cd values. A key difference from the edge insertion algorithm is that, the

edge removal relies on a simple recursion on the vertices whose K values should be

decremented.

The traversal algorithm for edge removal is presented in Algorithm 18. We start

with preparing residential core degrees as explained in Section 5.4.3. Depending on
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the equality of K values of the edge extremities, i.e., u1 and u2, we apply one or

two recursive propagation operations to correctly calculate the K values. In the

propagation operation, if the cd value of v turns out to be below its K value (i.e.,

K needs to be decremented), we perform a recursive dismissal operation starting

from v, which is given in Algorithm 19. In the recursive dismissal operation, we

decrement K(v) and the cd values of vertices w, where (v, w) ∈ E, K(w) = k, and

k is the K value of the root. If w gets a smaller cd value than k and K(w) has not

decremented yet, then we start another recursive dismissal, but this time from w.

When the recursion completes, we adjust the residential core degrees as discussed in

Section 5.4.3.

5.4.4 Generic Multihop Traversal Algorithm for Insertion

The traversal algorithm that handles edge insertions, presented in Section 5.4.3,

makes use of the MCD and PCD values of the vertices. MCD value of a vertex

contains information from the 1-hop neighborhood, whereas PCD value contains

information from the 2-hop neighborhood. However, the traversal algorithm can be

generalized to utilize multihop information (greater than 2-hops). Higher hop counts

enable faster detection of vertices that cannot appear in a larger core, yet increase the

time spent to maintain the residential core degrees. As such, it involves a trade-off.

Yet, in order to investigate this trade-off, we need to support using information from

arbitrary number of hops. Accordingly, in this section, we present the generic traversal
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Algorithm 18: TRAVERSAL: removeEdge(G(V,E), K(), u1, u2)

Data: G: the graph, K: max-k values, MCD: max-core degrees, PCD: purecore
degrees, (u1,u2): removed edge

1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2

3

4 G← G \ (u1, u2) . Remove the edge from G
5 Prepare RCDs
. Perform a DFS traversal over vertices that have root’s K value, while dismissing

the ones that cannot be a part of a k-1-core
6 visited[v] = false,∀v ∈ V . To perform DFS (lazy init)
7 dismissed[v] = false, ∀v ∈ V . To remember dis. vertices (lazy init)
8 cd[v] = 0, ∀v ∈ V . To find vertices to be dismissed (lazy init)
9 k ← K(r) . Remember the K value of the root

10 if K(u1) 6= K(u2) then
11 visited[r]← true
12 cd[r]←MCD(r)
13 if cd[r] < k then
14 propagateDismissal(G,K,MCD, cd, dismissed,
15 visited, k, r)

16 else
17 visited[u1]← true
18 cd[u1]←MCD(u1)
19 if cd[u1] < k then
20 propagateDismissal(G,K,MCD, cd, dismissed,
21 visited, k, u1)

22 visited[u2]← true
23 cd[u2]←MCD(u2)
24 if not dismissed[u2] and cd[u2] < k then
25 propagateDismissal(G,K,MCD, cd, dismissed,
26 visited, k, u2)

27 Recompute RCDs

algorithm for edge insertion, which leverages the multihop residential information of

vertices for faster calculation of K values.

First, we present the generic definition for n-hop residential core degrees.
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Algorithm 19: propagateDismissal(G(V,E), K(),MCD(), cd, dismissed, visited, k, v)

Data: G: the graph, K: max-k values, MCD: max core degrees, cd: cd values,
dismissed: dismissed values, visited: visited values, k: max-k of root, v:
dismissed vertex

1 dismissed[v]← true
2 K(v)← K(v)− 1 . The vertex is part of a k-1-core
3 for each (v, w) ∈ E do
4 if K(w) = k then
5 if not visited[w] then
6 cd[w]← cd[w] +MCD(w)
7 visited[v]← true

8 cd[w]← cd[w]− 1
9 if cd[w] < k and not dismissed[w] then

10 propagateDismissal(G,K,MCD, cd, dismissed, visited, k, w)

Definition 9. The n-core degree of a vertex u, denoted as RCD(u, n) where n ≥ 0,
is defined in terms of the number of u’s neighbors, w, such that either K(u) = K(w)
and RCD(w, n− 1) > K(u) or K(u) < K(w). When n = 0, RCD(., n) of a vertex
is defined to be ∞.

For a vertex v, its n-core degree is defined recursively. It is simply the number of

neighbors w it has with either higher K value than v’s K value or has equal K value

and higher (n− 1)-core degree than v’s K value. With higher values of n, RCD(., n)

value of a vertex becomes a stronger indicator of eligibility to increase its K value.

Value of n implies the extent of neighborhood information being used. For n = 1,

only the information on 1-hop neighbors are used, and for n = 2, the information on

hop-1 and hop-2 neighbors are utilized. Note that, when n = 1, RCD(., n) definition

reduces to MCD (maximum-core degree), given in Definition 6. Also, when n = 2,

it has the same definition as the PCD (pure-core degree), given in Definition 8.
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Figure 5.2: Illustration of RCD values of the vertices in the sample graph

Figure 5.2 shows an example graph to illustrate the RCD(u, n) definition. K,

RCD(., 1) (MCD), RCD(., 2) (PCD) and RCD(., 3) values of vertices are shown

next to them. For example, the RCD(., 3) value of the black vertex is computed as

follows: there are 3 neighbors (vertices 2, 3, and 4) with a K value of 5, which is

greater than the K value of black vertex. The RCD(., 3) value is then incremented

by 3. Vertices 1, 7, and 8 have smaller K values than the black vertex, thus they do

are not counted. The K value of vertices 5 and 6 are equal to the K value of the

black vertex, and therefore we check if their RCD(., 2) values are greater than their

K values. However, it is not the case, since RCD(., 2) value of both vertices is 3 and

the K value of both vertices is 4. As a result, RCD(., 3) value of black vertex is set

to 3.
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The generalized traversal algorithm for insertion, which utilizes the multihop in-

formation based on a given hop distance n (where n > 1), is given in Algorithm 20.

The main difference in the multihop traversal algorithm is that, we use RCD(., n) val-

ues instead of PCD values and RCD(., n−1) values in place of MCD values. Notice

that we use the same propagateEviction procedure (Algorithm 17) in the multi-

hop traversal algorithm as well. Differences between Algorithm 16 and Algorithm 20

are highlighted on lines 6, 13, 20, 24, and 34.

Lines 6 and 34 together represent the generalized version of RCD maintenance

for multihop residential core degrees, and will be explained in detail in “Generic

RCD Maintenance” Section. In Lines 13, 20, and 24, RCD values of hop n are used

to reduce the traversal space. As stated earlier, RCDs with increasing hop values

become stronger indicators of whether the K value of a vertex will increase or not.

We expect that the traversal algorithm will explore a smaller space with higher n

values. However, higher n values come with increasing RCD maintenance costs. We

experimentally evaluated our multihop traversal algorithm with different n values to

find the optimal hop value. As we will discuss later in Section 5.6.5, the optimal value

changes based on the dataset.

Generic RCD Maintenance

As stated earlier in Section 5.4.3, maintaining RCD values is a non-trivial oper-

ation. Yet it is critical in reducing the scopes of the traversals, potentially bringing

down the cost of edge modifications. Overall, efficient mechanisms for maintaining
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RCD values is needed. Here, we introduce the generic versions of the RCD mainte-

nance algorithms, which update the RCD values of vertices up to the given hop count

n. In other words, given the number of hops, n, the proposed algorithms maintain

the RCD values for n, n− 1, · · · , and 1.

multihopPrepareRCDsInsertion method given in Algorithm 21 is used in

Line 6 of the multihop traversal based edge insertion algorithm given in Algorithm 20.

It prepares the RCD values before the multihop traversal operation for the given

inserted edge, (u1, u2), and hop distance, n. This preparation is needed as the

RCD values of the root(s) may have changed due to the updated degrees and this

change may have propagated to RCD values of other vertices. The preparation

phase is performed assuming that the K values are intact. Those will be updated

during the traversal, and a re-computation of RCDs would be required at the end

(multihopRecomputeRCDs procedure).

The preparation starts with determining the root vertices based on their K values.

If the K values of the extremities of the inserted edge are not equal, we increment

the RCD(r, h) value of root for all h ≤ n. The rationale behind this is that, the root

vertex gains a new neighbor with a higher K value and by Definition 9 it increases

all RCD values of root by one. Following this increment operation, we check if the

RCD(r, h) has exceeded k, because this implies further changes in RCD(., h + 1)

values of r’s neighbor vertices (by Definition 9). In the preparation phase, RCD(., n)

of a vertex only changes when RCD(., n−1) of a neighbor changes and that is what we
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are checking for. Remember that RCD(u, n) is the number of u’s neighbors, w, where

either K(u) < K(w) or K(u) = K(w) and RCD(w, n− 1) > K(u). Throughout the

algorithm, we accumulate the vertices whose RCD(., h) values just exceed k in the

next frontiers set, where h is the hop number. We avoid this accumulation operation

if the last hop number h is being processed, since there is no need for further processing

in that case. When the hop number h is greater than 1, we process the neighbors

(with the same K value) of the vertices in the current frontiers set by incrementing

their RCD(., h) values. We also perform checks to see if k is exceeded and accordingly

populate the next frontiers set.

If the K values of the extremities of the inserted edge are equal, we do different

operations for h = 1 and h > 1, where h is the current hop number. For h = 1, where

RCD(u, 1) is actually equal to MCD(u), we just increment the RCD(., 1) values of

both extremities of the inserted edge (by Definition 9) and perform checks to see if

k is exceeded and accordingly populate the next frontiers set. If h > 1, we need to

handle the new inserted edge separately. Let us say u1 and u2 are the extremities of

the inserted edge. We first check if the RCD(u1, h− 1) (and dually RCD(u2, h− 1))

is greater than k. If so, we increment the RCD(u2, h) (and dually RCD(u1, h)) and

perform the k value checks to populate the next frontier as needed. After that, we

process the neighbors (with the same K value) of the vertices in current frontiers

set. One important difference in this step is that we exclude the edge between u1 and

u2, because that edge is already handled.
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Multihop algorithms are only applicable for the edge insertion operation. For

removal, using 1-hop information (MCD values) is necessary and sufficient. There-

fore, going for multihop information does not bring any additional benefit in terms

of the running time. However, given that we are interested in sliding window sce-

narios, where removals happen together with insertions, we need to accommodate

the maintenance of RCD values when there is an edge removal. For this purpose,

we develop the multihopPrepareRCDsRemoval method. Algorithm 22 adjusts

the RCD values when there is an edge removal and very similar to Algorithm 21.

One important difference is that, instead of incrementing the RCD values, we need

to decrement them whenever necessary. We also check if the RCD(., h) value goes

below k+ 1, which implies changes in RCD(., h+ 1) values of neighbor vertices. An-

other difference between Algorithm 22 and Algorithm 21 exists when the K values

of the removed edge extremities are equal. In this case, we need to remember the

RCD values for all hop numbers before the edge removal operation. This enables us

to process the hop numbers h > 1.

After the multihop traversal, if the K values of some vertices are incremented, then

this will create a cascading effect on RCD values of the vertices around. Efficiently

handling the cascades and doing the update operations is again of great importance.

Algorithm 23 finds those vertices whose RCD values need to be updated and effi-

ciently updates these RCD values. It has two main parameters: the set of vertices

whose K values are updated (changed), and the hop distance until which RCD values
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are to be updated (n). We start the algorithm by marking the changed vertices as

visited. Throughout the algorithm, we mark the vertices via the visited array to pre-

vent duplicates during the update procedure. In the main for loop (the second one),

we process the updates for each hop, in order. At each iteration, we populate the

changed set with the updated vertices and then update the RCD values of the ver-

tices in changed. Cascading effect propagates by a single hop neighborhood at each

iteration. In other words, if we assume that a vertex u has its K value updated and

we want 3-hop distance RCD values to be updated; RCD(1), RCD(2) and RCD(3)

of u will be updated. Furthermore, RCD(2) and RCD(3) values of some vertices in

u’s hop-1 neighborhood will be updated, and RCD(3) values of some vertices in u’s

hop-2 neighborhood will be updated.

Pruning the vertices in the neighborhood is critical in making the procedure effi-

cient. For the edge insertion case, given vertex v, we prune the neighborhood vertices

by checking if they are visited previously and if the K value of the neighbor vertex

is either equal to K value of v or equal to K value of v minus 1 (plus 1 for the edge

removal case). The reason behind this check is based on Definition 9. RCD(n) of a

neighbor vertex may change iff the K values are equal. For the edge insertion case,

given that there are also some vertices whose K values are incremented, we need to

consider them as well by checking the neighbor vertices with one less K value. Like-

wise, for the edge removal, we check the neighbor vertices with one more K value, as
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Figure 5.3: Illustration of the vertices visited by the subcore, purecore, and the traversal
algorithms.

stated with comments in the pseudocode of Algorithm 23. We accumulate the ver-

tices to be updated in changed set and update their RCD values for the hop distance

at that iteration. In summary, we handle the cascading effect of RCD maintenance

efficiently by the aforementioned pruning techniques.

5.4.5 Illustrative Example

Figure 5.3 illustrates the subcore, purecore, and traversal algorithms using a sample

graph. The edge drawn using a dashed bold line is the one that is being inserted into
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the graph. The vertex shown in black is the root vertex. The graph shows the K

values and the MCD values for each vertex before the insertion. The set of vertices

visited by each one of the subcore, purecore, and the traversal algorithms, for the

purpose of updating the K values, is shown in the figure. The subcore algorithm

visits the vertices with K value of 2, which are reachable from the root. The purecore

algorithm visits the vertices with K value of 2 and MCD value of greater than 2 that

are reachable from the root.

The traversal algorithm starts by updating the MCD value of the root to 5, due

to the new edge. Then, DFS starts and pushes the root to the stack. When the

root is popped from the stack, its two neighbors with (K, MCD) values of (2, 3) are

pushed to the stack (MCD values greater than K value of the root, indicating that

they can potentially be part of a larger core). Say that those vertices are x at the

top and y at the bottom in Figure 5.3. Based on Definition 8, the cd values of x and

y are updated to 2 since their PCD values are 2. After that, we move to the next

iteration, and pop vertex x from the stack. The cd value of x is 2, which is not greater

than the K value of the root. This means that it cannot participate in a higher core.

As a result, no neighbors of x are visited and propagateEviction is initiated for

x. In propagateEviction, x is evicted and the cd values of all neighbors of x are

decremented, since all neighbors have a K value of 2 (same as root). Furthermore,

propagateEviction is not initiated for any neighbor of x, since the cd value of the
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root (one of x’s neighbors) becomes 4, and the cd value of other two neighbors of x

become −1, all of which are different than the K value of the root.

In the next step, the DFS pops vertex y from the stack. Similar to x, the cd value

of y is 2, which is not greater than the K value of the root. As a result, no neighbors of

y are visited and propagateEviction is initiated for y. In propagateEviction,

y is evicted and the cd values of all neighbors of y are decremented, since they have a

K value of 2 (same as root). Furthermore, propagateEviction is not initiated for

any neighbor of y, since the cd value of y’s neighbors differ from the K value of the

root. After these operations, the stack is empty, and the only vertex that is visited

but not evicted is the root. As a result, the K value of the root is incremented. As

the last step, the MCD and PCD values of vertices are updated as explained in

Section 5.4.3.

We can easily see that the set of vertices visited by the subcore algorithm is

larger than that of the purecore algorithm, whereas the traversal algorithm visits the

smallest number of vertices compared to the other two.

5.5 Implementation

In this section we provide details about efficient implementations of the incremental

algorithms presented. In particular, we discuss two main issues: the lazy initialization

of arrays used in the algorithms, and the repeated sorting of the cd arrays.

184



5.5.1 Lazy arrays

The non-incremental algorithms for computing the k-core decomposition perform

work that is proportional to the size of the graph. As a result, our incremental

algorithms should avoid any operation that requires work in the order of the size of

the graph. However, several of our algorithms include arrays like visited, evicted,

cd, etc., that are initialized to a default value and accessed using vertex indices. For

these, we use lazy arrays to avoid allocations and initializations in the order of the

graph size.

A lazy array employs a hash map based data structure to implement a sparse

array. For a given vertex, if its value is not currently being stored in the hash map,

it is assumed to have the designated default value. When a different value for the

vertex needs to be stored, the entry for it is created in the hash map.

Since hash maps provide constant lookup time, using lazy arrays achieves signif-

icant speedup when the number of vertices visited by the incremental algorithms is

smaller than the graph size. On the other hand, when the number of vertices visited

gets large, relative to the graph size, lazy arrays start performing worse, since the

constant overhead of accessing a data item in a hash map is significantly higher than

that of regular arrays.

Given that our algorithms locate a small subset of vertices for updating the k-

core decomposition of a graph, the use of lazy arrays is almost always beneficial. For

graphs that have very large max-k cores, relative to the graph size, (which we show
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to be an uncommon occurrence in practice) an implementation of lazy arrays that

switches to a dense representation when the occupation percentage of the array gets

larger can be an effective solution, even though we do not implement that variation

in this study.

5.5.2 Bucket sort

Several of our algorithms require reordering the set of unprocessed vertices in a sub-

graph (such as a subcore or a purecore) based on their cd values. In the worst case

this subgraph could be as large as the graph itself (again, this is uncommon in real-

world graphs). To perform this re-sorting efficiently, we use bucket sort. Note that

the cd values have a very small range, and thus bucket sort not only provides O(N)

sort time for the initial sort (where N is the subcore or purecore size), but it also

enables O(1) updates when a vertex changes its cd value (in our case the values only

decrease). We use a bucket data structure that relies on linked lists for storing its

bucket contents and on a hash map to quickly locate the link list entry of any given

vertex.

5.6 Experimental Evaluation

In this section, we evaluate how the proposed algorithms behave under different sce-

narios. The first set of experiments shows the scalability of our best performing

algorithm by studying its runtime performance as the size of the synthetic datasets
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Figure 5.4: Cumulative
K value distribution for
synthetic graphs.

Graph file
Number Number Maximum Average

Max k
of vertices of edges degree degree

caidaRouterLevel 192,244 609,066 1,071 6.336 32

eu-2005 862,664 16,138,468 68,963 37.415 388

citationCiteseer 268,495 1,156,647 1,318 8.616 15

coAuthorsCiteseer 227,320 814,134 1,372 7.163 86

coAuthorsDBLP 299,067 977,676 336 6.538 114

coPapersCiteseer 434,102 16,036,720 1,188 73.885 844

cond-mat 16,726 47,594 107 5.691 17

power 4,941 6,594 19 2.669 5

protein-interaction-1 9,673 37,081 270 7.667 14

Table 5.1: Real-world graph datasets and their proper-
ties.
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Figure 5.5: Cumulative
purecore size distribution
for synthetic graphs.
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increases. The second set of experiments compare the performance of our incremen-

tal algorithms with respect to each other on real datasets. The third experiment

investigates the performance variation depending on the K values of u and v, when

an edge (u, v) is inserted/removed. The last set of experiments examine the perfor-

mance tradeoffs associated with the multihop traversal insertion and generic RCD

maintenance algorithms, presented in Section 5.4.4.

Our algorithms are implemented in C++ and compiled with gcc 4.4.4 at -O2

optimization level. All experiments are executed sequentially on a Linux operating

system running on a machine with two Intel Xeon E5520 2.27GHz CPUs, with 48GB

of RAM.

5.6.1 Datasets

Our dataset includes synthetic and real graphs. For synthetic graphs, we use the

SNAP library [166] to generate networks following three different models. The first is

the Erdös-Renyi model, which generates random graphs [59]. We used p = 0.1 to put

an edge among two specified vertices and we specify |E|/|V | as 8. The second is the

Barabasi-Albert preferential attachment model [20], which follows a power law for the

vertex degree distributions. We configure it such that each new vertex added by the

generation algorithm creates 11 edges. The third model, generated with SNAP’s R-

MAT generator [39], follows a power law vertex degree distribution and also exhibits

small world properties. We set the partition probabilities as [0.45, 0.25, 0.20, 0.10], to

approximate the k-core distribution of real citation graphs in our dataset.
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Figures 5.4 and 5.5 show the cumulative distribution of K values and purecore

sizes (i.e., number of edges of the purecore subgraph of each vertex in the graph)

for the synthetic datasets with 224 vertices. For a graph G = (V,E), we calculate

the purecore of each vertex u ∈ V by using Algorithm 15. These figures reveal the

structure of the generated graphs and how it impacts the incremental k-core decom-

position performance. The K value distribution is an indication of the connectivity of

the graph, while the purecore size is an indication of the potential runtime of our in-

cremental algorithms when an edge incident upon a given vertex is inserted/removed.

As shown in Figure 5.4, the graph based on the Barabasi-Albert model (BA 24)

has 100% of its vertices with K = 11. In addition, over 80% of its vertices result

in a purecore size of over 100 million vertices. These properties of the BA graphs
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are due to the graph generation algorithm of the BA model, where newly inserted

edges are likely to connect high degree vertices. As we will see shortly, real-world

graphs do not follow such properties and the figure shows that the BA model is very

poor in approximating real world graphs in terms of the K value distribution. The

RMAT generated graph (RMAT 24) has nearly 60% of its vertices with very low

K values. As the K value increases, the percentage of vertices with that K value

decreases. Furthermore, 98% of its vertices have very small purecore sizes. The ER

generated graph (ER 24) has K values up to 6, and as the K value increases, the

percentage of vertices with that K value also increases. The latter behavior is unlike

the RMAT generated graph. As we will see shortly, most real-world graphs of interest

behave more closely to the RMAT generated graphs with respect to their K value

distribution.

The real graphs we use are from the 10th DIMACS Graph Partitioning and Graph

Clustering Implementation Challenge repository [51] and include internet router level

and European domain computer network graphs (caidaRouterLevel and eu-2005), co-

author and citation network graphs (citationCiteseer, coAuthorsCiteseer, coAuthors-

DBLP, coPapersCiteseer), condensed matter collaboration network graphs (cond-

mat), power grid network graphs (power), and protein interaction network graphs

(protein-interaction-1). Table 5.1 provides the details about each used graph, includ-

ing their vertex and edge set size, maximum and average degrees, and their maximum

k value. All graphs are undirected.
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Figure 5.6 shows the K value distribution for all graphs in Table 5.1. The figure

shows that the vertices of both coPapersCiteseer and eu-2005 have highly variant K

values. Figure 5.7 shows the purecore size distribution for our real datasets. The data

indicates that all of the graphs have at least 80% of their vertices with corresponding

purecore sizes of less than 100. This is an indication that our incremental algorithms

are expected to perform well on these graphs.

As all our graphs are originally static, we emulate a streaming algorithm by consid-

ering that the whole set of edges and vertices constitute a sliding window snapshot.

For evaluating algorithm execution, we first evict a random edge from the current

graph in the window. This emulates the behavior of a full sliding window, which

must open space for inserting a new data item. We then insert a new edge between

two random vertices. We also evaluate worst case execution times by inserting and

removing edges from vertices that have top purecore sizes. Such results are similar to

the random insertion case, and are omitted for brevity. Note that we do not assume

any specific data distribution with respect to which edges get inserted or deleted. In

addition, we make no assumptions regarding edge arrival rates. Instead, we evaluate

the performance of our algorithms’ processing updates as fast as possible.

5.6.2 Scalability

In this experiment, we evaluate the performance of the traversal algorithm (Sec-

tion 5.4.3) as the size of the synthetic graphs increase. We first report speedup

numbers, which are obtained by comparing the traversal runtimes with our baseline
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Figure 5.11: Average update time com-
parison of incremental algorithms when
processing real datasets. Times are normal-
ized by the average update time of the sub-
core algorithm. Traversal algorithm shows
the best performance for all datasets.

— the non-incremental version of k-core decomposition (Algorithm 11), then present

the update rates, which show the number of edge removals/insertions processed per

second. Testing the algorithm under different graph sizes emulates the scenario where

a streaming algorithm uses different sliding window sizes.

Figure 5.8 shows the speedup of our incremental insertion and removal algorithms

when the number of vertices from the graph range from 215 to 224. For the insertion

algorithm, the RMAT graph shows the best scalability, with speedups ranging from

717× to 920, 000× (almost 6 order of magnitude). This drastic speedup is because the

K values of the vertices in the graph have high variability and majority of the vertices
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have very small purecore sizes, as shown in Figures 5.4 and 5.5 for the RMAT graph

with size 224. Such factors result in very fast insertions. The insertion of edges into

the graph following the Erdös-Renyi model (ER) show speedup ranging from 4.43× to

11, 500×. Although it also scales well with the size of the graph, the speedups are not

as high as the ones observed for the RMAT graph. This behavior can be explained by

the fact that the ER graph has a more uniform K value distribution when compared

to the RMAT graph. Furthermore, when the graph has size of 224, over 40% of its

insertions may result in touching purecores of over 1 million edges. When inserting

edges into graph based on the Barabasi-Albert model (BA), our incremental algorithm

is worse than the non-incremental one. As we discussed earlier, in these graphs all

vertices have the same K value initially, resulting in subcore sizes that are almost

equal to the graph size. In this case, the incremental algorithm does not provide any

benefit on top of the base one, yet brings additional computation overheads (such as

due to lazy arrays). As we will show shortly, this nature of the BA graphs are not

found in real world graphs.

The removal algorithm scales for all three synthetic graphs, where the speedup

ranges from 675× to 1, 321, 200×. For the ER and BA graphs, the removal algorithm

scales better than the insertion one because it has much lower cost (see Section 5.4.3).

At large scales, we notice that the use of incremental algorithms becomes even more

critical, since the cost of the baseline is linear in the size of the graph.
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The scalability experiments indicate how good our incremental algorithm can

perform for different graph sizes when there are k-core decomposition queries (read

queries) interspersed with edge insertion and removal (write queries). Taking the

RMAT graph with size of 224 vertices as an example, we can see that if the write/read

ratio is less than 1, 972, 945 (the average speedup of one removal and one insertion), it

is better to use the incremental algorithm than to compute the k-core decomposition

from scratch after inserting new edges and removing the oldest ones from the graph

(sliding window scenario).

Figure 5.9 shows the update rates, i.e., number of edges processed per second,

for our incremental insertion and removal algorithms when the number of vertices

in the graph ranges from 215 to 224. For RMAT graphs, both insertion and removal

rates reach up to 205,000 and 87,000 updates/sec and, more importantly, update

rates do not change when the graph size increases. ER graphs have lower update

rates for both insertion and removal. Removal rates for ER graphs stay stable as the

graph size increases and insertion rates only decrease by a factor of 3 (from 4,478 to

1,867) when the graph size increases from 215 to 224. For BA graphs, update rates for

removal decreases from 25,688 to 15,147 when the graph size increases. Insertion rate

has a similar decreasing behavior with the graph size. However, the rates are much

lower — starting from 108 and decreasing to 0.7 when the graph size gets bigger.

The decreasing trend for the BA graphs is due to the large subcore sizes that are
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proportional to the graph size. Again, we will show that real world graphs do not

exhibit this behavior.

5.6.3 Performance comparison

In this experiment, we analyze how our three incremental algorithms perform when

processing one edge removal and one edge insertion (i.e., one sliding window oper-

ation) on the real datasets described in Table 5.1. This helps us to see whether

the algorithm that is expected to give the best results, Traversal, shows the best

performance for all the real datasets we have.

Figure 5.10 shows the performance of the subcore algorithm (Section 5.4.1) con-

sidering the average time taken by one graph update. The performance is shown in

terms of the speedup provided by the incremental algorithm compared to the non-

incremental one. The speedups vary from 6.2× to 14, 000×. The datasets in which

the incremental algorithm performs the best are the eu-2005 and coPapersCiteseer.

Similar to the results obtained in the synthetic graphs, the performance of the sub-

core algorithm benefits from the high variability in the K value distribution of the

graph. The dataset in which the subcore algorithm performs the worst is power. This

is because 63.19% of the vertices in the power graph have the same K value, yielding

large subcore sizes.

Figure 5.11 shows the average update time of each algorithm normalized by the

update time of the subcore algorithm. Each group of 3 columns shows the results

for a given dataset. For each group, the results are displayed in the following order:
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subcore (Section 5.4.1), purecore (Section 5.4.2), and traversal (with residential core

degrees) (Section 5.4.3). The stacked columns represent the update time attributed

to the removal (bottom) and insertion operations (top).

The results show that the purecore algorithm can perform worse than the subcore

one for some datasets (caidaRouterlevel and eu-2005) even though the purecore of a

vertex is always smaller than or equal to the subcore of a vertex. This is due to the

additional work performed to locate a smaller subgraph. This additional work is not

always worth it if the purecore is not sufficiently small compared to the subcore. The

figure also displays that the traversal algorithm shows the best performance for all

datasets, being up to 20× better than the subcore algorithm. The traversal algorithm

shows dramatic improvement compared to subcore when processing citationCiteseer

and power graphs. Our results also show that the traversal algorithm has the most

efficient removal for all datasets.

We also investigate the impact of Residential Core Degrees on synthetic graphs

generated using the Erdös-Renyi model. Table 5.2 shows the average time in seconds

spent for one edge removal plus one edge insertion with the traversal algorithm.

For each graph, we ran the traversal algorithm with and without the Residential

Core Degrees. The results show that using Residential Core Degrees provides up to

%48 less runtime. The results for RMAT, not included here for brevity, show less

improvement.
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5.6.4 Performance variation

In this section, we evaluate the performance of the traversal algorithm when inserting

and removing random edges into vertices with varying K values. The objective is

to understand how the execution time varies as edge insertions and removals are

performed on different parts of the graph with different connectivity characteristics.

For instance, performance implications of adding an edge between a vertex that has

a high K value and one with a low K value versus between two vertices having close

K values.

Figure 5.12 shows the performance results for the citationCiteseer graph, which

serves as a good representative for our real dataset. This graph has vertices with K

values varying from 1 to 15. A bubble in the graph indicates the time taken to insert

or remove an edge between two random vertices u and v. If K(u) ≤ K(v), K(u) is

displayed on the x-axis, while K(v) is displayed on the y-axis. The size of the bubble

indicates the average execution time for the insertion (pink) and removal (green) of

an edge. The larger the bubble is, the greater the execution time is.

The graph shows that the runtime of the traversal algorithm has low variability.

This is a good property, as it means that the algorithm is able to locate a small

subgraph to traverse irrespective of the properties of the neighborhoods of the two

vertices u and v. Our algorithm shows low runtime variability, as we consistently

traverse subgraphs using the vertex with the lowest K value as root.
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Figure 5.12: Edge insertion and removal execution times of the traversal algorithm for
different K values. Runtime shows low variability when changing parts of the graph with
different connectivity characteristics.

Execution times vary more when the K values of the different vertices are the

same (diagonal). The reason is that the traversal algorithm visits the subgraphs

associated with both vertices affected by the new edge, resulting in longer execution

times. We also see that insertions between vertices with large K values have large

execution times. In general, the execution times we see are proportional to the sizes

of the subcores and not to the max-cores. In other words, what affects the execution

time are the sizes of the subgraphs with the same K value. For small K values, such
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Figure 5.14: Detailed running time com-
parison for varying hop counts. Given 500
edge insertions, max bar shows the longest
time taken by an edge insertion, whereas
median bar shows the median of the in-
sertion times. 90% bar shows the run-
ning time value such that 90 percentile of
the edge insertions take at most that much
time.

subgraphs are small, because they are bounded by higher K valued vertices, which

in turn belong to their max-core. For large K values, subcores are bigger, because

large K valued vertices tend to be close to each other due to the definition of k-core.

Although their max-core sizes are small relative to that of small K valued vertices,

their subcore sizes turn out to be larger.
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5.6.5 Multihop Performance

In this set of experiments, we evaluate the impact of hop distance on the performance

of multihop traversal insertion algorithm, given in Section 5.4.4, on real-world net-

works. We also evaluate the RCD maintenance algorithms. The goal is to observe

how the maintenance times are effecting the total runtime for different hop distances

and how the traversal space and time are reduced with increasing hop counts.

We show the normalized maintenance (white) and traversal (black) times for dif-

ferent hop counts (x-axis) in Figure 5.13. Normalization is done with respect to 2-hop

results for each graph. We refer to the processing time taken by Lines 6 and 34 of Al-

gorithm 20 as “maintenance” time and to the time taken by the rest of the algorithm

as “traversal” time. For a given graph, we inserted the same set of 500 edges for each

hop count, which are randomly selected at the start, so that the comparison is fair.

Note that the bars corresponding to 2-hops represent the traversal based insertion

algorithm, given in Section 5.4.3.

From the figure, we observe that the maintenance times are increasing with higher

hop counts. For instance, 3-hop maintenance time is 86% more than the one for

2-hops, whereas the 4-hop and 5-hop times are 3.3× and 5.5× larger than the main-

tenance time used by the traversal algorithm (which uses 2-hop information). When

we test the 6-hop traversal algorithm, it could be completed for 5 of the 9 graphs and

gives 9.4 times slower running times, overall.
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On the other hand, traversal times, shown with black bars, present a different

picture. Higher number of hops result in reduced traversal spaces and thus lower

running times. 3-hop traversal algorithm is up to 5× faster than the 2-hop variant.

On average, 3-hop and 4-hop traversals are 2× and 3× faster than the 2-hop one. We

observe that if the traversed graph space is high for the 2-hop algorithm (which is

indicated by the long traversal times), it is likely to get better speedup with higher hop

counts. For example, citationCiteseer graph requires large traversals when the 2-hop

algorithm is applied. On average, the 2-hop traversal algorithm visits 55.3 vertices,

and this number goes down to 12 and 2.8 with 3 and 4 hops, respectively. On the other

hand, caidaRouterLevel graph requires 2.1 vertex traversals on average for the 2-hop

algorithm and this number is going down to 1.5 with higher hop counts. Therefore,

if the 2 hop algorithm traverses significant space, then there is room for improvement

and this opportunity is leveraged well by the higher hop count algorithms. Otherwise,

maintenance times become the bottleneck.

If we look at the total times, we see that 5 of the 9 graphs benefit from the higher

hop counts and best performance is obtained by 3 or 4 hop algorithms for those

graphs. One distinguishing feature of these 5 graphs is that, their 2-hop traversal

times are more than 85% of the total time, which means that there is a significant

room for improvement over the 2-hop variant.

To understand the running time changes with varying number of hops in a better

way, we plotted the maximum, 90%, and median times for the real-world graphs in
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Figure 5.14. We normalized all the times with respect to the 2-hop median times.

Median times for all graphs are around 0.001 milliseconds, so they do not differ

significantly for different hop counts. When we look at the 90 percentile bars, eu-

2005 and power graphs show that 3-hop variant is superior to the 2-hop variant.

Maximum times are ranging from 0.1 to 7 millisecond. The interesting thing about

them is that all maximum time bars (except caidaRouterLevel and protein-interaction

networks) show that 3-hop and 4-hop variants result in better running times compared

to the 2-hop variants. This means that the larger hop counts reduce the variance in

the edge insertion times, as they prevent very large traversals that the 2-hop variant

sometimes encounters. These results confirm the fact that if there is a significant

amount of work to do in order to adjust the k-core decomposition, then higher hops

will provide better running times. Overall, we suggest to use 3-hops or 4-hops when

the graph dataset used results in large traversals.

5.7 Related Work

The definition of k-core is first introduced by Seidman [161] to characterize the cohe-

sive regions of graphs. Batagelj et al. [22] developed an efficient algorithm to find the

k-core decomposition of a graph. In our work, we build upon these works to develop

k-core decomposition algorithms that are incremental in nature, making it possible

to apply these algorithms in streaming settings where edge insertions and removals

happen frequently, such as maintaining a recent history of a dynamic graph.
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There are many application areas of k-core decomposition including but not lim-

ited to social networks [71, 174], visualization of large networks [8, 186, 67], and

protein interaction networks analysis [16, 182]. In social network analysis, k-cores

has been used for community detection [71], clustering [174], and criminal network

detection [132].

Thanks to its well-defined structure, k-cores has been used extensively to analyze

the structure of certain types of networks [54, 113] and to generate graphs with

specific properties [23]. Many graph problems like maximal clique finding [19], dense

subgraph discovery [9], and betweenness approximation [82] use k-core decomposition

as a subroutine.

In terms of algorithms specific to finding k-core decompositions, an external-

memory algorithm for k-core decomposition is introduced in [42]. There are also

studies about k-core decomposition on directed [70] and weighted [71] networks. As

an effort to streaming k-core decomposition, Aksu et al. [6], introduced dense k-core

subgraph maintenance algorithms in distributed settings. In their work, they ma-

terialized the k-core subgraph with large K values and maintain them for dynamic

graphs. However, they ignore the maintenance of small K valued dense subgraphs.

In this respect, our work is unique in the sense that we provide maintenance of all

dense subgraphs in a given graph.

Concurrently with our work, Li et al. [107] published a report on incremental

algorithms for core decomposition. Our algorithms differ from theirs in two important
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aspects: (1) They propose quadratic complexity incremental algorithms, whereas our

algorithms have linear complexity. (2) The speedup results achieved by our algorithm

outperform theirs. For instance, their best algorithm has 6.3× speedup on the cond-

mat graph, while our best algorithm (Traversal) achieves a speedup of 776.4×.

5.8 Summary

In this work we have introduced streaming algorithms for k-core decomposition of

graphs. The key feature of these algorithms is their incremental nature — the ability

to update the k-core decomposition quickly when a new edge is inserted or removed,

without having to traverse the entire graph. Our experimental evaluation shows that

these incremental algorithms can perform significantly better than their batch alter-

natives, where the speedup in execution time increases with the increasing graph size.

Given the importance of k-core decomposition in detection of dense regions and com-

munities, max. clique finding, and graph visualization, we believe these incremental

algorithms will serve as a fundamental building block for future incremental solutions

for other graph problems.
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Algorithm 20: MULTIHOP TRAVERSAL:
insertEdge(G(V,E), K(), RCD(, ), n, u1, u2)

Data: G: the graph, K: max-k values, RCD: residential core degrees, n: number of
hops (> 1), (u1,u2): inserted edge

1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2

3

4 G← G ∪ (u1, u2) . Add the edge into G
66 multihopPrepareRCDsInsertion(G,K,RCD, n, u1, u2)
. Perform a traversal over vertices that have root’s K value, while evicting the ones

that cannot be a part of a k+1-core
7 S ← empty stack . To perform DFS
8 visited[v] = false,∀v ∈ V . To perform DFS (lazy init)
9 evicted[v] = false,∀v ∈ V . To remember evicted vert. (lazy init)

10 cd[v] = 0, ∀v ∈ V . To find vertices to be evicted (lazy init)
11 k ← K(r) . Remember the K value of the root
1313 cd[r]← RCD(r, n) . Set cd of root
14 S.push(r); visited[r]← true
15 while not S.empty() do . Do a DFS traversal
16 v ← S.pop()
17 if cd[v] > k then . Vertex is currently part of a k+1-core
18 for each (v, w) ∈ E do

. Neighbouring vertex currently part of a k+1-core
2020 if K(w) = k and RCD(w, n− 1) > k and
21 not visited[w] then
22 S.push(w); visited[w]← true

. Use + as cd[w] may be < 0 due to evictions
2424 cd[w]← cd[w] +RCD(w, n)

25 else . Vertex cannot be part of a k+1-core
26 if not evicted[v] then . Recursively perform eviction
27 propagateEviction(G,K, cd, evicted, k, v)

28 changed← empty set . For the vertices with updated K value
29 for each v s.t. visited[v] do . Find visited vertices
30 if not evicted[v] then . If not evicted as well
31 K(v)← K(v) + 1 . The vertex is part of a k+1-core
32 changed.push(v);

3434 multihopRecomputeRCDs(G,K,RCD, n, changed)
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Algorithm 21: MULTIHOP RCD MAINTENANCE:
multihopPrepareRCDsInsertion (G(V,E), K(), RCD(, ), n, u1, u2)

Data: G: the graph, K: max-k values, RCD: residential core degrees, n: number of hops (> 1), (u1,u2):
inserted edge

1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2
3 k ← K(r) . Remember the K value of the root
4 roots← empty set
5 frontiers← n number of empty sets
6 if K(u1) 6= K(u2) then
7 for each h ∈ [1..n] do . For each hop

. r gets a new neig. with higher K value
8 RCD(r, h)← RCD(r, h) + 1
9 if h < n and RCD(r, h) = k + 1 then

. If the RCD value exceeds k, it is pushed to frontiers. RCD of neigs will be updated in the
next iteration

10 frontiers[h+ 1].push(r)
11 if h > 1 then

. Neigs of the vertices in frontiers are explored to update their RCD values
12 for each v ∈ frontiers[h] do
13 for each (v, w) ∈ E do
14 if K(w) = k then

. RCD value of every neig, with same K value, is incremented
15 RCD(w, h)← RCD(w, h) + 1
16 if h < n and RCD(w, h) = k + 1 then

. If the RCD value exceeds k, neigs will be updated in the next iteration
17 frontiers[h+ 1].push(w)

18 else
19 for each h ∈ [1..n] do . For each hop
20 if h = 1 then . MCD computation

. u1 and u2 get a new neig with equal K value

. If the RCD value exceeds k, it is pushed to frontiers. RCD of neigs will be updated in the
next iteration

21 RCD(u1, h)← RCD(u1, h) + 1
22 if RCD(u1, h) = k + 1 then
23 frontiers[h+ 1].push(u1)
24 RCD(u2, h)← RCD(u2, h) + 1
25 if RCD(u2, h) = k + 1 then
26 frontiers[h+ 1].push(u2)

27 else
. Handle the newly inserted edge

28 if RCD(u2, h− 1) > k then
29 RCD(u1, h)← RCD(u1, h) + 1
30 if h < n and RCD(u1, h) = k + 1 then
31 frontiers[h+ 1].push(u1)

32 if RCD(u1, h− 1) > k then
33 RCD(u2, h)← RCD(u2, h) + 1
34 if h < n and RCD(u2, h) = k + 1 then
35 frontiers[h+ 1].push(u2)

. Neigs of the vertices in frontiers are explored to update their RCD values
36 for each v ∈ frontiers[h] do
37 for each (v, w) ∈ E do

. Exclude the newly inserted edge
38 if not (v = u1 and w = u2) and
39 not (v = u2 and w = u1) and
40 K(w) = k then
41 RCD(w, h)← RCD(w, h) + 1
42 if h < n and RCD(w, h) = k + 1 then
43 frontiers[h+ 1].push(w)206



Algorithm 22: MULTIHOP RCD MAINTENANCE:
multihopPrepareRCDsRemoval (G(V,E), K(), RCD(, ), n, u1, u2)

Data: G: the graph, K: max-k values, RCD: residential core degrees, n: number of hops (> 1), (u1,u2):
inserted edge

1 r ← u1 . Set the root
2 if K(u2) < K(u1) then r ← u2
3 k ← K(r) . Remember the K value of the root
4 roots← empty set
5 frontiers← n number of empty sets
6 if K(u1) 6= K(u2) then
7 for each h ∈ [1..n] do . For each hop
8 RCD(r, h)← RCD(r, h)− 1
9 if h < n and RCD(r, h) = k then

10 frontiers[h+ 1].push(r)
11 if h > 1 then
12 for each v ∈ frontiers[h] do
13 for each (v, w) ∈ E do
14 if K(w) = k then
15 RCD(w, h)← RCD(w, h)− 1
16 if h < n and RCD(w, h) = k then
17 frontiers[h+ 1].push(w)

18 else
. Remember the old RCD values of u1 and u2

19 old RCD ← empty set for u1 and u2
20 for each h ∈ [1..n] do . For each hop
21 old RCD(u1, h)← RCD(u1, h)
22 old RCD(u2, h)← RCD(u2, h)
23 for each h ∈ [1..n] do . For each hop
24 if h = 1 then
25 RCD(u1, h)← RCD(u1, h)− 1
26 if RCD(u1, h) = k then
27 frontiers[h+ 1].push(u1)
28 RCD(u2, h)← RCD(u2, h)− 1
29 if RCD(u2, h) = k then
30 frontiers[h+ 1].push(u2)

31 else
32 if old RCD(u2, h− 1) > k then
33 RCD(u1, h)← RCD(u1, h)− 1
34 if h < n and RCD(u1, h) = k then
35 frontiers[h+ 1].push(u1)

36 if old RCD(u1, h− 1) > k then
37 RCD(u2, h)← RCD(u2, h)− 1
38 if h < n and RCD(u2, h) = k then
39 frontiers[h+ 1].push(u2)

40 for each v ∈ frontiers[h] do
41 for each (v, w) ∈ E do
42 if not (v = u1 and w = u2) and
43 not (v = u2 and w = u1) and
44 K(w) = k then
45 RCD(w, h)← RCD(w, h)− 1
46 if h < n and RCD(w, h) = k then
47 frontiers[h+ 1].push(w)
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Algorithm 23: MULTIHOP RCD MAINTENANCE:
multihopRecomputeRCDs (G(V,E), K(), RCD(, ), n, changed)

Data: G: the graph, K: max-k values, RCD: residential core degrees, n: number of
hops (> 1), changed: set of vertices with updated K value

1 visited[v] = false,∀v ∈ V . Lazy init
2 for each v ∈ changed do
3 visited[v] = true

4 for each h ∈ {1...n} do
5 updated← empty set
6 for each v ∈ changed do
7 for each (v, w) ∈ E do
8 if not visited[w] and

. For insertion
9 (K(w) = K(v) or K(w) = K(v)− 1) then

. For removal

. (K(w) = K(v) or K(w) = K(v) + 1)
10 updated.push(w)
11 visited[w] = true

12 for each v ∈ updated do
13 changed.push(v)

14 for each v ∈ changed do
15 RCD(h)(v)← computeRCD (v, K, RCD, h)

Graph scale with RCD (ratio) without RCD

16 0.032 (%48) 0.067

18 0.175 (%52) 0.335

20 1.041 (%50) 2.047

22 4.218 (%49) 8.600

24 6.098 (%67) 8.991

Table 5.2: Average runtimes (secs) for one edge removal plus one edge insertion with
traversal algorithm on Erdös-Renyi graphs. Ratio shows with RCD runtimes relative to
without.
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Chapter 6: Finding the Hierarchy of Dense Subgraphs using
Nucleus Decompositions

Graphs are widely used to model relationships in a wide variety of domains such

as sociology, bioinformatics, infrastructure, the WWW, to name a few. One of the

key observations is that while real-world graphs are often globally sparse, they are

locally dense. In other words, the average degree is often quite small (say at most

10 in a million vertex graph), but vertex neighborhoods are often dense. The classic

notions of transitivity [179] and clustering coefficients [180] measure these densities,

and are high for many real-world graphs [143, 163].

Finding dense subgraphs is a critical aspect of graph mining [105]. It has been

used for finding communities and spam link farms in web graphs [101, 72, 56], graph

visualization [7], real-time story identification [11], DNA motif detection in biological

networks [64], finding correlated genes [185], epilepsy prediction [88], finding price

value motifs in financial data [57], graph compression [34], distance query index-

ing [91], and increasing the throughput of social networking site servers [73]. This is

closely related to the classic sociological notion of group cohesion [24, 61]. There are
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tangential connections to classic community detection, but the objectives are signif-

icantly different. Community definitions involve some relation of inner versus outer

connections, while dense subgraphs purely focus on internal cohesion.

6.1 Introduction

Our input is a graph G = (V,E). For vertex set S, we use E(S) to denote the

set of edges internal to S. The edge density of S is ρ(S) = |E(S)|/
(|S|

2

)
, the fraction

of edges in S with respect to the total possible. The aim is to find a set S with high

density subject to some size constraint. Typically, we are looking for large sets of

high density.

In general, one can define numerous formulations that capture the main problem.

The maximum clique problem is finding the largest S where ρ(S) = 1. Finding the

densest S of size at least k is the k-densest subgraph problem. Quasi-cliques, as

defined recently by Tsourakakis et al. [170], are sets that are almost cliques, up to

some fixed “defect.” Unfortunately, most formulations of finding dense subgraphs are

NP-hard, even to approximate [86, 60, 95].

For graph analysis, one rarely looks for just a single (or the optimal, for whatever

notion) dense subgraph. We want to find many dense subgraphs and understand the

relationships among them. Ideally, we would like to see if they nest within each other,

if the dense subgraphs are concentrated in some region, and if they occur at various

scales of size and density. Our work is motivated by the following questions.
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Figure 6.1: Density histogram of facebook (3, 4)-nuclei. 145 nuclei have density of at
least 0.8 and 359 nuclei are with the density of more than 0.25.

• How do we attain a global, hierarchical representation of many dense subgraphs

in a real-world graph?

• Can we define an efficiently solvable objective that directly provides many dense

subgraphs? We wish to avoid heuristics, as they can be difficult to predict formally.

6.1.1 Our contributions

Nucleus decompositions: Our primary theoretical contribution is the notion

of nuclei in a graph. Roughly speaking, an (r, s)-nucleus, for fixed (small) positive

integers r < s, is a maximal subgraph where every r-clique is part of many s-cliques.

(The real definition is more technical and involves some connectivity properties.)

Moreover, nuclei that do not contain one another cannot share an r-clique. This is
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Figure 6.2: Size vs. density plot for facebook (3, 4)-nuclei. 50 nuclei are larger than 30
vertices with the density of at least 0.8. There are also 138 nuclei larger than 100 vertices
with density of at last 0.25.

inspired by and is a generalization of the classic notion of k-cores, and also k-trusses

(or triangle cores).

We show that the (r, s)-nuclei (for any r < s) form a hierarchical decomposition

of a graph. The nuclei are progressively denser as we go towards the leaves in the

decomposition. We provide an exact, efficient algorithm that finds all the nuclei

and builds the hierarchical decomposition. In practice, we observe that (3, 4)-nuclei

provide the most interesting decomposition. We find the (3, 4)-nuclei for a large

variety of more than 20 graphs. Our algorithm is feasible in practice, and we are able

to process a 39 million edge graph in less than an hour (using commodity hardware).

The source code of our algorithms are available 5.

5http://bmi.osu.edu/hpc/software/nucleus
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Figure 6.3: (3, 4)-nuclei forest for facebook. Legends for densities and sizes are shown
at the top. Long chain paths are contracted to single edges. In the uncontracted forest,
there are 47 leaves and 403 nuclei. Branching depicts the different regions in the graph, 13
connected components exist in the top level. Sibling nuclei have limited overlaps up to 7
vertices.
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Dense subgraphs from (3, 4)-nuclei: The (3, 4)-nuclei provide a large set of

dense subgraphs for range of densities and sizes. For example, there are 403 (3, 4)-

nuclei (of size at least 10 vertices) in a facebook network of 88K edges. We show

the density histogram of these nuclei in Fig. 6.1, plotting the number of nuclei with a

given density. Observe that we get numerous dense subgraphs, and many with density

fairly close to 1. In Fig. 6.2, we present a scatter plot of vertex size vs density of the

(3, 4)-nuclei. Observe that we obtain dense subgraphs over a wide range of sizes.

For comparison, we also plot the output of recent dense subgraph algorithms from

Tsourakakis et al. [170]. (These are arguably the state-of-the-art. More details in

next section.) Observe that (3, 4)-nuclei give dense subgraphs of comparable quality.

In some cases, the output of [170] is very close to a (3, 4)-nucleus.

Representing a graph as forest of (3, 4)-nuclei: We build the forest of (3, 4)-

nuclei for all graphs experimented on. An example output is that of Fig. 6.3, the forest

of (3, 4)-nuclei for the facebook network. Each node of the forest is a (3, 4)-nucleus,

and tree edges indicate containment. More generally, an ancestor nucleus contains all

descendant nuclei. By the properties of (3, 4)-nuclei, any two incomparable nodes do

not share a triangle. So the branching in the forest represents different regions of the

graph. (All nuclei of less than 10 vertices are omitted. For presentation, we contract

long chain paths in the tree to single edges, so the forest has less than 403 nodes.)

In the nuclei figures, densities are color-coded, with hotter colors indicating higher

density. The log of sizes are coded by shape (circles comprise between 10 and 100
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vertices, hexagons between 100 and 1000 vertices, etc.) For a fixed shape, relative size

corresponds to relative size in number of vertices. We immediately see the hierarchy

of dense structures. Observe the colors becoming hotter as we go towards to leaves,

which are mostly red (density > 0.8). We see numerous hexagons and large circles

of color between light blue to green. These indicate the larger parent subgraphs of

moderate density (actually density of say 0.25 is fairly high for a subgraph having

many hundreds of vertices).

The branching is also significant, and we can group together the dense subgraphs

according to the hierarchy. We observe such branching in all our experiments, and

show more such results later in the chapter. The (3, 4)-nuclei provide a simple, hier-

archical visualization of dense substructures. They are well-defined and their exact

computation is algorithmically feasible and practical.

We also want to emphasize the overlap between sibling nuclei. While sibling nuclei

cannot share triangles, they can share edges, thus vertices. We observe roughly 20

pairs of (3, 4)-nuclei having intersections of 4-6 vertices. For larger graphs, we observe

many more pairs of intersecting nuclei (with larger intersections).

The rest of the chapter is organized as follows: §6.2 summarizes the related work,

§6.3 introduces the main definitions and the lemma about the nucleus decomposition,

§6.4 gives the algorithm to generate a nucleus decomposition and provides a com-

plexity analysis, §6.5 contains the results of extensive experiments we have, and §6.6

concludes the chapter by discussing the future directions.
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6.2 Previous work

Dense subgraph algorithms: As discussed earlier, most formulations of the

densest subgraph problem are NP-hard. Some variants such as maximum average

degree [75, 68] and the recently defined triangle-densest subgraph [171] are polynomial

time solvable. Linear time approximation algorithms have been provided by Asashiro

et al. [13], Charikar [40], and Tsourakakis [171]. There are numerous recent practical

algorithms for various such objectives: Andersen and Chellapilla’s use of cores for

dense subgraphs [10], Rossi et al.’s heuristic for clique [140], Tsourakakis et al.’s

notion of quasi-cliques [170]. These algorithms are extremely efficient and produce

excellent output. For comparison’s sake, we consider Tsourakakis et al. [170] as the

state-of-the-art, which was compared with previous core-based heuristics and is much

superior to prior art. Indeed, their algorithms are elegant, extremely efficient, and

provide high quality output (and much faster than ours. More discussion in §7.7.2).

These methods are tailored to finding one (or a few) dense subgraphs, and do not give

a global/hierarchical view of the structure of dense subgraphs. We believe it would

be worthwhile to relate their methods with our notion of nuclei, to design even better

algorithms.

k-cores and k-trusses: The concepts of k-cores and k-trusses form the inspira-

tion for our work. A k-core is a maximal subgraph where each vertex has minimum

degree k, while a k-truss is a subgraph where each edge participates in at least k

triangles. The first definition of k-cores was given by Erdős and Hajnal [58]. It has

216



been rediscovered numerous times in the context of graph orientations and is alter-

nately called the coloring number and degeneracy [109, 161]. The first linear time

algorithm for computing k-cores was given by Matula and Beck [118]. The earliest

applications of cores to social networks was given by Seidman [161], and it is now a

standard tool in the analysis of massive networks. The notions of k-truss or triangle-

cores were independently proposed by Cohen [45], Zhang and Parthasarathy [187],

and Zhao and Tung [189] for finding clusters and for network visualization. They all

provide efficient algorithms for these decompositions, and Cohen [45] and Wang and

Cheng [177] explicitly focus on massive scale. In [178], Wang et al. proposed DN-

graph, a similar concept to k-truss, where each edge should be involved in k triangles,

and adding or removing a vertex from DN-graph breaks this constraint. Apart from

the k-core and k-truss definitions, k-plex and k-club subgraph definitions have drawn

a lot of interest as well. In a k-plex subgraph, each vertex is connected to all but

at most k − 1 other vertices [162], which complements the k-core definition. In a

k-club subgraph, the shortest path from any vertex to other vertex is not more than

k [125]. All these methods find subgraphs of moderate density, and give a global

decomposition to visualize a graph.

Simplicial complexes: Our nucleus decomposition definition has some connec-

tions to simplicial complexes in algebraic topology. Algebraic topology is the subject

of spaces and maps between them using algebraic methods [126]. Simplicial complex

is a topological space of a certain kind of structures, such as vertices, edges, triangles,

217



etc. Barcelo et al. [21] gives a detailed analysis related to connectivity properties of

simplicial complexes and introduces similar definitions to the our S-connectedness def-

inition. Betti number of a simplicial complex [127] is another related concept, which

are used to distinguish topological spaces based on the connectivity of n-dimensional

simplicial complexes. There are some studies on the connectivity properties of sim-

plicial complexes in more general spaces as well, and more information can be found

in [126].

6.3 Nucleus decomposition

Our main theoretical contribution is the notion of nucleus decompositions. We

have an undirected, simple graph G. We use Kr to denote an r-clique and start with

some technical definitions.

Definition 10. Let r < s be positive integers and S be a set of Kss in G.
• Kr(S) the set of Krs contained in some S ∈ S.
• The number of S ∈ S containing R ∈ Kr(S) is the S-degree of that Kr.
• Two Krs R,R

′ are S-connected if there exists a sequence R = R1, R2, . . . , Rk =
R′ in Kr(S) such that for each i, some S ∈ S contains Ri ∪Ri+1.

These definitions are generalizations of the standard notion of the vertex degree

and connectedness. Indeed, setting r = 1 and s = 2 (so S is a set of edges) yields

exactly that. Our main definition is as follows.

Definition 11. Let k, r, and s be positive integers such that r < s. A k-(r, s)-nucleus
is a maximal union S of Kss such that:
• The S-degree of any R ∈ Kr(S) is at least k.
• Any R,R′ ∈ Kr(S) are S-connected.
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2-(2,3) 
nucleus

2-(2,4) 
nucleus

Figure 6.4: Having same number of vertices, 2-(2, 4) nucleus is denser than 2-(2, 3).

We simply refer to (r, s)-nuclei when k is unspecified. Note that we treat nuclei as

a union of cliques, though eventually, we look at this as a subgraph. Our theoretical

treatment is more convenient in the former setting, and hence we stick with this

definition. In our applications, we simply look at nuclei as subgraphs.

Intuitively, a nucleus is a tightly connected cluster of cliques. For large k, we

expect the cliques in S to intersect heavily, creating a dense subgraph. For a fixed

k, r and same number of vertices, the density of the nuclei increases, as we increase

s. Consider the example of Fig. 6.4, where there is a 2-(2, 3)-nucleus and a 2-(2, 4)-

nucleus on the same number of vertices. Since in the latter case, we need every edge

to participate in at least 2 K4s, the resulting density is much higher.
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Two 1-(3,4) nuclei 
intersecting at an edge

Only one
1-(3,4) nucleus

Figure 6.5: The left figure shows two (3, 4)-nuclei overlapping at an edge. The right figure
has only one (3, 4)-nucleus

As stated earlier, our definitions are inspired by k-cores and k-trusses. Set r =

1, s = 2. A k-(1, 2)-nucleus is a maximal (induced) connected subgraph with minimum

vertex degree k. This is exactly a k-core. Setting r = 2, s = 3 gives maximal

subgraphs where every edge participates in at least k triangles, and edges are triangle-

connected. This is essentially the definition of k-trusses or triangle-cores.

So far we only discussed the degree constraint of nuclei. Note that a nucleus is

not just connected in the usual (edge) sense, but requires the stronger property of

being S-connected. The standard definitions of trusses or triangle-cores omit the

triangle-connectedness. For us, this is critical. Two cliques of distinct (r, s)-nuclei

can intersect. For example, when r > 2, nuclei can have edge overlaps. This allows

for finding even denser subgraphs, as Fig. 6.5 shows. In the left, cores, trusses, etc.
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pick up the entire graph. But there are actually 2 different 1-(3, 4)-nuclei (each K4)

intersecting at an edge. The (3, 4)-nuclei are denser than the graph itself. Note that

any edge disjoint decomposition would not find two dense subgraphs.

Critically, the set of (r, s)-nuclei form a laminar family. A laminar family is a set

system where all pairwise intersections are trivial (either empty or contains one of

the sets).

Lemma 3. The family of (r, s)-nuclei form a laminar family.

Proof. Consider k-(r, s)-nucleus S and k′-(r, s)-nucleus S ′, where k ≤ k′. Suppose
they had a non-empty intersection, so some Ks(S) is contained in both S and S ′.
Observe that Krs in Kr(S) are connected to Krs in Kr(S ′). Furthermore, the (S∪S ′)-
degree of member of Kr(S ∪S ′) is at least k. Hence S ∪S ′ satisfies the two conditions
of being a nucleus, except maximality. By S is a k-(r, s)-nucleus, so S ∪ S ′ = S. So
any non-empty intersection is trivial.

Consider two nuclei that are not ancestor-descendant. By the above lemma, these

two nuclei (considered as subgraphs of G) cannot share a Ks. Actually, the argument

above proves that they cannot even share a Kr. This is the key disjointness property

of nuclei.

Every laminar family is basically a hierarchical set system. Alternately, every

laminar family can be represented by a forest of containment. For every nucleus S,

any other nucleus intersecting S is either contained in S or contains S. Furthermore,

all these sets are nested in each other. It makes sense to talk of the smallest sized

nucleus containing S. This leads to the main construct we use to represent nuclei.

Definition 12. Fix r < s. Define the forest of (r, s)-nuclei as follows. There is a node
for each (r, s) nucleus. The parent of every nucleus is the smallest (by cardinality)
other nucleus containing it.
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In our figures, we will only show the internal nodes of out degree at least 2, and

contract any path of out degree 1 vertices into a single path. This preserves all the

branching of the forest.

6.4 Generating nucleus decompositions

Our primary algorithmic goal is to construct the tree of nuclei. The algorithm

is a direct adaptation of the classic Matula-Beck result of getting k-cores in linear

time [118]. There are numerous technicalities involved in generalizing the proof.

Intuitively, we do the following. Construct a graph H where the nodes are all Krs of

G and there is an edge connecting two Krs if they are contained in a single Ks of G.

We then perform a core decomposition on H. Actually, this does not work. Edges

of G (obviously) contain exactly 2 vertices of G, and the procedure above exactly

produces nuclei for r = 1, s = 2. In general, a Ks contains
(
s
r

)
Krs, and the graph

analogy above is incorrect. At some level, we are performing a hypergraph version of

Matula-Beck. The proofs therefore need to be adapted to this setting.

Analogous to k-cores, the main procedure set-k (Algorithm 24) assigns a number,

denoted by κ(·), to each Kr in G.

It is convenient to denote the set of Krs in G by R1, R2, . . ., where Ri is the ith

processed Kr in set-k. We will refer to this index as time. When we say “at time

t”, we mean at the beginning of the iteration where Rt is processed.

Claim 1. The sequence {κ(Ri)} is monotonically non-decreasing.

Proof. This holds because the loop goes R in non-decreasing order of d(R) and Step 11
ensures that no new value of δ(·) decreases below the current κ(R).
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Algorithm 24: set-k(G, r, s)

1 Enumerate all Krs and Kss in G(V,E)
2 For every Kr R, initialize δ(R) to be the number of Kss containing R
3 Mark every Kr as unprocessed
4 for each unprocessed Kr R with minimum δ(R) do
5 κ(R) = δ(R)
6 Find set S of Kss containing R
7 for each S ∈ S do
8 if any Kr R

′ ⊂ S is processed then
9 Continue

10 for each Kr R
′ ⊂ S, R′ 6= R do

11 if δ(R′) > δ(R) then
12 δ(R′) = δ(R′)− 1

13 Mark R as processed
14 return array κ(·)

• Because of Claim 1, we can define transition time ti to be the first time when

the κ-value becomes i. Formally, ti is the unique index such that κ(Rti) = i and

κ(Rti−1) < i.

• We say Ks S is unprocessed at time t if all R ∈ Kr(S) are unprocessed at time

t. This set of Kss is denoted by St.

• The supergraph Gt has node set Kr(St), and R,R′ ∈ Kr(St) are connected by a

link if R∪R′ is contained in some Ks of St. Links are associated with elements of St

(and there may be multiple links between R and R′).

We prove an auxiliary claim relating the δ(·) values to St.

Claim 2. At time t, for any unprocessed Kr R, δ(R) is at least the St-degree of R.
If t = tk (for some k), then δ(R) is exactly the St-degree of R.
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Proof. Pick unprocessed R′. The value of δ(R) is initially the number of Kss con-
taining R′. It is decremented only in Step 12, which happens only when a processed
Ks containing R′ is found. (Sometimes, the decrement will still not happen, because
of Step 11.) Hence, the value of δ(R′) at time t is at least the number of unprocessed
Kss containing R′.

Suppose t = tk. For any preceding t̂ < t, the current κ(·) value is always at most
k. For unprocessed (at time t) R, δ(R) > k. Hence the decrement of Step 12 will
always happen, and δ(R) is exactly the St-degree of R.

Claim 3. Every k-(r, s)-nucleus is contained in Stk .

Proof. Consider k-(r, s)-nucleus S. Take the first R ∈ Kr(S) that is processed. At
this time (say t), no S ∈ S can be processed. Hence, S ⊆ St. By Claim 2, d(R) is
at least the St-degree of R, which is at least the S-degree of R. The latter is at least
k, since S is a k-(r, s)-nucleus. By definition of tk, t ≥ tk and hence St ⊆ Stk . Thus,
S ⊆ Stk .

The main lemma shows that the output of set-k essentially tells us the nuclei.

Lemma 4. The k-(r, s)-nuclei are exactly the links (which are Kss) of connected
components of Gtk .

Proof. Consider k-(r, s)-nucleus S. By Claim 3, it is contained in Stk . By the nucleus
definition, S is connected (as links) in Gtk . Let S ′ be the (set of links) connected
component of Gtk containing S. By Claim 2, at time tk, for any R ∈ Kr(S ′), δ(R) is
exactly the Stk-degree of R. Since S ′ is a connected component of Gtk , the Stk-degree
is the S ′-degree, which in turn is at least k. In other words, S ′ satisfies both conditions
of being a k-(r, s)-nucleus, except maximality. By maximality of S, S = S ′.

Building the forest of nuclei: From Lem. 4, it is fairly straightforward to get

all the nuclei. First run set-k to get the processing times and the κ(·) values. We

can then get all tk times as well. Suppose for any Kr in G, we can access all the

Kss containing it. Then, it is routine to traverse Gtk to get the links of connected

components. To avoid traversing the same component repeatedly, we produce nuclei

in reverse order of k. In other words, suppose all connected components of Gtk+1

224



have been determined. For Gtk , it suffices to determine the connected components

involving nodes processed in time [tk, tk+1). Any time a traversal encounters a node in

Gtk+1
, we need not traverse further. This is because all other connected nodes of Gtk+1

are already known from previous traversals. We do not get into the data structure

details here, but it suffices to visit all nodes and links of G0 exactly once.

6.4.1 Bounding the complexity

There are two options of implementing this algorithm. The first is faster, but has

forbiddingly large space. The latter is slower, but uses less space. In practice, we

implement the latter algorithm. We use ctr(v) for the number of Krs containing v

and ctr(G) for the total number of Krs in G. We denote by RTr(G) the running time

of an arbitrary procedure that enumerates all Krs in G.

Theorem 10. It is possible to build the forest of nuclei in O(RTr(G) +RTs(G)) time
with O(ctr(G) + cts(G)) space.

Proof. This is the obvious implementation. The very first step of set-k requires the
clique enumeration. Suppose we store the global supergraph G = G0. This has a node
for every Kr in G and a link for every Ks in G. The storage is O(ctr(S) + cts(G)).
From this point onwards, all remaining operations are linear in the storage. This is by
the analysis of the standard core decomposition algorithm of Matula and Beck [118].
Every time we process a Kr, we can delete it and all incident links from G. Every link
is touched at most a constant number of times during the entire running on set-k.
As explained earlier, we can get all the nuclei by a single traversal of G.

Theorem 11. It is possible to build the forest of nuclei in O(RTr(G)+
∑

v ctr(v)d(v)s−r)
time with O(ctr(G)) space.

Proof. Instead of explicitly building G, we only build adjacency lists when required.
The storage is now only O(ctr(G)). In other words, given a Kr R, we find all Kss
containing R only when R is processed/traversed. Each R is processed or traversed
at most once in set-k and the forest building. Suppose R has vertices v1, v2, . . . , vr.

225



We can find all Kss containing R by looking at all (s − r)-tuples in each of the
neighborhoods of vi. (Indeed, it suffices to look at just one such neighborhood.) This
takes time at most

∑
R

∑
v∈R d(v)s−r =

∑
v

∑
R3v d(v)s−r =

∑
v ctr(v)d(v)s−r.

Let us understand these running times. When r < s ≤ 3, it clearly benefits to

go with Thm. 10. Triangle enumeration is a well-studied problem and there exist

numerous optimized, parallel solutions for the problem. In general, the classic tri-

angle enumeration of Chiba and Nishizeki takes O(m3/2) [44] and is much better in

practice [46, 160, 169]. This completely bounds the time and space complexities.

For our best results, we build the (3, 4)-nuclei, and the number of K4s is too large

to store. We go with Thm. 11. The storage is now at most the number of triangles,

which is manageable. The running time is basically bounded by O(
∑

v ctr(v)d(v)).

The number of triangles incident to v, ct3(v) is cc(v)d(v)2, where cc(v) is the clustering

coefficient of v. We therefore get a running time of O(
∑

v cc(v)d(v)3). This is signifi-

cantly superlinear, but clustering coefficients generally decay with degree [143, 163].

Overall, the implementation can be made to scale to tens of millions of edges with

little difficulty.

6.5 Experimental Results

We applied our algorithms to large variety of graphs, obtained from SNAP [166]

and UF Sparse Matrix Collection[1]. The vital statistics of these graphs are given in

Tab. 7.1. All the algorithms in our framework are implemented in C++ and compiled

with gcc 4.8.1 at -O2 optimization level. All experiments are performed on a Linux
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|V | |E| Description
∑

v c3(v)d(v) (3, 4) time (sec) [170]
Density (size)

(3,4)-nucleus
Density (size)

dolphins 62 159 Biological 2.2K < 1 0.68(8) 0.71(8)
polbooks 105 441 US Politics Books 23.8K < 1 0.67(13) 0.62(13)
adjnoun 112 425 Adj. and Nouns 17.6K < 1 0.60(15) 0.22(32)
football 115 613 World Soccer 98 26.3K < 1 0.89(10) 0.89(10)
jazz 198 2.74K Musicians 2.3M < 1 1.00(30) 1.00(30)
celegans n. 297 2.34K Biological 418K < 1 0.61(21) 0.91(10)
celegans m. 453 2.04K Biological 565K < 1 0.67(17) 0.64(18)
email 1.13K 5.45K Email 1.2M < 1 1.00(12) 1.00(12)
facebook 4.03K 88.23K Friendship 712M 93 0.83(54) 0.98(109)
protein inter. 9.67K 37.08K Protein Inter. 35M < 1 1.00(11) 1.00(11)
as-22july06 22.96K 48.43K Autonomous Sys. 199M < 1 0.58(12) 1.00(18)
twitter 81.30K 2.68M Follower-Followee 1.8B 396 0.85(83) 1.00(26)
soc-sign-epinions 131.82K 841.37K Who-trust-whom 1.4B 242 0.71(79) 1.00(112)
coAuthorsCiteseer 227.32K 814.13K CoAuthorship 2.1B 50.1 1.00(87) 1.00(87)
citationCiteseer 268.49K 1.15M Citation 297M 3.4 0.71(10) 1.00(13)
web-NotreDame 325.72K 1.49M Web 33.9B 671 1.00(151) 1.00(155)
amazon0601 403.39K 3.38M CoPurchase 802M 23 1.00(11) 1.00(11)
web-Google 875.71K 5.10M Web 11.4B 163 1.00(46) 1.00(33)
com-youtube 1.13M 2.98M Social 451M 43 0.49(119) 0.92(24)
as-skitter 1.69M 11.09M Autonomous Sys. 1.6B 1, 036 0.53(319) 0.94(91)
wikipedia-2005 1.63M 19.75M Wikipedia Link 741B 1, 312 0.53(33) 0.82(14)
wiki-Talk 2.39M 5.02M Wikipedia User 136B 605 0.48(321) 0.59(95)
wikipedia-200609 2.98M 37.26M Wikipedia Link 2, 015B 2, 830 0.49(376) 0.62(103)
wikipedia-200611 3.14M 39.38M Wikipedia Link 2, 197B 3, 039 1.00(55) 1.00(32)

Table 6.1: Important statistics for the real-world graphs of different types and sizes.
Largest graph in the dataset has more than 39M edges. Times are in seconds. Density of
subgraph S is |E(S)|/

(|S|
2

)
where E(S) is the set of edges internal to S. Sizes are in number

of vertices.
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operating system running on a machine with two Intel Xeon E5520 2.27 GHz CPUs,

with 48GB of RAM.

We computed the (r, s)-nuclei for all choices of r < s ≤ 4, but do not present

all results for space considerations. We mostly observe that the forest of (3, 4)-nuclei

provides the highest quality output, both in terms of hierarchy and density.

As mentioned earlier, we will now treat the nuclei as just induced subgraphs of G.

A nucleus can be considered as a set of vertices, and we take all edges among these

vertices (induced subgraph) to attain the subgraph. The size of a nucleus always

refers to the number of vertices, unless otherwise specified. For any set S of vertices,

the density of the induced subgraph is |E(S)|/
(|S|

2

)
, where E(S) is the set of edges

internal to S. We ignore any nucleus with less than 10 vertices. Such nuclei are not

considered in any of our results.

For brevity, we present detailed results on only 4 graphs (given in Tab. 7.1):

facebook, soc-sign-epinions, web-NotreDame, and wikipedia-200611. This cov-

ers a variety of graphs, and other results are similar.

6.5.1 The forest of nuclei

We were able to construct the forest of (3, 4)-nuclei for all graphs in Tab. 7.1,

but only give the forests for facebook (Fig. 6.3), soc-sign-epinions (Fig. 6.6), and

web-NotreDame (Fig. 6.7). For the web-NotreDame figure, we could not present the

entire forest, so we show some trees in the forest that had nice branching. The density

is color coded, from blue (density 0) to red (density 1). The nuclei sizes, in terms of
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Figure 6.6: (3, 4)-nuclei forest for soc-sign-epinions. There are 465 total nodes and 75
leaves in the forest. There is a clear hierarchical structure of dense subgraphs. Leaves are
mostly red (¿ 0.8 density). There are also some light blue hexagons, representing subgraphs
of size ≥ 100 vertices with density of at least 0.2.

vertices, are coded by shape: circles correspond to at most 102 vertices, hexagons in

the range [102, 103], squares in the range [103, 104], and triangles are anything larger.

The relative size of the shape, is the relative size (in that range) of the set.

Overall, we see that the (3, 4)-nuclei provide a hierarchical representation of the

dense subgraphs. The leaves are mostly red, and their densities are almost always

> 0.8. But we obtain numerous nuclei of intermediate sizes and densities. In the

facebook forest and to some extent in the web-NotreDame forest, we see hexagons of

light blue to green (nuclei of > 100 vertices of densities of at least 0.2). The branching
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Figure 6.7: Part of the (3, 4)-nuclei forest for web-NotreDame. In the entire forest, there
are 2059 nodes and 812 leaves. 79 of the leaves are clique, up to the size of 155. There is a
nice branching structure leading to a decent hierarchy.

is quite prominent, and the smaller dense nuclei tend to nest into larger, less dense

nuclei. This held in every single (3, 4)-nucleus forest we computed. This appears to

validate the intuition that real-world networks have a hierarchical structure.

The (3, 4)-nuclei figures provide a useful visualization of the dense subgraph struc-

ture. The web-NotreDame has a million edges, and it is not possible to see the graph

as a whole. But the forest of nuclei breaks it down into meaningful parts, which can

be visually inspected. The overall forest is large (about 2000 nuclei), but the nesting

structure makes it easy to absorb. We have not presented the results here, but even

the wikipedia-200611 graph of 38 million edges has about a forest of only 4000

nuclei (which we were able to easily visualize by a drawing tool).

Other choices of r, s for the nuclei do not lead to much branching. We present all

nucleus trees for r < s ≤ 4 for the facebook graph in Fig. 6.8 (except (3, 4) which

is given in Fig. 6.3). Clearly, when r = 1, the nucleus decomposition is boring. For

r = 2, some structure arises, but not as dramatic of Fig. 6.3. Results vary over graphs,
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(a): (1, 2)-nuclei (b): (1, 3)-nuclei (c): (1, 4)-nuclei

(d): (2, 3)-nuclei (e): (2, 4)-nuclei

Figure 6.8: (r, s)-nuclei forests for facebook when r < s ≤ 4 (Except (3, 4), which is given
in Fig. 6.3). For r = 1, trees are more like chains. Increasing s results in larger number of
internal nodes, which are contracted in the illustrations. There is some hierarchy observed
for r = 2, but it is not as powerful as (3, 4)-nuclei, i.e., branching structure is more obvious
in (3, 4)-nuclei.
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Figure 6.9: Density histograms for nuclei of three graphs. x-axis (binned) is the den-
sity and y-axis is the number of nuclei (at least 10 vertices) with that density. Number
of nuclei with the density above 0.8 is significant: 139 for soc-sign-epinions, 355 for
web-NotreDame, and 1874 for wikipedia-200611. Also notice that, the mass of the his-
togram is shifted to right in soc-sign-epinions and wikipedia-200611 graphs.
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Figure 6.10: Density vs. size plots for nuclei of three graphs. State-of-the-art algorithms
are depicted with OQC variants, and they report one subgraph at each run. We ran them
10 times to get a general picture of the quality. Overall, (3, 4)-nuclei is very competitive
with the state-of-the-art and produces many number of subgraphs with high quality and
non-trivial sizes.
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but for r = 1, there is pretty much just a chain of nuclei. For r = 2, some graphs show

more branching, but we consistently see that for (3, 4)-nuclei, the forest of nuclei is

always branched.

6.5.2 Dense subgraph discovery

We plot the density histograms of the (3, 4)-nuclei for various graphs in Fig. 6.9.

The x-axis is (binned) density and the y-axis is the number of nuclei (all at least 10

vertices) with that density. It can be clearly observed that we find many non-trivial

dense subgraphs. It is surprising to see how many near cliques (density > 0.9) we find.

We tend to find more subgraphs of high density, and other than the web-NotreDame

graph, the mass of the histogram is shifted to the right. The number of subgraphs

of density at least 0.5 is in the order of hundreds (and more than a thousand for

wikipedia-200611).

An alternate presentation of the dense subgraphs is a scatter plot of all (3, 4)-nuclei

with size in vertices versus density. This is given in Fig. 6.2 and Fig. 6.10, where the

red dots correspond to the nuclei. We see that dense subgraphs are obtained in all

scales of size, which is an extremely important feature. Nuclei capture more than

just the densest (or high density) subgraphs, but find large sets of lower density (say

around 0.2). Note that 0.2 is a significant density for sets of hundreds of vertices.
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Figure 6.11: Histograms over non-trivial overlaps for (3, 4)-nuclei. Child-ancestor inter-
sections are omitted. Overlap size is in terms of the number of vertices. Most overlaps are
small in size. We also observe that (2, s)-nuclei give almost no overlaps.
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Figure 6.12: Overlap scatter plots for (3, 4)-nuclei. Each axis shows the edge density of a
participating nucleus in the pair-wise overlap. Larger density is shown on the y-axis. (3, 4)-
nuclei is able to get overlaps between very dense subgraphs, especially in web-NotreDame

and wikipedia-200611. In wikipedia-200611 graph, there are 1424 instances of pair-wise
overlap between two nuclei, where each nucleus has the density of at least 0.8.
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Comparisons with previous art

How does the quality of dense subgraphs found compare to the state-of-the-art?

In the scatter plots of Fig. 6.2 and Fig. 6.10, we also show the output of two algorithms

of [170] in green and blue. The idea of [170] is to approximate quasi-cliques, and their

result provides two every elegant algorithms for this process. (We collectively refer to

them as OQC.) OQC algorithms only give a single output, so we performed multiple

runs to get many dense subgraphs. This is consistent with what was done in [170].

OQC algorithms clearly beat previous heuristics and it is fair to say that [170] is the

state-of-the-art.

The (3, 4)-nucleus decomposition does take significantly longer than the algorithms

of [170]. But we always get much denser subgraphs in all runs. Moreover, the sizes

are comparable if not larger than the output of [170]. Surprisingly, in facebook

and soc-sign-epinions, some of the best outputs of OQC are very close to (3, 4)-

nuclei. Arguably, the (3, 4)-nuclei perform worst on wikipedia-200611, where OQC

find some larger and denser instances than (3, 4)-nuclei. Nonetheless, the smaller

(3, 4)-nuclei are significantly denser. We almost always can find fairly large cliques.

In Tab. 7.1, we consider the OQC output vs (3, 4)-nuclei for all graphs. Barring

4 instances, there is a (3, 4)-nucleus that is larger and denser than the OQC output.

In all cases but one (adjnoun), there is a (3, 4)-nucleus of density (of non-trivial size)

higher than the the OQC output. The nuclei have the advantage of being the output

of a fixed, deterministic procedure, and not a heuristic that may give different outputs
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on different runs. We mention that OQC algorithms have a significant running time

advantage over finding (3, 4)-nuclei, for a single subgraph finding.

6.5.3 Overlapping nuclei

A critical aspect of nuclei is that they can overlap. Grappling with overlap is

a major challenge when dealing with graph decompositions. We believe one of the

benefits of nuclei is that they naturally allow for (restricted) overlap. As mentioned

earlier, no two (r, s)-nuclei can contain the same Kr. This is a significant benefit of

setting r = 3, s = 4 over other choices.

In Fig. 6.11, we plot the histogram over non-trivial overlaps for (3, 4)-nuclei. (We

naturally do not consider a child nucleus intersecting with an ancestor.) For a given

overlap size in vertices, the frequency is the number of pairs of (3, 4)-nuclei with

that overlap. This is shown for four different graphs. The total number of pair-wise

overlaps (the sum of frequencies) is typically around half the total number of (3, 4)-

nuclei. We observed that the Jaccard similarities are less than 0.1 (usually smaller).

This suggest that we have large nuclei with some overlap.

There are bioinformatics applications for finding vertices that are present in nu-

merous dense subgraphs [87]. The (3, 4)-nuclei provide many such vertices. In

Fig. 6.12, we give a scatter plot of all intersecting nuclei, where nuclei are indexed by

density. For two intersecting nuclei of density α > β, we put a point (α, β). We only

plot pairs where the overlap is at least 5 vertices. Especially for web-NotreDame and

wikipedia-200611, we get significant overlaps between dense clusters.
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In contrast, for all other settings of r, s, we get almost no overlap. When r = 2,

nuclei can only overlap at vertices, and this is too stringent to allow for interesting

overlap.

6.5.4 Runtime results

Tab. 7.1 presents the runtimes in seconds for the entire construction. To provide

some context, we describe runtimes for varying choices of r, s. For r = 1, s = 2

(k-cores), the decomposition is linear and extremely fast. For the largest graph

(wikipedia-200611) we have, with 39M edges, it takes only 4.26 seconds. For

r = 2, s = 3 (trusses), the time can be two orders of magnitude higher. And for

(3, 4)-nuclei, it is an additional order of magnitude higher. Nonetheless, our most

expensive run took less than an hour on the wikipedia-200611 graph, and the final

decomposition is quite insightful. It provides about 6000 nuclei with more than 10

vertices, most of them of have density of at least 0.4. The algorithms of [170] take

roughly a minute for wikipedia-200611 to produce only one dense subgraph.

The theoretical running time analysis of Thm. 11 gives a running time bound of∑
v c3(v)d(v). In Tab. 7.1, we show this value for the various graphs. In general, we

note that this value roughly correlates with the running time. For graphs where the

running time is in many minutes, this quantity is always in the billions. For the large
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wiki graphs where the (3, 4)-nucleus decomposition is most expensive, this is in the

trillions.

6.5.5 Application on protein-protein interaction networks

Understanding the function, expression and regulation of the proteins encoded

by an organism is crucial in the field of genetics. Previously it has been observed

that proteins do not act in an isolated way, but rather interact with each other to

be involved in the same cellular processes. Finding the dense regions in the protein-

protein interaction (PPI) networks can yield meaningful set of proteins involving in

a specific cellular process. We apply our algorithms on PPI networks to find those

dense regions and investigate their quality using the ground-truth information in PPI

networks. For this purpose, we use Gene Ontology (GO) Enrichment analysis [14] to

evaluate the reported set of proteins. We made use of AmiGO tool [37], which takes a

set of proteins as an input and reports several results indicating the quality of that set

of proteins. Background frequency is the number of genes annotated to a GO term in

the entire background set, while sample frequency is the number of genes annotated

to that GO term in the input set of proteins. P-value is the probability or chance

of seeing at least x number of genes out of the total n genes in the list annotated

to a particular GO term, given the proportion of genes in the whole genome that

are annotated to that GO Term. That is, the GO terms shared by the genes in the

user’s list are compared to the background distribution of annotation. The closer the
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p-value is to zero, the more significant the particular GO term associated with the

group of genes is.

We selected the Mus musculus PPI network, having 8573 proteins and 21003 inter-

actions, obtained from BioGRID database [168] and chose biological process ontology.

We ran our (3, 4)-nucleus decomposition and the Local Search OQC algorithm, given

in [170], (multiple times) and selected the subgraphs having highest edge density

with the size of at least 10 vertices. (3, 4)-nucleus decomposition reports a subgraph

with 13 vertices and 70 edges (0.89 edge density) and Local Search OQC results in a

subgraph with 10 vertices and 27 edges (0.60 edge density). Note that (3, 4)-nucleus

decomposition is able to report a larger subgraph with higher edge density. The

UniProt ids of the proteins in the subgraph reported by Local Search OQC algorithm

are Cyld, Ikbkb, Ikbkg, Rhoa, Ripk1, Rnf31, Sqstm1, Traf6, UBC, and Ubc. For this

set of proteins, AmiGO reports that there are 62 GO terms for which the p-value

is non-zero. Most significant p-value (2.056e − 09) is observed for the regulation of

I-kappaB kinase/NF-kappaB signaling process [123]. Sample frequency for this pro-

cess is 7, whereas the background frequency is 182. On the other side, (3, 4)-nucleus

decomposition gives a higher quality set of proteins. UniProt ids of them are Esrrb,

Hdac1, Hdac2, L3mbtl2, Mbd3, Mta1, Mta2, Nanog, Pou5f1, Rbbp7, Rnf2, Sall4, and

Tfcp2l1. There are 152 GO terms for those proteins where the p-value is non-zero,

and the most significant p-value is 4.937e − 10, observed for the negative regulation

of nucleic acid-templated transcription, which is any process that stops, prevents or
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reduces the frequency, rate or extent of nucleic acid-templated transcription. Sample

frequency for this process is 11, and the background frequency is 960. These results

suggest that our (3, 4)-nucleus decomposition is able to find more meaningful set of

proteins than the Local Search OQC algorithm, and can be effectively used for PPI

network mining applications.

6.6 Further directions

The most important direction is in the applications of nucleus decompositions.

We are currently investigating bioinformatics applications, specifically protein-protein

and protein-gene interaction networks. Biologists often want a global view of the

dense substructures, and we believe the (3, 4)-nuclei could be extremely useful here.

In our preliminary analyses, we wish to see if the nuclei pick out specific functional

units. If so, that would provide strong validation of dense subgraph analyses for

bioinformatics.

It is natural to try even larger values of r, s. Preliminary experimentation sug-

gested that this gave little benefit in either the forest or the density of nuclei. Also,

the cost of clique enumeration becomes forbiddingly large. It would be nice to argue

that r = 3, s = 4 is a sort of sweet spot for nucleus decompositions. Previous theoret-

ical work suggests that any graph with a sufficient triangle count undergoes special

“community-like” decompositions [78]. That might provide evidence to why triangle

based nuclei are enough.
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A faster algorithm for the (3, 4)-nuclei is desirable. Clique enumeration is a well-

studied problem [33], and we hope techniques from these results may provide ideas

here. Of course, as we said earlier, any method based on storing 4-cliques is infeasible

(space-wise). We hope to devise a clever algorithm or data structure that quickly

determines the 4-cliques that a triangle participates in.

Last but not least, we seek for incremental algorithms to maintain the (r, s)-

nuclei for a stream of edges. There are existing techniques for streaming k-core

algorithms [145] and we believe that similar methods can be adapted for (r, s)-nuclei

maintenance.
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Chapter 7: Streaming Overlapping Community Detection

In many application domains, graphs are used to represent relationships between

people, systems, and the physical world. Data analytics performed on these graphs

can bring new business insights and improve decision-making. For instance, the graph

structure may represent the relationships in a social network, where finding commu-

nities in the graph [102] can facilitate targeted advertising. As another example, in

the Telecommunications domain, call details records can be used to capture the call

relationships between people [129], and locating closely connected groups of people

can help generate promotions.

As these examples illustrate, a fundamental graph analytic is community detec-

tion. We can define a community within a graph as a set of vertices that exhibit

high cohesiveness and low conductance. High cohesiveness means that the vertices

in the community have relatively high number of edges connecting them, and low

conductance means that the vertices in the community have relatively small number

of edges going outside of the community.

243



7.1 Introduction

Communities in social networks have two key characteristics. The first is that

communities are overlapping, as different communities can have common users. This

is a typical scenario, as a single user can be involved in different communities, such as

co-workers, friends, and family. The second is that communities are dynamic. They

evolve as a result of the continuous interactions between people. These interactions

can result in the addition/removal of new/existing relationships in the network. For

instance, the follower-followee graph of Twitter [173] is highly active, with millions of

updates to the graph structure every day. This number is even higher if we consider

the mention graph of Twitter. It is also common to analyze the graph over a recent

time window, such as the mention graph of Twitter over the last week. In such

scenarios, both insertions and removals are equally frequent.

In this chapter, we present SONIC—an algorithm to detect overlapping communi-

ties on dynamic graphs in a streaming manner. Upon each edge insertion or removal,

we incrementally maintain the overlapping communities. This way, the communities

are updated more efficiently and without the need for periodic re-computations that

are typically performed in batch. SONIC maintains multiple community ids for each

vertex and updates these ids upon edge insertions and removals. By doing so, it can

answer any query for the communities of a given vertex (or a set of vertices) by a

simple traversal of the community ids.
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SONIC adopts the find-and-merge style of community detection. In find-and-

merge style algorithms [47, 139], local communities of each vertex are found first, as

part of the find step. These local communities are then merged into global communi-

ties based on a configurable merge condition, as part of the merge step. SONIC uses

the label propagation algorithm to detect local communities during the find step. In

the label propagation algorithm [138], each vertex is initially assigned a unique id.

Then each vertex gets the most commonly used id of its neighbors. This procedure

continues either for a specified number of rounds or until there are no changes in

ids. After that, SONIC merges local communities based on a given merge factor.

Differently than earlier works, SONIC relies on an incremental merge step to avoid

rebuilding global communities from scratch and instead performs a partial re-merge.

SONIC faces several challenges in tackling the streaming overlapping community

detection problem. First, in a streaming setup, the number of updates are very high,

yet many of these updates are not sufficiently important by themselves to result in any

change in the global community structure. Fully processing each one of these updates

will unnecessarily increase the cost of the solution. SONIC addresses this problem by

detecting updates that are significant via a fast procedure that involves re-adjusting

only the local communities. SONIC initiates the merge process only for the significant

updates, effectively reducing the cost of an edge update. Second, the merge step is

non-trivial to perform incrementally, which led earlier work on find-and-merge style

of algorithms to use a non-incremental merge [47]. SONIC solves this problem by
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maintaining the global communities as a collection of sub-communities. Upon an

edge insertion/removal, it detects the global communities whose sub-communities are

impacted, dissolves such global communities, and regenerates the global community

structure by a partial merge. Finally, even an incremental merge algorithm can be

costly to execute when the local changes cascade to bring about a major change in the

global communities. To address this issue, SONIC incorporates two alternative merge

strategies: (i) a min-hash based merge, and (ii) an inverted-index based merge.

In summary, this chapter makes the following contributions:

• The SONIC algorithm for incremental overlapping community detection over

dynamic graphs with streaming updates.

• A technique to detect significant changes in local community structures to avoid

a costly merge, unless a local community change is likely to cause a global

community change.

• Inverted-index and min-hash based techniques to further accelerate the incre-

mental merge used in SONIC.

• An experimental evaluation of SONIC on real-world and synthetic data sets,

with respect to quality and running time performance.

The rest of this chapter is organized as follows. Section 7.2 gives an overview of

related work. Section 7.3 gives the background on basic techniques from the literature

we rely on. Section 7.4 lists fundamental theoretical properties that we leverage for
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developing the SONIC algorithm. Section 7.5 describes the base version of the SONIC

algorithm with an illustrative example. Section 7.6 presents several improvements

over base SONIC, such as the significant change detection, the min-hash based merge,

and the inverted-index based merge algorithms. Section 7.7 presents our experimental

evaluation and Section 7.8 concludes the chapter.

7.2 Related Work

Vast amount of work has been done on community detection and various aspects of

the problem have been studied in the literature. Fortunato [63] covers all the popular

techniques to find communities in complex networks. Leskovec et al. [106] compares

different community detection algorithms empirically. Significant number of spectral

methods are based on the modularity metric proposed by Newman [130]. There are

also information theoretic approaches to discover community structure of networks.

Particularly, Infomap [141] is currently one of the best performing non-overlapping

community detection algorithms. As an alternative technique to community detec-

tion, past works have proposed community search, where the communities are de-

tected locally based on given query vertices. This idea first appeared in [83] and was

further investigated in [167] and [133]. Recently, Cui et al. [49] proposed online search

of overlapping communities based on clique adjacency graph of networks.

In our work, we are particularly interested in (i) overlapping community detection

techniques, and (ii) dynamic methods that can handle streaming updates.
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Overlapping. Community detection in social networks is different from the classical

clustering and partitioning problems in which the identified clusters/partitions do not

overlap with each other (i.e., each vertex belongs to a single cluster/partition). In

contrast, communities overlap with each other in social networks. Palla et al. [134]

showed that most real networks have overlapping community structure. They also

introduced a percolation based method to detect overlapping communities. A recent

survey [184] summarizes most of the existing overlapping community detection algo-

rithms and categorizes them into five classes: (1) Clique percolation [134], (2) Link

partitioning [5], (3) Local expansion and optimization [103, 181], (4) Fuzzy detec-

tion [77, 176, 188] and (5) Agent-based algorithms [138]. Among them, Hierarchical

Link Clustering (HLC) [5] is a popular approach due to its simplicity. It partitions

the links instead of vertices to explore the overlapping community structure. In the

local expansion and optimization based algorithms category, Whang et al. [181] re-

cently proposed an algorithm which finds good seeds and then expands them using

a personalized PageRank clustering procedure. Fuzzy detection algorithms measure

the strength of association between vertices and communities. They use membership

vectors to determine the strength of these associations and determine communities

according to these vectors. SONIC belongs to a new class of overlapping community

detection algorithms, which we call find-and-merge.

Communities in large graphs can have different granularities. For example, given

the co-author graph, one possible community would be “people working on databases”.
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However such a community is very coarse-grained and not so effective in many sce-

narios. Instead, finding the communities based on vertices provide finer granularity

and more focused information. For example, a query like “people working with Prof.

X on graph processing” could be more interesting and useful. Recent studies [74] also

show that vertex based approaches provide better communities in terms of widely ac-

cepted metrics, such as conductance. Thus, finding fine-grained communities around

vertices, which provide grounds for answering queries like “Which communities con-

tain the vertex u?” and “Which communities include the vertices u1, · · · , un?”, is

highly valuable. Motivated by this observation, Rees and Gallagher [139] and Cos-

cia et al. [47] developed a new class of overlapping community detection algorithms

that follow a bottom-up approach, which we refer to as find-and-merge type of algo-

rithms. For instance, DEMON [47] first finds the local communities of each vertex. It

then merges these local communities into global communities based on a configurable

merge condition, as part of the merge step. The SONIC algorithm we describe in

this chapter adopts a similar approach. Different from [47] and [139], SONIC is an

incremental find-and-merge algorithm that can handle streaming updates.

Evolutionary Clustering. Several researchers have investigated evolutionary and

dynamic community detection algorithms. Evolutionary clustering techniques cap-

ture how the clusters change as a function of time [38, 96, 110]. Previous work have

focused on different aspects of evolutionary clustering, such as the formalization of
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smoothness between clustering results in recent snapshots [43], and detecting the be-

havioral patterns of temporal interaction networks [15]. Detailed survey and analysis

on evolutionary graph clustering techniques can be found in [28], and in [4]. However,

these techniques focus on temporal evolution at a coarser level and do not address the

issues of incremental processing and streaming updates to maintain the community

structure of the graph.

Streaming. As an example of incremental community detection algorithm, Xie et

al. [183] proposed an incremental version of label propagation which can be used

to find non-overlapping communities in evolving networks. SONIC also uses an in-

cremental label propagation algorithm, but only as an initial step to find the local

non-overlapping communities to be merged later into global overlapping communities.

There are also several prior works focusing on streaming dense subgraph detection,

which is a problem similar to community detection. Agarwal et al. [2] and Angel et

al. [12] present algorithms for real-time discovery of events and stories from micro blog

streams. They model the events and stories as dense subgraphs and track their evo-

lution in a streaming fashion. This chapter focuses on an algorithm for incremental,

overlapping community detection.

7.3 Background

In this section, we provide the necessary background on concepts and algorithms that

are relevant to our work.
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Ego-minus-ego network. Let G be an undirected and unweighted graph. For a

vertex u, N(u) is the set of neighbors of vertex u in graph G. The ego-network [66]

of u is the vertex induced sub-graph of G that consists of the vertices {u} ∪ N(u).

Subtracting u and the edges incident upon it from the ego-network results in the

ego-minus-ego network [47], which we formally define as follows:

Definition 13. Ego-minus-ego network of vertex u, or EmEn(u) in short, in graph
G=〈V,E〉 is the subgraph G′=〈V ′, E ′〉, where V ′=N(u) and E ′ ⊆ E is the set of edges
(v, w) such that v, w ∈ V ′. Vertex u is the center of EmEn(u).

Find-and-merge style overlapping community detection. This style of com-

munity detection algorithms can compute overlapping global communities from local

communities [47, 139]. The basic idea is to find local communities in each EmEn via a

non-overlapping community detection algorithm, such as label propagation, and then

add the center of the EmEn to each one of the local communities found. After the

find step is complete, the algorithm merges the local communities to construct the

global ones. The merge is performed based on a merge factor parameter, denoted

by β, where β ∈ [0, 1]. During the merge step, two communities are merged if at

least β fraction of the smaller community resides in their intersection. If A and B are

two communities, the merge condition is given by |A ∩ B|/min(|A|, |B|) ≥ β. This

is the well-known overlap similarity metric. The merge process continues until no

additional merges can be computed.

Incremental local community detection via label propagation. Our non-

overlapping local community detection algorithm of choice for the find step is label
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propagation [138]. This algorithm works in multiple rounds. Initially, each vertex

is assigned a unique id. Then at each round, each vertex is assigned the id of the

most commonly used id of its neighbors. Ties are broken randomly. This procedure

is performed continuously either for a specified number of rounds or until there is no

change in the ids. When an edge (u, v) is inserted/removed into/from the graph, we

perform incremental label propagation starting with vertices u and v. That is, we

assign their ids to the most commonly used id of their neighbors. If this results in a

change in the id values of u or v, then we apply the same procedure to all neighbors

of the vertex whose id has changed, and continue the procedure recursively.

Observation 7. After the merge step, each local community takes part in one and
only one global community. Therefore, the global communities are a partitioning of
the local ones.

Definition 14. Local communities of a vertex u ∈ V , denoted by LC(u), is the set of
communities found by a non-overlapping community detection algorithm in EmEn(u),
augmented by the vertex u itself. Global communities, denoted by GC, are the set of
communities constructed by merging the local communities of all vertices in the graph.
Finally, the set of local communities that were merged to form a global community
g ∈ GC is denoted as MC(g).

7.4 Observations

In this section we list fundamental observations that we rely on for developing the

SONIC algorithm.

Theorem 12. Given a graph G=〈V,E〉, if we insert or remove an edge (u, v), only
the EmEns of u, v, and mutual neighbors of u and v change.

Proof. Consider the insertion case first. The EmEns of u and v change, as EmEn(u)
will now contain v, and EmEn(v) will contain u. EmEns of common neighbors, that
is N(u) ∩ N(v), will change as well, since for a vertex w ∈ N(u) ∩ N(v), the edge
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(u, v) will now be contained in EmEn(w). For any other vertex x 6∈ N(u)∩N(v) that
is not equal to u or v, it is easy to see that EmEn(x) cannot change. Assume that it
does. This change cannot involve a new vertex, say u′, being added into EmEn(x),
as that would require (x, u′) to be a new edge, and since x 6= u and x 6= v, this is
a contradiction. The other possibility is that a new edge is added into EmEn(x),
which must be (u, v). But then we have u ∈ N(x) and v ∈ N(x), which means
x ∈ N(u) ∩N(v), contradicting the initial assumption.

The removal proof follows trivially. Assume that the EmEn of some vertex other
than u or v or a common neighbor of them has changed. Then inserting the removed
edge back will also result in a change for the EmEn of that vertex, which contradicts
the first part. By the same logic, EmEns of u, v, and vertices in N(u) ∩ N(v) will
change as a result of the removal.

Corollary 6. If u and v have no mutual neighbors and if an edge is inserted between
them, EmEns of u and v will gain an unconnected vertex v and u, respectively.

Theorem 13. Given a set of communities, the result of merging them based on an
overlap similarity threshold of β < 1 is sensitive to the merge order.

Proof. Assume that the merge-order is not important and same solution is obtained
for any given set and β coefficient. Say that we have three communities A =
{1, 2, 3}, B = {3, 4} and C = {4, 5, 6} and β = 0.5. If we merge A and B first,
then resulting communities will be AB = {1, 2, 3, 4} and C = {4, 5, 6}. However,
if B and C are merged first, then the resulting communities are A = {1, 2, 3} and
BC = {3, 4, 5, 6}. Therefore, the merge result is sensitive to the merge order.

Definition 15. For a find-and-merge type of algorithm, any set of communities that
is reached via some merge order, such that no further merges are possible between any
two communities, is a valid solution.

Theorem 14. Given the set of global communities GC, and the local communities
MC(g),∀g ∈ GC; if a local community l ∈MC(g′) that is part of a global community
g′ ∈ GC changes, then merging the set of local communities within MC(g′) plus the
remaining global communities GC \ {g′} will give a valid solution.

Proof. Proof follows from Definition 15. Since any merge order is valid as long as
no further merges are possible, we change the merge order of communities to get a
valid solution. When we merge the communities in

⋃
g∈GC\{g′}MC(g), we will get

GC \ {g′}. Then, merging GC \ {g′} with MC(g′) will give us GC. In other words, a
from-scratch merge can have such an order that results in first generating the global
communities in GC \{g′} and then merging in the local communities in MC(g′). This
is exactly what the incremental merge performs.
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Corollary 7. Given the set of global communities GC, and the local communities
MC(g),∀g ∈ GC; if a set of local communities L that are contained within a set
of global communities {gj} ⊂ GC change, then merging the local communities within⋃
jMC(gj) plus the remaining global communities GC\{gj} will give a valid solution.

7.5 The SONIC Algorithm

In this section, we introduce the SONIC algorithm for incremental overlapping com-

munity detection.

7.5.1 An Overview

SONIC is a find-and-merge style of community detection algorithm with a particular

focus on incremental processing, as it aims to support streaming updates. SONIC’s

algorithmic steps are as follows:

1. Find the vertices whose local communities are impacted upon an edge insertion

or removal.

2. Perform incremental, non-overlapping local community detection to update the

local communities of the impacted vertices.

3. Detect significant changes and terminate if a change in impacted local commu-

nities is found to be insignificant.

4. Incrementally merge communities and update the global communities.

(a) Determine a small set of communities to be merged.

(b) Perform recursive merge of these in an efficient manner.
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For local community detection SONIC uses the incremental label propagation

algorithm. The significant change detection capabilities of SONIC are described in

Section 7.6.1. In the rest of this section, we focus on the core capability of SONIC:

determining the set of communities to be merged, which is significantly smaller in

size compared to the entire set of local communities. The efficient procedures used

by SONIC to merge these communities are described in Sections 7.6.2 and 7.6.3.

7.5.2 SONIC Core

SONIC handles edge insertions/removals by locating the impacted local communities,

dissolving the global communities that contain them, replacing the impacted local

communities with their updated versions, and performing a partial re-merge to create

the new set of global communities.

In particular, when a new edge is inserted/removed, some local communities, say

L, are changed. Assume that these changed local communities are part of some set

of global communities, denoted by C(L) = {g : ∃l ∈ L s.t. l ∈ MC(g) ∧ g ∈ GC}.

Further assume that the local communities are replaced with their updated versions,

say L′. By Corollary 7, SONIC regenerates the new global communities by merging

L′ and GC \ C(L), that is:

GC ← merge(L′, GC \ C(L))
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To facilitate this merge, SONIC keeps track of which local communities were

merged to construct each global community. For this purpose, it keeps the following

additional data structures:

1. GC: For each vertex, the global community ids associated with that vertex.

2. LC: For each vertex, the local community ids associated with that vertex.

3. For each global community, the local community ids that constitute it.

4. For each local community, the global community id that it belongs to.

SONIC maintains global communities at each vertex to speedup the merge pro-

cess. Each vertex u can be part of at most |N(u)| local/global communities, requiring

O(|E|) storage for global community ids. In practice, the number of global communi-

ties a vertex u belongs to is considerably smaller than the upper bound of |N(u)|. The

total number of local communities, |LC|, can be at most 2 · |E|. Thus, keeping the

global communities with their constituent local communities also takes O(E) space.

Again, this happens only for the highly unlikely scenario of each edge belonging to a

different local community. Our evaluation shows that the space overhead of the data

structures kept by SONIC corresponds to a small constant times the number of edges

(see Section 7.7).

Given a graph G and global communities GC, if an edge (u, v) is inserted/removed,

SONIC updates the global communities using Algorithm 25. First, it performs the

insertion/removal. Then it checks the mutual neighbors of u and v. If there are no
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Algorithm 25: SONIC (G, (u, v), op, β, LC,GC)

Input: G: graph, (u, v): updated edge, op: operation (‘i’/‘r’) LC: local
communities, GC: global communities, β: merge factor

1 if op = ‘i′ then G← G ∪ {(u, v)} . Insertion operation
2 else G← G \ {(u, v)} . Removal operation
3 if N(u) ∩N(v) = ∅ then . No common neighbors
4 return . No update needed

5 S ← {u, v} ∪ (N(u) ∩N(v)) . Vertices with changed EmEn
6 R← {u 7→ LC(u) : u ∈ S} . Local comm. of vertices in S
7 incrLabelPropagation(S,LC) . Update local comm.
. Find the removed local communities

8 L− ← {l : l 6∈ LC(u) ∧ l ∈ R[u] ∧ u ∈ S}
. Find the added local communities

9 L+ ← {l : l ∈ LC(u) ∧ l 6∈ R[u] ∧ u ∈ S}
. Find the set of global communities to be dissolved

10 C ← {g : ∃l ∈ L− s.t. l ∈MC(g) ∧ g ∈ GC}
. Dissolve comm. in C, remove non-existing local comms.

11 F ← {MC(g) \ L− : g ∈ C}
12 GC ← GC \ C . Remove dissolved global comms.
13 merge(G, β,GC,F , L+) . Re-merge into global comms.

mutual neighbors, we know that only u’s and v’s EmEns change, and v and u are

added as unconnected vertices to the EmEns of u and v, respectively (see Corollary 6).

In this case, it assumes that there is no change in the local community structure of u

and v, and therefore it performs no further operation to update GC (line 4).

When u and v have mutual neighbors, the EmEns of u, v, and their mutual

neighbors change (see Theorem 12). Thus, SONIC collects these vertices in a set S

(line 5). Next, it creates a map R to keep the set of local communities associated

with the vertices whose EmEns has changed (line 6). This map temporarily keeps the

old local communities so that they can be compared to the new ones that are formed
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after the insertion/removal. The next step computes the new local communities by

running the incremental label propagation algorithm.

After updating the local communities, SONIC finds the set of old local communi-

ties that no longer exist, denoted by L− (line 8); as well as the set of newly created

local communities, denoted by L+ (line 9). Using L−, it finds the set of global com-

munities to be dissolved, denoted by C (line 10). These are the global communities

that currently contain nonexistent local communities. SONIC then dissolves each

such global community g by converting it into a set of local communities MC(g) and

removing the nonexistent local communities, that is MC(g) \L−. The end result is a

set of local community sets (denoted by F), where each one of the local community

sets represents a dissolved global community (line 11).

Finally, SONIC merges the set of dissolved global communities F and the new set

of local communities L+ together with the global communities that are kept intact,

that is GC \ C, using the merge factor β. In the base version of SONIC, we apply

the merge operation given in Algorithm 26, named incNaive.

The incNaive algorithm consists of three phases. The first one is called the

Distribute New Phase (lines 1 to 3). In this phase, the algorithm distributes the

newly created local communities, l ∈ L+, over the dissolved communities, F . To do

that, it selects a set F ∈ F for each l such that there is a community f ∈ F that

overlaps with l, i.e., f ∩ l 6= ∅. The goal here is to assign each new local community

to one of the dissolved communities where it is likely to merge with an existing local

258



community. This heuristic results in a higher number of cheaper merges in the second

phase, yet a lower number of more expensive merges in the third phase. Thus, it is

effective in reducing the overall merge cost.

The second phase is called the Regroup Dissolved Phase (lines 4 to 11). In this

phase, the algorithm performs a merge within each dissolved community F ∈ F ,

separately. The motivation is that it is highly likely for the local communities that

made up a dissolved global community to re-merge. By doing smaller-scale merges

that are localized to the dissolved communities, we aim at reducing the overall cost

of the merge. During the merge, the algorithm checks each pair of communities, fi

and fj, where j > i, to see if their overlap similarity is above the merge threshold β.

If so, it merges fj into fi and removes fj from its belonging set F . After it completes

the merge for a dissolved community, it adds the resulting merged communities to a

global merge list, denoted as L (line 11).

In the last phase, called the Global Merge Phase (lines 12 to 20), the algorithm

performs a merge between communities in the global merge list, that is L, and the

intact global communities, that is GC. Here we check whether any community within

the global merge list can be merged with each other (ci and cj, i < j), as well as with

any of the intact global communities (GC). This is why the outer loop’s body contains

loops that iterate over both L and GC. However, the outer loop only iterates over

L, because once all the communities in L are merged with the rest, the only possible

comparisons that remain are between the intact global communities, and we are
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Figure 7.1: Illustration of the community changes upon an edge insertion. After inserting
an edge between u and v, global community B evolves into a bigger global community G.

guaranteed that those cannot merge (as they are intact, and thus known to have

overlap similarity of less than β).

7.5.3 Illustrative Example

Figure 7.1 illustrates the community changes when we insert an edge into a sample

graph. The example assumes that the merge factor (β) is 1.0, i.e., two communities

can merge only if one of them is a subset of the other. The leftmost figure and table

show the global and local communities before the edge insertion is performed. Global

communities are shown with bold dashed lines and capital letter ids. For example,

community A is a global community consisting of vertices a, b, u, and w. Local

communities within the EmEns of ego vertices are given in the tables. For example,

in the leftmost table, community 2 is a local community belonging to the EmEn of

c, as well as v and w. The local communities that form a global community can also
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be read from the table. This can be achieved by finding all rows that contain the

target global community. The local communities corresponding to these rows form

the global community. For example, in the rightmost table, the global community

G is composed of the local communities 2, 7, and 8. Note that, finding the local

communities belonging to a global community does not require a full scan of the

table in the implementation. We make use of our data structures to access local

communities of a global community in constant time.

When we insert the edge (u, v), we first check the vertices whose EmEns are

changed. Based on Algorithm 25, those vertices are u, v and their mutual neighbors

w and x (all shown using larger circles in the figure). For each of these vertices, we

check if there is a change in their local community structure by performing incremental

label propagation (line 7 of Algorithm 25). For vertex w, it turns out that there is

no change in the local community structure, because the inserted edge is not strong

enough to bind local communities 1 and 2. Similarly, there is no change in the local

community structure of vertex x, as the inserted edge cannot cause a connection

between the local communities 3 and 4. On the other hand, the local community

structures of u and v change. After the removed and newly created local communities

are detected (lines 8 and 9 in Algorithm 25), local community 2 of vertex v is the only

removed local community in the new local community structure, i.e., L− = {(v, 2)};

whereas local communities 7 and 8 are the newly formed communities of vertices v

and u, respectively, i.e. L+ = {(v, 7), (u, 8)}. Next, we find the global communities
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to be dissolved and it turns out that global community B is the only one that must

be dissolved, i.e., C = {B} (local community 2 belongs to global community B)

. Then, we find F by dissolving B and subtracting local community 2 of v, i.e.,

F = {{(c, 2), (w, 2)}}.

Finally, we set GC = {A,C,D,E, F} and merge GC, F , and L+. After perform-

ing the first phase of Algorithm 26, we distribute both local communities in L+ to

the only F ∈ F and obtain F = {(c, 2), (w, 2), (v, 7), (u, 8)}. In the second phase,

we merge those four communities, shown with thin dashed lines in the middle figure,

and obtain the global community G. In the third phase, we attempt merging the

global community G with the communities in set GC, but no merge happens. The

rightmost figure shows the final global communities. The rightmost table shows the

set of local communities merged to form each global community. For example, local

communities 2, 7, and 8 form global community G. Overall, the global community B

from the leftmost figure evolved to form the global community G from the rightmost

figure.

7.6 SONIC Improvements

In this section, we describe improvements over the SONIC core.

7.6.1 Significant Change Detection

Insertion and removal of edges cause changes in the local community structure of

vertices. However, the base version of SONIC does not quantify the significance of
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these changes. In particular, any change that connects vertices that already have a

common neighbor leads to dissolving some global communities and performing the

merge step. As an improvement, we introduce the notion of significant change with

respect to the local community structure of vertices. When there is a change in

the local community structure of the EmEn of a vertex, we compare the existing

community structure to the new community structure using the Normalized Mutual

Information (NMI) index [50]. For two groups of local communities, L1 and L2, their

NMI is defined as follows:

NMI(L1, L2) =
I(L1;L2)

(H(L1) +H(L2))/2
,

where H(L1) and H(L2) are the entropies of L1 and L2, respectively; and I(L1;L2)

is the mutual information of L1 and L2:

I(L1;L2) = H(L1, L2)−H(L1|L2)−H(L2|L1),

where H(L1, L2) is the joint entropy of L1 and L2, and H(L1|L2) is the entropy of

L1 conditional on L2. The NMI values lie within the range [0, 1], where higher values

indicate higher similarity.

We compute the NMI for each vertex whose EmEn is impacted (set S in Algo-

rithm 25) by comparing the set of local communities in its EmEn before the inser-

tion/removal (R[u] for u ∈ S in Algorithm 25) with the ones after (LC(u) for u ∈ S in

Algorithm 25 after incremental label propagation). If this similarity is above a speci-

fied threshold, then we assume that there is no significant change and do not update
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L− and L+ with the removed and newly created local communities. Otherwise, we

update L− and L+ and also set the R[u] to LC(u), i.e., update the local community

structure. Continued changes in the graph structure are accumulated if no significant

change is observed in the community structure. We denote the threshold by α, and

name it as the significant change threshold. If α = 1, then every local change is

accepted as significant, whereas α = 0 means that any local change is regarded as

insignificant. As such, we take α ∈ (0, 1]

Using the α parameter provides the ability to adjust the trade-off between update

cost and the community detection accuracy. This is very useful, especially for sce-

narios where the update rate of the graph is high relative to the query rate. Setting

a lower α means that we do not keep the communities perfectly up to date after each

update. If the query rate is low, it is acceptable to have a lower α, as the staleness in

the responses will be relatively low compared to the query period. If the query rate

is high and the application can tolerate responses with less up-to-date data, it may

still be acceptable to have a lower α. This way, less computing resources are spent

on edge updates and more resources are available to respond to queries.

7.6.2 Minhash-based merge

In Section 7.5.2, we introduced the incNaive algorithm for performing the re-merge

of the communities. However, this algorithm is expected to get costly when the size of

the merged communities increase. This is because the cost of computing the overlap

similarity is linear in the size of the smaller set, since we keep the communities as
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hash sets. As the communities get larger and larger towards the end of the merge

process, this cost significantly increases. In this section, we propose an adaptation of

the min-hashing technique to alleviate this problem.

Min-hashing is a technique for quickly estimating the Jaccard similarity between

two sets [32]. Let A and B be two sets, then the Jaccard similarity between them

is given by |A ∩ B|/|A ∪ B|. Min-hashing uses n random hash functions to map the

elements of the two sets to values, and for each one of the hash functions, it finds the

smallest hash values for the two sets. If the smallest hash value for A and B agree

for m number of the hash functions, then the Jaccard similarity is estimated as m/n.

The probability of the minimum hash values of A and B being the same is equal to

the probability of the item having the minimum hash value being in the intersection

of the two sets. It is easy to see that the latter is equal to the Jaccard similarity, as

there are |A ∩B| items in the intersection and there are |A ∪B| items in total.

The speed advantage of min-hashing compared to the explicit computation is

that, min-hashing based similarity can be computed in O(n) time, where n is the

number of hash functions used. This number is expected to be smaller than the

size of the sets. Importantly, we assume that the min-hashes are computed once

for all the sets and many comparisons are made over these sets to compute pairwise

Jaccard similarities. The min-hashing based computation of the similarity will lose

its accuracy if the number of hash functions is small. As a result, there is a trade-off

between performance and accuracy that can be adjusted by setting n properly.
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One important problem in using min-hashing for our merge problem is that min-

hashing is based on Jaccard similarity, whereas we use overlap similarity for our merge

process. To convert a given overlap similarity coefficient (β) to the corresponding

Jaccard similarity coefficient (θ), we apply the following formula:

θ =
β

(1− β) + |B|/|A|
,

where |A| ≤ |B|. This is obtained as follows. We have β = |A ∩B|/|A| from the

definition of overlap similarity. Thus, |A ∩ B| = β · |A|. Since |A ∪ B| = |A|+ |B| −

|A∩B|, by plugging in β · |A| in place of |A∩B|, we get |A∪B| = (1−β) · |A|+ |B|.

From the definition of Jaccard similarity we have θ = |A ∩ B|/|A ∪ B| and plugging

in our derivations of |A ∩ B| = β · |A| and |A ∪ B| = (1 − β) · |A| + |B|, we get

θ = β/((1− β) + |B|/|A|).

In our min-hash based merge, we compute the nmin-hash values for each one of the

local communities to be merged only once. Later, when we merge two communities,

we only need O(n) operations to compute the new min-hash values for the merged

community, as we only need to take the smaller of the min-hash value pairs for each

hash function. As a result, we perform hashing only once over the base communities

and re-use the results many times during the merge. We evaluate the accuracy vs.

performance trade-off involved in setting the number of hash functions as part of our

experimental evaluation in Section 7.7.
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7.6.3 Inverted-Index based merge

In Section 7.6.2, we proposed the use of min-hashing as a cheaper alternative to

the explicit overlap similarity computations performed within the incNaive algo-

rithm during the re-merge of the communities. While min-hashing reduces the cost

of similarity computations, especially for large communities, the number of such com-

putations made for comparing communities for possible merges is still high. One idea

that comes to mind to alleviate this problem is locality-sensitive hashing (LSH ) [89].

The motivation behind using locality-sensitive hashing is to hash similar items to

the same buckets, so that the pair-wise similarity comparisons can be limited to the

confines of individual buckets. For our re-merge problem, this would significantly

reduce the number of similarity computations made and thus the overall merge time.

However, it has been shown that locality sensitive hash functions do not exist for the

overlap similarity metric [41]. As a result, the LSH technique cannot be adapted for

our problem.

In this section, we propose to leverage our support data structures, particularly

the global community ids for each vertex, to reduce the number of comparisons made

during the re-merge. This alternative merge algorithm, called incInvIndex, is based

on inverted indices of global communities. The algorithm attempts to make small

number of comparisons by traversing the vertices of communities to be merged and

computing their intersections with the surrounding communities via a simple counting

procedure, utilizing fast lookups and updates on a map structure.
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Algorithm 27 gives the pseudocode of incInvIndex. The algorithm consists of

two phases. The first one is called the Pre-formation Phase (lines 1 to 3). In this

phase, we collect both the local communities within the dissolved global communities

(F ∈ F) and the newly created local communities (L+) into L, called the global

merge list (line 1). We then update the data structure that keeps the list of global

communities each vertex belongs to (line 3). This data structure serves as the inverted

index. For each vertex u in a local community l within the global merge list L, we

remove the dissolved communities (GCC in the pseudocode, denoting anything other

than the intact communities) from its list of global communities GC(u), and add the

local community l as a global community to GC(u). After the first step is complete,

we are ready to merge L with the intact global communities in GC. Note that we

perform the update of the inverted index GC(u) as part of the first phase, so that we

can do efficient merges in the second phase.

The second phase is called the Global Merge Phase (lines 4 to 20). In this phase,

we merge L and GC. For each community l ∈ L, we check to see whether it can merge

with any other community in L or GC. But rather than doing this by iterating over

L and GC, we do it by using the inverted index. In particular, for each community

l ∈ L, we iterate over its vertices. For each vertex u ∈ l, we go over the global

communities that contain it. These communities are listed in the inverted index, as

G(u). For each such community g ∈ GC(u), we increment a counter stored in a map

data structure, denoted by M (line 9). M [g] represents the current count of common
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Figure 7.2: Conduc-
tance on real-world
graphs. Modularity is
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Figure 7.4: Quality
index scores on real-world
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vertices between l and g. The moment this value is high enough to satisfy the overlap

similarity condition (line 10), we can merge l and g. We do this by merging g into l.

We then remove g from either GC or L, depending on which one it came from. Finally,

we update the inverted index by removing g from the list of global communities G(v)

of each vertex v ∈ l, and adding l into the same (see line 17). Once a merge happens,

we need to break and go back to the start of processing l for new merges (line 19).

For this purpose, a boolean variable c is kept to break out of the inner two for loops

at once.

Note that, as in the incNaive algorithm, the outer loop only goes over the global

merge list L. As before, we know that once no more merges can happen between

L and any other community in L or GC, the intact communities in GC cannot get
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involved in any merges, since they cannot merge among themselves. As a result, we

return the final set of global communities as L ∪GC (line 20).

7.7 Experimental Evaluation

This section presents the evaluation of our algorithms using various datasets under

different scenarios. The first set of experiments focus on comparing the proposed

algorithms to the previous work with respect to the quality of the identified com-

munities. The second set evaluates the running time performance of our algorithms

when processing real-world datasets of different types and sizes. The third set com-

pares the running time performance of the different merge algorithms introduced in

Sections 7.5.2, 7.6.2 and 7.6.3. The fourth set investigates the impact of the two

algorithmic parameters, namely the significant change threshold (α) and the merge

factor (β), on the algorithm’s running time performance and community detection

quality. The last set of experiments compare the running time performance of our

algorithms when processing synthetic graphs of different sizes.

Setup. Algorithms were implemented in C++ and compiled with gcc 4.8.1 at -

O3 optimization level. Experiments were executed sequentially on a Linux operating

system running on a machine with an Intel Xeon E5520 2.27GHz CPU and 48GBs of

RAM.
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Datasets. We obtained real-world datasets from SNAP [166]. They are the co-

purchasing network (amazon0601 (AM)), friendship network (facebook (FB)), follower-

followee network (twitter (TW)) and email communication network (email-Enron

(EE)). We also extracted the co-authorship network of DBLP papers6. Table 7.1

shows the properties of these datasets. For each graph, we give its size, the time

taken to run the non-incremental find-and-merge algorithm and the memory space

overhead (in terms of number edges) of the support data structures used by our algo-

rithms. We also use synthetic graphs in our experiments, in order to better evaluate

the impact of changing graph size. These graphs, generated using SNAP’s R-MAT

generator [166], follow a power law vertex degree distribution and exhibit small world

properties. To achieve that, we set the partition probabilities of the generator to

[0.40; 0.25; 0.20; 0.15]. We set the average degree of the R-MAT graphs to 4.

7.7.1 Quality

In this section we evaluate the quality of the core SONIC algorithm and the improve-

ments introduced in Section 7.6, using real-world datasets. We use four previously

published state-of-the-art community detection algorithms for comparative evalua-

tion: Hierarchical Link Clustering (HLC) [5], Infomap [141], Modularity [130], and

DEMON [47]. HLC has been shown to outperform other existing overlapping commu-

nity detection algorithms. Infomap is a non-overlapping algorithm that aims to min-

imize the random walk entropy. Modularity is an eigenvector-based non-overlapping

6www.informatik.uni-trier.de/ ley/db/
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community detection method, which maximizes the modularity metric. DEMON

serves as our baseline, since it is the non-incremental (static) version of SONIC. It

is worth noting that our goal in this comparison is twofold: showing that (i) SONIC

performs similar to DEMON, (ii) SONIC is a competitive community detection al-

gorithm in terms of quality.

For the SONIC algorithms, we construct the communities by first bootstrapping

them with DEMON for the entire graph, then remove the randomly selected 10% of

edges by applying SONIC at each step and then inserting the same 10% by again

applying SONIC at each step. This way, we capture the impact of SONIC on the

quality of the communities. The significant change threshold α and the merge factor

β are both set to 1.0 to provide up-to-date and deterministic results. Remember that,

if β value is less than 1.0, output is non-deterministic (Theorem 13). In all figures,

SONIC NV represents core SONIC using incNaive merge algorithm (Section 7.5.2),

SONIC II represents SONIC using the incInvIndex merge algorithm (Section 7.6.3)

and SONIC MHx is SONIC using the minhash-based merge algorithm (Section 7.6.2)

with x number of hash functions.

In the first experiment, we quantify the quality of the communities found using

two metrics: conductance and cohesiveness. The conductance metric measures how

connected a community is to the rest of the graph. It measures the fraction of

total edge volume pointing outside of the community. If we denote the number of

edges crossing the boundaries of the community as |Eo| and the total number of
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edges of the community as |E|, then conductance is given by cd = |Eo|/|E|. Lower

conductance values imply better communities. In networks that contain overlapping

communities, communities are not disjoint and thus conductance is expected to be

relatively high compared to those that contain non-overlapping communities. The

cohesiveness metric quantifies how connected the members of a community are to

each other. That is, it measures the density of a community. If we denote the

number of edges within the boundaries of the community as |Ei| and the total number

of vertices in the community as |V |, then cohesiveness is given by ch = |Ei|/(|V | ·

(|V |−1|)/2). Higher values imply better communities. We also define a quality index

by combining conductance and cohesiveness by taking their geometric mean, that is

q =
√

(1− cd) · ch. The quality index metric provides a bigger picture to show the

impact of both conductance and cohesiveness. Algorithms balancing the two metrics

are expected to give higher scores for quality index. Since the number of communities

reported by each competitor algorithm is significantly different, we focus on top 1, 000

communities with the best quality index score and report the geometric means.

Figure 7.2 shows the results for the conductance metric. Modularity is the best

performing algorithm for most graphs since it optimizes the modularity metric to find

non-overlapping communities. The modularity metric measures the fraction of edges

that fall within the given communities minus the expected fraction of such edges if

all edges were distributed at random. Thus, it is closely related with the conductance

metric. We observe that DEMON, SONIC NV, and SONIC II perform very similar to
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Figure 7.5: NMI scores of SONIC MH wrt. DEMON with varying # of hash
functions on real-world graphs.

each other and rank competitive. For DBLP coauthor graph, all algorithms report the

same 1, 000 communities as the best ones, so their quality scores are same. Figure 7.3

shows the cohesiveness results. HLC and Infomap perform best for this metric in all

graphs and again DEMON, SONIC NV, and SONIC II perform similar to each other

and rank well.

Figure 7.4 shows the quality indexes for all graphs. SONIC variants and DEMON

show similar results and give almost the best results on amazon0601 and facebook

graphs. Overall, SONIC and DEMON provide a good balance between cohesiveness

and conductance, which cannot be said for any of the other algorithms.
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We also investigate how the number of hash functions affect the quality of the

communities found by SONIC when using the minhash-based merge. For this purpose,

we obtained the communities with different number of hash functions (from 1 to 64)

and measured the similarity of the results to those obtained by running the DEMON

algorithm. We applied a version of Normalized Mutual Index (NMI) that is adopted

for overlapping communities [103] as a scoring function to determine the similarity

between two sets of communities computed by SONIC and DEMON. If the two sets

of community are identical, then their NMI score is a perfect 1. Figure 7.5 shows the

NMI scores of SONIC with respect to DEMON algorithm. As expected, increasing

the number of hash functions provides results that are more similar to DEMON, since

the NMI increases. The same trend is observed for all graphs. For most of the graphs,

the NMI stabilizes after 16 hash functions.
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Figure 7.10: Impact of α on the email-
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vide significant speedups with little im-
pact on quality.

7.7.2 Running Time Performance

In this section, we evaluate the running time performance of SONIC II, which is

expected to be the best algorithm, on real-world graphs. Since all of our graphs are

originally static, we emulate the streaming algorithms by considering that the whole

set of vertices and edges constitute a sliding window snapshot. To evaluate streaming

execution, we first evict a random edge from the current graph. This emulates the

behavior of a full sliding window which opens space for inserting a new edge. We then

insert the same edge to preserve the graph structure. In this way, we preserve the

structure of the real dataset. As an important note, we do not assume any specific

data distribution with respect to which edges get inserted or removed. Furthermore,
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we make no assumptions regarding edge arrival rates. Instead, we use our algorithms

to process repeated removals and insertions as fast as possible.

We measure the average execution time for removing and inserting one edge to

each dataset. We set the significant change threshold α and the merge factor β to 1.0.

For speedup results, we compute the speedup of each single edge update with respect

to non-incremental (static) community construction and report the geometric mean

of speedups over multiple updates. Figure 7.6 shows the relative frequency of the two

code paths executed by SONIC (Algorithm 25) when inserting/removing the 1, 000

randomly picked edges, for each dataset. Recall that when the vertices connected

by the edge have no mutual neighbors, then the algorithm terminates early. If they

share neighbors, then the algorithm executes the merge step. We observe that, in

general, most updates result in a merge. However, depending on the structure of

the graph, a non-significant number of edges may take the early termination path.

For the facebook and twitter graphs, more than 93% of the edges result in a merge

operation, whereas this number is 85%, 60% and 77% on amazon0601, email-Enron

and DBLP coauthor graphs, respectively. The reason is that facebook and twitter

graphs have higher average degree and thus are denser than other graphs. When the

graph is denser, the probability of having a mutual neighbor for the incident vertices

of a randomly selected edge is higher.

Figure 7.7 shows the amortized running times of a single edge insertion and a

single edge removal. For all graphs, we manage to stay below 1 sec per edge insertion
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or removal. For the biggest two graphs, amazon0601 and DBLP coauthor, SONIC II

performs better, keeping the insertion/removal time below 0.01 sec.

Figure 7.8 shows the speedup of a single edge insertion and a single edge removal

relative to the non-incremental find-and-merge algorithms. We compute the speedup

by dividing the from-scratch computation time of entire graph to the one edge inser-

tion/removal time. We compute the geometric mean of all speedups. The resulting

speedup increases as the graph size gets larger, since it takes more time to re-compute

communities from scratch. For the amazon0601 and DBLP coauthor graphs, 8 and 9

orders of magnitude speedups are reached, respectively, which is impressive.

Experiments on Real Temporal Data:

Apart from the sliding window emulation scenario, we also investigated the perfor-

mance of the SONIC II algorithm using real temporal data from the DBLP coauthor

graph, which has an explicit ordering on the stream of edges based on timestamps. In

particular, we inserted the co-authorship edges for the papers published after January

1, 2013 and measured the resulting execution time and speedups. Average execution

time is 0.018 sec per edge insertion and average speedup observed is 405M, which is

8 orders of magnitude speedup over from-scratch computation.

7.7.3 Comparison of Merge Variants

In this section, we compare the runtime performance of different merge algorithms,

namely SONIC NV, SONIC II, and the SONIC MH variants. We use the same

experiment setup as in Section 7.7.2.
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Figure 7.9 shows the average of normalized insertion and removal speedups of

SONIC II and SONIC MH variants with respect to SONIC NV. The best performing

merge algorithm depends on the dataset. For the amazon0601 and DBLP coauthor

graphs, SONIC II performs the best with a significant difference, as it is 312 and 435

times faster than SONIC NV, respectively. In general, SONIC MH variants perform

better as the number of hash functions decrease. SONIC MH1 is 2.95 times faster than

SONIC NV whereas SONIC MH64 is 1.38 times faster. Considering the large sizes

of the amazon0601 and DBLP coauthor graphs, the low runtime of SONIC II can be

explained by the efficient merge operations. SONIC II, as explained in Section 7.6.3,

tries to merge only the spatially close communities (that have common vertices),

therefore provides an efficient merge operation. For the SONIC MH variants, the

trend is expected because as the number of hash functions decrease, the size of the

merged community signatures decrease as well, which results in lower execution times.

The email-Enron graph shows trend similar to the amazon0601 and DBLP coauthor

graphs for the SONIC MH variants. However, SONIC II is only slightly better than

the best MH variant. The facebook graph shows a different trend, where SONIC NV

is the fastest option.

Summary. Overall, the size and the structure of the graph have a significant im-

pact on the merge variant to be selected. For large size networks, like amazon0601,

SONIC II is the best option, whereas, denser graphs with smaller sizes, like facebook
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and twitter, SONIC MH variants can give better performance with best fitting num-

ber of hash functions. However, we need to keep in mind that with very few hash

functions, the quality results of the SONIC MH variants are not good (Figure 7.5).

As such, we conclude that the SONIC II merge algorithm is the most robust option

for general use.

7.7.4 The α and β Effect

In this section, we report the impacts of the significant change threshold (α) and the

merge factor (β) on the running time performance and community detection quality

of SONIC.
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For the significant change threshold experiment, we selected the email-Enron

dataset. We removed and inserted 1, 000 edges to our dataset using the SONIC NV

algorithm and experimented with different α values from 0.1 to 1.0. The β value is

fixed at 1.0. Remember that as the α value decreases, changes in the local community

structure are regarded as less significant and, therefore, less merge operations occur.

After the removals and insertions, we compute the NMI score of the communities

resulting from an α value variant with respect to the communities resulting from a

setting of α = 1.0. This way, we can see how much divergence occurs due to the lower

α values.

Figure 7.10 shows the NMI scores (using the right y-axis) for each α variant.

The figure also shows the average time taken (on the left y-axis) for removing and

inserting an edge as α varies. When we set α to 0.1, the quality degradation is not

that significant, as the average NMI decreases by only 14%. On the other hand, the

removal/insertion of an edge executes 45 times faster. Another observation is that

even if we set α to 0.9, we have speedups of 10.7 times, while sacrificing little in quality

(10%). These results show the advantage of using lower values for α parameter.

For the merge factor experiment, we chose the facebook dataset. As before, we

used the SONIC NV algorithm, but with a fixed value of α (1.0) and for different

values of β (0.1 to 1). Figure 7.11 shows the running time (using the left y-axis) and

the quality index (on the right y-axis) introduced in Section 7.7.1. We observe slower

running times as β decreases. The reason is that, increased number of merges are
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happening with lower values of β. On the other hand, the quality index for different

β values show a little variability and the quality of the communities resulting from

the settings we have used in the experiments, i.e., β = 1.0, is decent.

7.7.5 Scalability

In this section, we report the scalability of SONIC and its variants when processing

the synthetic R-MAT graphs of different sizes, which vary from 210 to 218 vertices.

We set both α and β to 1.0.

Figure 7.12 shows the average speedup for a single edge removal and insertion

as a function of increasing R-MAT graph size. We compute speedups with respect

to the from-scratch computation of communities with the DEMON algorithm. All

of the proposed algorithms present a scalable behavior with the increasing graph

size. As the scale gets larger, SONIC II shows outstanding performance, reaching to

3.1B times speedup, which is 9 orders of magnitude speedup over the from-scratch

computation. SONIC NV and SONIC MH variants show decent scalability results

as well, reaching 6 and 7 orders of magnitude speedups, respectively, but they are

not better than SONIC II. Considering the quality being traded off by SONIC MH

variants with small number of hashes, SONIC II turns out to be the best performing

algorithm for our scalability experiments.

The scalability experiments indicate how good our streaming algorithms can per-

form for different graph sizes when there are read queries (asking communities of a

vertex) interspersed with write queries (insertion and removal operations). Taking
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the R-MAT graph with the size of 218, we can see that if write/read ratio is less than

3.1B (the average speedup of one removal and one insertion), it is better to use our

SONIC II algorithm than computing communities from scratch.

7.8 Summary

In this chapter, we introduced incremental algorithms for the streaming overlapping

community detection problem. The main benefit of these algorithms is that they

provide maintenance of global community ids of the vertices in the graph, as updates

are taking place. This avoids the from-scratch computation of communities and brings

the ability to serve fresh community results to on-demand queries.

Our core SONIC algorithm produces high quality communities and is efficient in

terms of running time, when applied on the real-world and synthetic graphs of different

sizes. The core SONIC algorithm is further enhanced by techniques such as the

significant change detection, minhash based merge, and inverted-index based merge.

For instance, we reach 9 orders of magnitude speedup with our SONIC variant that

uses inverted-index based merge, compared to the from-scratch (non-incremental)

alternatives, on synthetic R-MAT graphs of size 218. Given the dynamic nature of

social networks and the importance of community detection analytics, we believe

that our incremental algorithms will be beneficial in many real-world applications

with streaming update requirements. Thanks to the outstanding execution times,

our algorithms will make it possible to analyze complete dynamic scenarios so that

community evolution trends can be observed in real social networks.
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Algorithm 26: incNaive Merge(G, β,GC,F , L+)

Data: G: graph, β: merge factor, GC: global communities, F : local community sets
of previously dissolved global communities, L+: newly created local
communities

. Perform the Distribute New Phase
1 for each l ∈ L+ do . For each new local comm.

. Find a suitable dissolved comm. for l
2 Find an F s.t. ∃f ∈ F, f ∩ l 6= ∅
3 F ← F ∪ {l} . Add local comm. to a dissolved comm.

. Perform the Regroup Dissolved Phase
4 L← ∅ . Initialize the global merge list
5 for each F ∈ F do . For each dissolved global comm.
6 for each fi ∈ F do
7 for each fj ∈ F, where j > i do
8 if overlap(fi, fj)≥ β then . There is a merge
9 fi ← fi ∪ fj . Merge latter into former

10 F ← F \ fj . Get rid of the latter

11 L← L ∪ F . Add merged comms. to global merge list

. Perform the Global Merge Phase
12 for each ci ∈ L do
13 for each cj ∈ L, where j > i do
14 if overlap(ci, cj)≥ β then . Meets merge criteria
15 ci ← ci ∪ cj . Merge latter into former
16 L← L \ cj . Get rid of the latter

17 for each gk ∈ GC do
18 if overlap(ci, gk)≥ β then . Meets merge criteria
19 ci ← ci ∪ gk . Merge latter into former
20 GC ← GC \ gk . Get rid of the latter

21 GC ← L ∪GC . Update the global comms.
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Algorithm 27: incInvIndex Merge(G, β,GC,F , L+)

Data: G: graph, β: merge factor, GC: global communities, F : local community sets
of previously dissolved global communities, L+: newly created local
communities

. Perform the Pre-Formation Phase
1 L← ∪F∈F F ∪ L+ . Put local comms. into the merge list
2 for l ∈ L do . For each comm. in the global merge list

. Update the global community mappings
3 GC(v)← GC(v) \GCC ∪ {l},∀v∈l
. Perform the Global Merge Phase

4 for each l ∈ L do . For each comm. in the merge list
5 M ← {}0 . Initialize the intersection counter map
6 c← false . Initialize the change flag (no changes)
7 for each u ∈ l do . For each vertex in the comm.
8 for each g ∈ GC(u) do . For global comms. of u
9 M [g]←M [g] + 1 . Incr. # of intersections

. Already meets merge criteria
10 if (M [g]/min(|l|, |g|)) ≥ β then
11 c← true . Mark the change
12 l← l ∪ g . Merge the communities
13 if g ∈ GC then . g is from intact comms.
14 GC ← GC \ g . Remove g from GC

15 else . g is from the global merge list
16 L← L \ g . Remove g from L

. Update the global community mappings
17 GC(v)← GC(v) \ {g} ∪ {l},∀v∈l
18 break . Break out of the loop

19 if c is true then break . Re-merge the new l

20 GC ← GC ∪ L . Update the global comms.
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Graph dataset
Number Number Average Batch Memory

of vertices of edges degree time overhead

amazon0601 (AM) 403, 394 3, 387, 388 8.39 16h 4.25 · |E|
facebook (FB) 4, 039 88, 234 21.84 5.530s 4.17 · |E|
email-Enron (EE) 36, 692 367, 662 10.02 3.42m 3.59 · |E|
twitter (TW) 81, 306 2, 684, 324 33.01 21.53m 3.68 · |E|
DBLP coauthor (DB) 1, 236, 220 15, 897, 220 12.85 76h 4.79 · |E|

Table 7.1: Real-world graph datasets and their properties
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Chapter 8: Conclusion, Future Plans and Open Problems

In this study, we proposed fast algorithms for different large-scale network an-

alytic problems. Firstly, we investigated how to manipulate the large networks by

leveraging special structures in the graph for fast centrality computation in Chap-

ter 2. BADIOS is introduced in that respect for fast betweenness and closeness

centrality computation. Then, we presented solutions for fast centrality computation

on cutting-edge hardware in Chapter 3. We made use of different techniques, such

as simultaneous BFS application for betweenness and closeness centrality computa-

tion, and vectorization for closeness centrality computation. After that, we proposed

different incremental/streaming algorithms for sliding window scenarios on different

problems. The problem of closeness centrality computation for dynamic graphs is

investigated and efficient computation filtering algorithms are presented in Chap-

ter 4. Furthermore, these algorithms are parallelized using a parallel framework,

Streamer. Streaming algorithms for dense subgraph discovery (k-core decomposi-

tion) and community detection problems are also investigated and efficient solutions

are proposed in Chapters 5 and 7. Obtained speedups are impressive and show the

significancy of our solutions for large-scale network analytics. Last, but not least,
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new dense subgraph discovery algorithms are introduced to find high-quality dense

subgraphs with hierarchy in Chapter 6, which are superior than state-of-the-art tech-

niques.

We hope that this dissertation will be useful for computer science people and

domain scientists working in sociology, bioinformatics, and web science. Each graph

analytics we have studied have many applications in those domains, and our algo-

rithms can be leveraged for making sense of different type of networks in a more

efficient manner under different setups, like incremental and parallel scenarios.

8.1 Limitations

There are some challenges we have faced in our work, which indicates some lim-

itations on our studies. Firstly, all of our algorithms are exact, in the sense that we

do not approximate a graph analytic. This may not be realistic for real-world use

cases, but we believe that our contributions can be used as a building block for fur-

ther analyses. Secondly, evaluating the results of a new graph analytics based on the

ground-truth information is quite challenging. For the dense subgraph discovery and

community detection problems, existing ground-truth information is quite dependent

to the domain. For instance, the densest region in a protein-protein interaction net-

work may not correspond to something meaningful and larger subgraphs with lower

densities are more of interest. Obtaining the “true” ground-truth for all domains, and

matching those ground-truth information with a generic algorithm does not seem to
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be a realistic goal. Instead, we believe that different algorithms might be adapted for

different domains while benefiting from the generic algorithms proposed.

8.2 Future Plans

We have several future directions for each of the work in this study. Our future

plans, classified with respect to the graph analytics problems, are as follows.

8.2.1 Fast and Incremental Centrality Computation

For this work, we plan to investigate incremental batch algorithms, where a set of

edges are inserted/removed from the graph at once. In a real-life scenario, write and

read queries do not have equal frequency. Most of the time, write queries are much

more frequent than the read queries. Accumulating the changes on the graph and

answering the read queries by minimum amount of work requires batch algorithms,

where a set of edges are inserted/removed to graph. In that respect, we plan to

work on batch algorithms for incremental closeness centrality computation, which will

result in more efficient solutions than the single edge insertion/removal algorithms.

8.2.2 Incremental and High-Quality Dense Subgraph Discov-
ery

The ongoing research for this work is pull-based scheduling algorithms for incre-

mental settings where algorithm is graph-oblivious. The assumptions in [145] is for

push-based settings, where each change in the topology of network is immediately
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known by the algorithm designer. However, in the pull-based method, this assump-

tion is no more valid. Graph traversal is assumed to be expensive and each topological

change can only be learned by probing a specified vertex. The goal is to find the set

of vertices to be probed so that the most accurate k-core decomposition is maintained

for the entire graph. A similar setting is used for page-rank problem in [18].

Apart from that, we plan to investigate application areas where our nucleus de-

composition is useful. One ongoing work is finding the dense subgraphs and hierarchy

among them in protein gene interaction networks. We plan to identify critical dense

regions in these networks and collaborate with domain scientists to make sense of

these subgraphs.

8.2.3 Streaming Overlapping Community Detection

Possible future works for this project includes the incremental batch algorithms,

and parallelization on cutting-edge hardware. Apart from the fast algorithms for this

problem, we also plan to investigate more meaningful metrics designed for overlapping

community detection problem.

8.3 Open Problems

Apart from our future plans, there are some interesting open problems for re-

searchers to extend our work.
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For graph manipulation via shattering and compressing the networks, new special

structures can be investigated. One such special subgraph is the two connected ver-

tices, where each vertex has degree of two. The interesting thing about this structure

is that, betweenness centrality and closeness centrality scores of those two vertices are

equal, since they are isomorphic. This equality can be leveraged and graph can be

compressed by replacing those two vertices and the edge between them with a super

vertex. The open problem with this approach is coming up with an attribute to be

maintained for correct centrality computation on the compressed graph.

Apart from the algorithmic solutions, a parallel incremental graph processing

framework can be designed and implemented for a set of graph problems. One com-

mon property in streaming k-core decomposition and streaming overlapping commu-

nity detection problems is that an impacted subgraph needs to be located upon each

edge insertion/removal. Parallelizing the set of insertions/removals without touching

their associated subgraphs is an interesting problem. Different scheduling techniques

can be investigated in that respect. Furthermore, an optimistic approach can be

chosen with a possible roll-back strategies for the accurate maintenance of graph

analytics.
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A novel application of parallel betweenness centrality to power grid contin-
gency analysis. In Proceedings of IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1–7, 2010.

[94] G. J. Katz and J. T. Kider, Jr. All-pairs shortest-paths for large graphs on the
GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Sym-
posium on Graphics Hardware, GH ’08, pages 47–55, Aire-la-Ville, Switzerland,
Switzerland, 2008. Eurographics Association.

[95] S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

[96] M.-S. Kim and J. Han. A particle-and-density based evolutionary clustering
method for dynamic networks. Proc. VLDB Endow., 2(1), Aug. 2009.

[97] S. Kintali. Betweenness centrality : Algorithms and lower bounds. CoRR,
abs/0809.1906, 2008.

[98] G. Kortsarz and D. Peleg. Generating sparse 2-spanners. Journal of Algorithms,
17(2):222–236, 1994.
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rithms for network management and analysis based on closeness centrality. In
CoRR, volume abs/1303.0422, 2013.

305
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