
26

Graph Manipulations for Fast Centrality Computation

AHMET ERDEM SARIYÜCE, Sandia National Laboratories
KAMER KAYA, Sabancı University
ERIK SAULE, University of North Carolina at Charlotte
ÜMİT V. ÇATALYÜREK, Georgia Institute of Technology

The betweenness and closeness metrics are widely used metrics in many network analysis applications.
Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality
computations faster is an important and well-studied problem. In this work, we propose the framework
BADIOS that manipulates the graph by compressing it and splitting into pieces so that the centrality
computation can be handled independently for each piece. Experimental results show that the proposed
techniques can be a great arsenal to reduce the centrality computation time for various types and sizes
of networks. In particular, it reduces the betweenness centrality computation time of a 4.6 million edges
graph from more than 5 days to less than 16 hours. For the same graph, the closeness computation time is
decreased from more than 3 days to 6 hours (12.7x speedup).

CCS Concepts: � Mathematics of computing → Paths and connectivity problems; � Information
systems → Data mining;

Additional Key Words and Phrases: Betweenness centrality, closeness centrality, shortest path

ACM Reference Format:
Ahmet Erdem Sarıyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. 2017. Graph manipulations for
fast centrality computation. ACM Trans. Knowl. Discov. Data 11, 3, Article 26 (March 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3022668

1. INTRODUCTION

Centrality metrics are crucial for detecting the central and influential vertices in
various types of networks, such as social networks [Lou et al. 2010], biological net-
works [Koschützki and Schreiber 2008], power networks [Jin et al. 2010], covert net-
works [Krebs 2002], and decision/action networks [Şimşek and Barto 2008]. The be-
tweenness and closeness are two intriguing metrics and have been implemented in
several tools that are widely used in practice for analyzing networks [Lugowski et al.
2012]. The betweenness centrality (BC) score of a vertex is the sum of the ratios of
the shortest paths between vertex pairs that pass through the vertex of interest to the
total number of shortest paths between them [Freeman 1977]. The closeness centrality

This work is partially supported by TÜBİTAK grant 115C018.
Authors’ addresses: A. E. Sarıyüce, Data Sciences & Cyber Analytics Department, Sandia National Lab-
oratories, 7011 East Avenue, Livermore, CA 94551, USA; email: asariyu@sandia.gov; K. Kaya, Faculty of
Engineering and Natural Sciences, Computer Science & Engineering, Sabancı University, Orhanlı/Tuzla
34956, Istanbul, Turkey; email: kaya@sabanciuniv.edu; E. Saule, Computer Science Department, University
of North Carolina at Charlotte, Woodward Hall 210D, 9201 University City Blvd, Charlotte, NC 28262,
USA; email: esaule@uncc.edu; Ü. V. Çatalyürek, School of Computational Science and Engineering, Georgia
Institute of Technology, Klaus Advanced Computing Building, 266 Ferst Drive, Atlanta, GA 30332, USA;
email: umit@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1556-4681/2017/03-ART26 $15.00
DOI: http://dx.doi.org/10.1145/3022668

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

http://dx.doi.org/10.1145/3022668
http://dx.doi.org/10.1145/3022668

26:2 A. E. Sarıyüce et al.

(CC) score of a vertex is the inverse of the sum of shortest distances from the vertex
of interest to all other vertices. Hence, contribution, load, influence, or effectiveness
of a vertex, while disseminating information through a network, is determined with
betweenness and/or closeness metrics. Although BC and CC have been proved to be
successful for network analysis, computing the centrality scores of all the vertices in
a network is expensive. Brandes proposed an algorithm for computing BC with O(nm)
and O(nm+ n2 log n) time and O(n+ m) space complexity for unweighted and weighted
networks, respectively, where n is the number of vertices and mis the number of vertex–
vertex interactions in the network [Brandes 2001]. Brandes’ algorithm is currently the
best algorithm for BC computations, and it is unlikely that general algorithms with
better asymptotic complexity can be designed [Kintali 2008]. However, it is not fast
enough to handle Facebook’s billion or Twitter’s 200 million users. Computing CC has
a similar cost.

We propose the BADIOS framework that uses a set of techniques (based on Bridges,
Articulation, Degree-1, and Identical vertices, Ordering, and Side vertices) for faster
BC and CC computation. The framework splits the network and reduces its size so
that the BC and CC scores of the vertices in two different pieces of network can be
computed correctly and independently, and hence, in a more efficient manner. It also
preorders the graph to improve cache utilization.

For the sake of simplicity, we consider only standard, shortest-path vertex-BC and
vertex-CC on undirected unweighted graphs. However, our techniques can be used
for other path-based centrality metrics, or other BC variants, e.g., edge and group be-
tweenness [Brandes 2008]. BADIOS can also be applied to weighted and/or directed
networks. Furthermore, it is compatible with the existing approximation and paral-
lelization techniques of the BC and CC computation.

BC computation of BADIOS is previously published in our earlier work [Sarıyüce
et al. 2013b]. In this article, we extend our earlier work by applying BADIOS framework
on CC computation. We apply BADIOS on a popular set of graphs with sizes ranging
from 6K edges to 4.6M edges. For BC, we show an average speedup of 2.8 on small
graphs and of 3.8 on large ones. In particular, for the largest graph we use, with 2.3M
vertices and 4.6M edges, the computation time is reduced from more than 5 days to less
than 16 hours. For CC, the average speedup is 2.4 and 3.6 on small and large networks.

The rest of the article is organized as follows: In Section 2, an algorithmic background
for CC and BC computation are given. The splitting and compression techniques for
CC and BC are explained in Sections 4 and 5, respectively. Section 6 gives experimen-
tal results on various kinds of networks. We give the related work in Section 7 and
summarize the article in Section 8.

2. NOTATION AND BACKGROUND

Let G = (V, E) be a network modeled as an undirected graph with n = |V | vertices and
m = |E| edges where each entity is represented by a vertex in V , and an interaction is
represented by an edge in E. Let �(v) be the set of vertices that are interacting with v.
A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

A path is a sequence of vertices such that there exists an edge between consecutive
vertices. A path between two vertices s and t is denoted by s � t. Two vertices u, v ∈ V
are connected if there is a path from u to v. If this is the case, dstG(u, v) = dstG(v, u)
shows the length of the shortest u � v path in G. Otherwise, dstG(u, v) = dstG(v, u) =
∞. If all vertex pairs are connected, we say that G is connected. If G is not connected,
then it is disconnected and each maximal connected subgraph of G is a connected
component, or a component, of G.

Given a graph G = (V, E), an edge e ∈ E is a bridge if G − e has more number of
connected components than G, where G−e is obtained by removing e from E. Similarly,
a vertex v ∈ V is called an articulation vertex if G − v has more connected components

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:3

than G, where G − v is obtained by removing v and its adjacent edges from V and E. The
graph G is biconnected if it is connected and it does not contain an articulation vertex.
A maximal biconnected subgraph of G is a biconnected component: if G is biconnected
it has only one biconnected component, which is G itself.

G = (V, E) is a clique if and only if ∀u, v ∈ V , {u, v} ∈ E. The subgraph induced by a
subset of vertices V ′ ⊆ V is G′ = (V ′, E′ = {V ′ × V ′} ∩ E). A vertex v ∈ V is a side vertex
of G if and only if the subgraph of G induced by �(v) is a clique. Two vertices u and v
are identical if and only if either �(u) = �(v) (type-I) or {u} ∪ �(u) = {v} ∪ �(v) (type-II).
A vertex v is a degree-1 vertex if and only if |�(v)| = 1.

2.1. Closeness Centrality

Given a graph G, the CC of u is be defined as

far[u] =
∑
v∈V

dstG(u,v)
=∞

dstG(u, v),

cc[u] = 1
far[u]

.

If u cannot reach any vertex in the graph, we take by convention cc[u] = 0.
For a sparse unweighted graph G = (V, E), the complexity of CC computation is

O(n(m+ n)) [Brandes 2001]. The pseudocode is given in Algorithm 1. For each vertex s ∈
V , the algorithm initiates a breadth-first search (BFS) from s, computes the distances
to the other vertices, and accumulates to cc[s]. Since a BFS takes O(m+ n) time, and
n BFSs are required in total, the complexity follows.

ALGORITHM 1: CC-ORG: Closeness Centrality Computation Kernel
Data: G = (V, E)
Output: cc[.]
for each s ∈ V do

Q ← empty queue
Q.push(s)
dst[s] ← 0
far ← 0
cc[s] ← 0
dst[v] ← ∞, ∀v ∈ V \ {s}
while Q is not empty do

v ← Q.pop()
for all w ∈ �G(v) do

if dst[w] = ∞ then
Q.push(w)
dst[w] ← dst[v] + 1
far ← far + dst[w]

end
end

end
cc[s] ← 1

far

end
return cc[.]

2.2. Betweenness Centrality

Given a connected graph G, let σst be the number of shortest paths from a source s ∈ V
to a target t ∈ V . Let σst(v) be the number of such s � t paths passing through a vertex

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:4 A. E. Sarıyüce et al.

v ∈ V , v
= s, t. Let the pair dependency of v to s, t pair be the fraction δst(v) = σst(v)
σst

. The
BC of v is defined by

bc[v] =
∑

s
=v
=t∈V

δst(v). (1)

ALGORITHM 2: BC-ORG: Betweenness Centrality Computation Kernel
Data: G = (V, E)
bc[v] ← 0, ∀v ∈ V
for each s ∈ V do

S ← empty stack, Q ← empty queue
P[v] ← empty list, σ [v] ← 0
dst[v] ← ∞, ∀v ∈ V \ {s}
Q.push(s), σ [s] ← 1, dst[s] ← 0
�Phase 1: BFS from s
while Q is not empty do

v ← Q.pop(), S.push(v)
for all w ∈ �(v) do

if dst[w] = ∞ then
Q.push(w)
dst[w] ← dst[v] + 1

end
if dst[w] = dst[v] + 1 then

1 σ [w] ← σ [w] + σ [v]
P[w].push(v)

end
end

end
�Phase 2: Back propagation

δ[v] ← 1
σ [v] , ∀v ∈ V

while S is not empty do
w ← S.pop()
for v ∈ P[w] do

2 δ[v] ← δ[v] + δ[w]
end
if w
= s then

3 bc[w] ← bc[w] + (δ[w] × σ [w] − 1)
end

end
end
return bc

Since there are O(n2) pairs in V , one needs O(n3) operations to compute bc[v] for all
v ∈ V by using (1). Brandes reduced this complexity and proposed an O(mn) algorithm
for unweighted networks [Brandes 2001]. The algorithm is based on the accumulation
of pair dependencies over target vertices. After accumulation, the dependency of v to
s ∈ V is

δs(v) =
∑
t∈V

δst(v). (2)

Let Ps(u) be the set of u’s predecessors on the shortest paths from s to all vertices in
V . That is

Ps(u) = {v ∈ V : {u, v} ∈ E, ds(u) = ds(v) + 1},

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:5

where ds(u) and ds(v) are the shortest distances from s to u and v, respectively. Ps
defines the shortest paths graph rooted in s. Brandes observed that the accumulated
dependency values can be computed recursively:

δs(v) =
∑

u:v∈Ps(u)

σsv

σsu
× (1 + δs(u)). (3)

To compute δs(v) for all v ∈ V \ {s}, Brandes’ algorithm uses a two-phase approach
(Algorithm 2). First, a BFS is initiated from s to compute σsv and Ps(v) for each v.
Then, in a back propagation phase, δs(v) is computed for all v ∈ V in a bottom-
up manner by using (3). Each phase considers all the edges at most once, taking
O(m) time. The phases are repeated for each source vertex. The overall complexity is
O(mn).

3. THE BADIOS FRAMEWORK

As mentioned in Section 1, closeness- and betweenness-based graph analysis can be an
expensive task. The size of the graph, in particular the size of the largest component in
the graph, is the main parameter that affects the practical computation time of many
distance-related graph metrics. Hence, compression techniques that can reduce the
number of vertices/edges in a graph are promising to make them faster. Furthermore,
splitting graphs into multiple connected components, and hence reducing the largest
component size, can also help in practice.

BADIOS uses bridges and articulation vertices for splitting graphs. These structures
are important since for many vertex pairs s, t, all s � t (shortest) paths are passing
through them. It also uses three compression techniques, based on removing degree-1,
side, and identical vertices from the graph. These vertices have special properties:
No shortest path is passing through a side vertex unless the side vertex is one of
the endpoints, all the shortest paths from/to a degree-1 vertex is passing through
the same vertex, and for two vertices u and v with identical neighborhoods, bc[u]
and bc[v] (cc[u] and cc[v]) are equal. A toy graph and a high-level description of the
splitting/compression process via BADIOS is given in Figure 1.

As shown in Figure 1, BADIOS applies a series of operations as a preprocessing
phase: Let G = G0 be the initial graph, and G� be the one after the �th splitting/
compression operation. The � + 1th operation modifies each connected component of
G� and generates G�+1. The preprocessing continues if G�+1 is amenable to further
modification. Otherwise, it terminates and the final CC (or BC) computation begins.

Exploiting the existence of above-mentioned structures on CC and BC computations
can be crucial. For example, all non-leaf vertices in a binary tree T = (V, E) are artic-
ulation vertices. When Brandes’ algorithm is used, the complexity of BC computation
is O(n2). One can do much better: Since there is exactly one path between each vertex
pair in V , for v ∈ V , bc[v] is equal to the number of pairs communicating via v, i.e.,
bc[v] = 2 × ((lvrv) + (n− lv − rv − 1)(lv + rv)) where lv and rv are the number of vertices in
the left and right subtrees of v, respectively. This approach takes only O(n) time. These
equations can also be modified for CC computations and a linear-time CC algorithm
can also be obtained for trees.

A novel feature of BADIOS is fully exploiting the above-mentioned structures by
employing an iterative preprocessing phase. Specifically, a degree-1 removal can create
new degree-1, identical, and side vertices. Or, a splitting can reveal new degree-1
and side vertices. Similarly, by removing an identical vertex, new identical, degree-1,
articulation, and side vertices can appear. At last, new identical vertices can be
discovered when a side vertex is removed from the graph. To fully reduce the graph

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:6 A. E. Sarıyüce et al.

Fig. 1. (1) a is a degree-1 vertex and b is an articulation vertex. The framework removes a and also creates a
clone b′ to represent b in the bottom component. (2) There is no degree-1, articulation, or identical vertex, or
a bridge. However, vertices b and b′ are now side vertices and they are removed. (3) Vertex c and d are now
type-II identical vertices: d is removed, and c is kept. (4) Vertex c and e are now type-I identical vertices: e is
removed, and c is kept. (5) Vertices c and g are type-II identical vertices and f and h are now type-I identical
vertices. The last reductions are not shown but the bottom component is compressed to a singleton vertex.
The five cycle above cannot be reduced. Rightmost figure shows the situation of reach and ff values in the
second stage of manipulation. Values are shown next to each vertex.

by using the newly formed structures, the framework uses a loop where each iteration
performs a set of manipulations on the graph.

4. BADIOS FOR CLOSENESS CENTRALITY

Based on the combinatorial structures mentioned above, we describe a set of closeness-
preserving graph manipulation techniques to make a graph smaller and disconnected
while preserving the information required to compute the distance-based metrics by
using some auxiliary arrays. The proposed techniques will especially be useful on
expensive distance-based graph kernels such as CC that will be our main application
while describing the proposed approach.

In the preprocessing phase, BADIOS compresses the graph G, splits it into multiple
connected components and obtains another graph G′ = (V ′, E′) with several graph ma-
nipulations. Let u be a vertex in V ′ and C ′ be the connected component of G′ containing
u. Let Ru be the set of vertices v ∈ (V \C ′)∪{u} such that all the shortest v � w paths in
the original graph G are passing through u for all w ∈ C ′. In G′, all the vertices Ru \ {u}
are disconnected from the vertices in C ′. Hence, for each vertex v ∈ Ru, u will act as
a representative (or proxy) in C ′. During the CC computation, it will be responsible
to propagate the impact of v to the CC values of all the vertices in C ′. To handle the
impact of vertices that u serves as a proxy, we define reach[u] = |Ru| that is the number
of vertices represented by u. reach attribute helps to correctly compute the CC scores
when the graph is split. Initial reach values of all vertices is 1, which implies each
vertex only represents itself.

Apart from the split operations, we also compress the graph by removing the vertices
and edges. Impact of the removed edges on the CC scores of vertices in G′ should be con-
sidered. For this purpose, we propose the forwardable farness scores to be maintained
at each vertex. Considering Ru, and the vertex u, as explained above, we calculate the
sum of shortest distances from u to all the vertices in Ru, which is forwardable to other

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:7

vertices if u is also removed in the following steps of preprocessing. We denote the
forwardable farness by ff, and formally define it as follows:

ff[u] =
∑
v∈Ru

dstG(u, v).

Initially, all the ff values are set to 0, since there is no compression/split yet, and
thus there is no farness to forward.

ALGORITHM 3: CC-REACH: Modified Closeness Centrality Computation
Data: G′ = (V ′, E′), ff[.], reach[.], far[.]
Output: cc[.]
for each s ∈ V ′ do

· · · �same as CC-ORG
while Q is not empty do

v ← Q.pop()
for all w ∈ �G′ (v) do

if dst[w] = ∞ then
Q.push(w)
dst[w] ← dst[v] + 1

1 fwd ← ff[w] + (dst[w] × reach[w])
2 far[s] ← far[s] + fwd

end
end

end
3 far[s] ← far[s] + ff[s]
4 cc[s] ← 1/far[s]

end
return cc[.]

Incorporating all the split and compression operations to the CC computation also
needs to change the main kernel that is presented in Algorithm 1. We present Algo-
rithm 3 to show the changes made to the original kernel. The first change we need to
do is to maintain the farness value of each vertex during computation. In the original
kernel (Algorithm 1), we just calculated that value (shown as far) for each vertex dur-
ing the BFS operation when that vertex serves a source. However, in the preprocessing
phase, we partially compute each far value that requires a temporary storage. We use
far array for this purpose, which is used in lines 2, 3, and 4 in Algorithm 3.

The next change to the original kernel happens during the farness accumulation in
the most inner loop. Here, we need to consider the vertices that the traversed vertex w
represents, which is defined as reach[w], and update the farness for each such vertex.
Hence, we multiply the computed distance from source s to w by the reach[w] value,
as shown in line 1. Furthermore, we forward the farness score at w (ff[w]) to far[s] in
the same line.

Last change is regarding to the forward farness score at source s. We add ff[s] to
its total farness score (in line 3) to consider the impact of removed edges that are only
reachable through s.

In the following, we present and explain the adjustments to the reach and ff val-
ues of vertices upon splits and compressions. After that we present the necessary
post-processing steps and introduce the theorem to prove the correctness of CC scores
by using reach and ff values.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:8 A. E. Sarıyüce et al.

Fig. 2. Articulation vertex cloning on a toy graph with three disconnected components after the graph
manipulation.

4.1. Closeness-Preserving Graph Splits

We used two approaches to split the graphs into multiple connected components: ar-
ticulation vertex cloning and bridge removal. Indeed, a bridge exists only between
two articulation vertices, but we still handle it separately, since we observed that a
bridge removal is cheaper than articulation vertex cloning and also the former does
not increase the number of vertices but the latter does.

4.1.1. Articulation Vertex Cloning. Let u be an articulation vertex in a component C ap-
peared in the preprocessing phase where we perform graph manipulations. We split C
into k components Ci for 1 ≤ i ≤ k by removing u from G and adding a local clone u′

i of
u to each new component Ci by connecting u′

i to the same vertices u was connected in
Ci as shown in Figure 2. For CC computations, to keep the relation between the clones
and the original vertex, we use a mapping org from V ′ to V where org(u′

i) is original
vertex u ∈ V for a clone u′

i ∈ V . At any time of a CC preprocessing phase, a vertex u ∈ V
has exactly one representative u′ in each component C such that reach[u′] is increased
due to the existence of u. This vertex is denoted as rep(C, u). Note that each local clone
is a representative of its original.

The cloning operation keeps the number of edges constant but increases the number
of vertices in the graph. reach value of a vertex u reflects the number of vertices that
u serves as a proxy. Thus, the articulation vertex and each of its clones should be
updated to reflect the number of vertices in all the connected components that they are
disconnected to. Formally, we update the reach value each clone ui as follows:

reach[u′
i] = reach[u] +

∑
v∈C\Ci

reach[v]. (4)

Following the same logic, each clone should get the forwarded farness scores from
the vertices in all the connected components that they are not connected. Thus, in each
component, we need to calculate the sum of distances from the clone vertex ui to all
the other vertices, and forward this farness score to all the other clones. For each clone
vertex ui, update on ff scores is as follows:

ff[u′
i] = ff[u] +

∑
1≤ j≤k

j
=i

∑
v∈C j

dstC j (u
′
j, v), (5)

for 1 ≤ i ≤ k. Note that these updates are only local to clone vertices, i.e., only their
reach and ff values are affected. For example, a clone vertex u′

i sees the impact of
the dstC(u, v) on ff[u′

i] even though v ∈ Cj , i
= j, is in another component after the
split. However, the same is not true for a non-clone vertex w /∈ Cj . Hence, considering
that v and w are not connected anymore, the original CC kernel in Algorithm 1 will
not compute the correct CC values. To alleviate this, we modified the original kernel
and presented Algorithm 3 to propagate the forwardable farness values of the clone

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:9

vertices to their components. With the modified kernel, we will have

cc[u] = cc′[u′
i], (6)

for 1 ≤ i ≤ k. That is, all the vertices cloned from the same articulation vertex will
have the same CC after the execution of the modified kernel, which will be equal to the
actual centrality of the articulation vertex used for splitting.

4.1.2. Bridge Removals. As mentioned above, bridges can only exist between two articu-
lation vertices. The graph can be split into three connected components via articulation
vertex cloning where one of the components will be a trivial one having a single edge
and two clone vertices. Here, we show that the removal of a bridge {u, v} can combine
these steps and does not form such unnecessary trivial components. Let Cu and Cv be
the two components after bridge removal that contain u and v, respectively. Vertex u
should represent all the vertices in Cv and symmetrically v needs to represent all in
Cu. Thus, reach values are updated to reflect these changes as follows:

reach[u] = reach[u] +
∑
w∈Cv

reach[w], (7)

reach[v] = reach[v] +
∑
w∈Cu

reach[w]. (8)

Another aspect we need to consider is the forwarded farness values. Consider vertex
u (all the following applies to v symmetrically). First, we should forward ff[v] to u,
which will be further forwarded to the vertices in Cu during the CC computation. Next,
we need to consider the distances from v to all the other vertices in Cv, and forward
their sum to ff[u], which can be expressed as

∑
w∈Cv

dstCv
(v,w). And at last, we take

the set vertices that vertex v represents, Rv, into account. We do not know the distance
from each of those vertices to v, but need to consider their impact on ff[u]. The nice
thing is that for each such vertex x ∈ Rv, the difference between its distance to u
and v (dstG(x, u) − dstG(x, v)) is always 1, since v is always on the shortest path to
u. Leveraging this fact, we just add the sum of these differences, which is reach[v],
to ff[u] and complete all the update operations. All these changes are summarized
formally as follows:

ff[u] = ff[u] +
⎛
⎝ff[v] +

∑
w∈Cv

dstCv
(v,w)

⎞
⎠ + reach[v],

ff[v] = ff[v] +
⎛
⎝ff[u] +

∑
w∈Cu

dstCu(u, w)

⎞
⎠ + reach[u],

where reach[u] and reach[v] are the recently updated values from (7) and (8).
To update the reach and ff values, both the cloning and removal techniques described

above require a traversal within the component of the graph in which the articulation
vertex or bridge appears. Although it seems costly, the benefit of such manipulations can
be understood if the superlinear complexity of CC computation is considered. Assume
that a graph is split into k disconnected components each having equal number of
vertices and edges. Considering the O(n(m+ n)) time complexity, the CC computation
for each of these components will take k2 times less time. Since there are k of them,
the split will provide a k fold speedup in total. Although such articulation vertices
and bridges that evenly split the graph do not appear in real-world graphs, even with
imbalanced splits, one can obtain significant speedups since the cost of a split is just a
single BFS traversal.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:10 A. E. Sarıyüce et al.

Fig. 3. A toy graph where G2 is compressed via manipulations and a degree-1 vertex u is obtained.

4.2. Closeness-Preserving Graph Compression

In this section, we present two closeness-preserving techniques that can be used to
reduce the number of vertices and edges in a graph: (1) degree-1 vertex removal and
(2) side-vertex removal.

4.2.1. Compression with Degree-1 Vertices. A degree-1 vertex is a special instance of a
bridge and can be handled in a way that is explained in the previous section. However,
the previous approach traverses the entire component once to update the reach and ff
values. Here, we propose another approach with O(1) operations per vertex removal
that requires a post-processing after the CC scores of the remaining vertices are com-
puted by the modified kernel.

Figure 3 shows a simple example where a degree-1 vertex u appears after the sub-
graph G2 is compressed into a single vertex after a set of graph manipulations. Again
we focus on reach and ff values of the vertices that the removed edge is connected to.
Regarding vertex v, changes are actually the same as the bridge removal. Since there
is no vertex in u’s connected component, summation terms are just omitted. Hence,
updates are as follows:

reach[v] = reach[v] + reach[u], (9)

ff[v] = ff[v] + ff[u] + reach[u]. (10)

Regarding the updates on vertex u, we choose the lazy computation for efficiency,
which means that the far[u] is marked to computed once the far[v] is finalized. The
only information that needs to be remembered is the difference between those two
farness values, which is easy to compute. Considering Figure 3, the final far[u] can be
thought as the summation of three terms:

—
∑

x∈G1
dstG1 (x, u) = ∑

x∈G1
dstG1 (x, v) + |G1|,

—ff[v]; the farness forwarded by v (before removing the edge),
—ff[u]; as shown in line 3 of Algorithm 3.

Note that the first term is expressed in terms of the distances from each vertex to
v. For any vertex x ∈ G1, distance to u is always one more than the distance to v, so
dstG1 (x, u) = dstG1 (x, v) + 1. Hence,

∑
x∈G1

dstG1 (x, u) = ∑
x∈G1

dstG1 (x, v) + |G1|.
On the other hand, far[v] can also be thought of combination of two terms:

—
∑

x∈G1
dstG1 (x, v),

—updated ff[v].

In summary, we have the following for u:

far[u] =
∑
x∈G1

dstG1 (x, v) + |G1| + ff[v] + ff[u]. (11)

Substituting |G1| with |V | − reach[u]

far[u] =
∑
x∈G1

dstG1 (x, v) + |V | − reach[u] + ff[v] + ff[u]. (12)

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:11

And following for v:

far[v] =
∑
x∈G1

dstG1 (x, v) + ff[v], (13)

where the updated ff[v] can be expanded as follows by Equation (10)

far[v] =
∑
x∈G1

dstG1 (x, v) + ff[v] + ff[u] + reach[u]. (14)

So, the difference by Equations (12) and (14) is

far[u] − far[v] = (|V | − reach[u]) − reach[u] (15)
= |V | − 2 × reach[u]. (16)

Hence, once the overall farness value of v is computed, the farness value of u can be
computed via a simple addition during the post-processing phase.

4.2.2. Compression with Side Vertices. Let u be a side vertex appearing in a component
during the graph manipulation process. No shortest path is passing through u except
the ones starting or ending at u, i.e., u is always on the sideways, since �(u) is a clique.
Hence, we can remove u if we compensate the effect of the all shortest paths where u
is either source or target. To do this, we initiate a BFS from u in the original graph G
as shown in Algorithm 4.

ALGORITHM 4: Side-Vertex Removal BFS for Closeness Centrality
Data: side vertex u, G = (V, E), far[.]
Q ← empty queue
Q.push(u)
dst[u] ← 0
dst[v] ← ∞, ∀v ∈ V \ {u}
while Q is not empty do

v ← Q.pop()
for all w ∈ �G(v) do

if dst[w] = ∞ then
Q.push(w)
dst[w] ← dst[v] + 1
far[u] ← far[u] + dst[w]

1 far[w] ← far[w] + dst[w]
end

end
end
cc[u] ← 1/far[u]

The main difference between the BFS in side-vertex removal and in the original
implementation in the main loop of Algorithm 1 is line 1 (of Algorithm 4) that adds
dst[w] to far[w] for each traversed vertex w. This handles the shortest paths where
the side vertex is the target and each traversed vertex is the source. To do that a single
variable to store the farness value (as in Algorithm 1) is not sufficient since side-vertex
removals update the farness values partially and these updates need to be stored till
the end of the graph manipulation process. That is why we used an additional far array
to perform side-vertex removal operations, which is also explained at the beginning of
Section 4.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:12 A. E. Sarıyüce et al.

This compression technique has a little impact on the overall time since for a side
vertex removal, an additional BFS (Algorithm 4) is necessary and it is almost as
expensive as the original BFS (of Algorithm 1) that we try to avoid. However, the
important benefit is that these removals can reveal new special vertices during the
manipulation process that also enable further splits and compression of the graph in a
cheaper way.

4.3. Combination of Techniques and Post-Processing

We continuously process a reduction on the graph with split and compression operations
until no further reduction is possible. We first perform degree-1 removals since they are
the cheapest to handle. Next, we split the graph by first bridges and then articulation
vertex clones. The order is important for efficiency since the former is cheaper. We
iteratively use these three techniques until no reduction is possible. After that we
remove the side vertices to discover new special vertices. The reason behind delaying
the side-vertex removals is that its additional BFS requirement makes it expensive
compared to the other graph manipulation techniques. Hence, we do not use them
until we really need them.

After all the graph manipulation techniques, the original CC kernel given in Algo-
rithm 1 cannot compute the correct centrality values since it does not forward the ff
values to the other vertices. We apply the modified version presented Algorithm 3 to
compute the CC scores once the split and compression operations are done and reach
and ff attributes are fixed.

THEOREM 4.1. Let G = (V, E) be the original graph and G′ = (V ′, E′) be the reduced
graph after split and compression operations with reach, ff, and far attributes com-
puted for each vertex v ∈ V ′. For all the vertices in V ′, the CC scores of G computed by
Algorithm 1 is the same with the CC scores of G′ computed by Algorithm 3.

PROOF. For a source vertex s ∈ V ′ and another vertex w
= s that is connected to s in
G′, ff[w] is forwardable to far[s] by using the equation at lines 1 and 2 of Algorithm 3.
Remember that for a vertex w ∈ G′, all the reach[w] vertices in Rw are not connected
to s. Although they are represented by w and from s (and from any vertex in the
same component), they are reachable only through w. Since the shortest-path distance
between s and w is dst[w], the vertices in Rw are dst[w] more edges far away from s
when compared to w. Thus, an additional dst[w] × reach[w] farness is required while
forwarding the ff[w] value to far[s].

At the end of the algorithm (line 3), we have an extra addition of ff[s] to the total
farness value of s. It is required since while computing the total farness of s and its cc
score, we need to consider the farness due to the vertices in Rs.

4.3.1. Work Filtering with Identical Vertices. If some vertices in G′ are identical, i.e., their
adjacency lists are the same, the forwardable farness values from other vertices to
their overall farness will be the same. Hence, it is possible to combine these vertices
and avoid extra computation in Algorithm 3. We use two types of identical vertices: u
and v are type-I (or type-II) identical if and only if �(u) = �(v) (or �(u)∪{u} = �(v)∪{v}),
as exemplified in Figure 4.

For each identical vertex set, we compute the farness value for only one represen-
tative. Let G′ = (V ′, E′) be the reduced graph after preprocessing operations, and let
I ⊂ V ′ be a set of identical vertices. We select a proxy vertex u ∈ I, compute its
overall farness (far[u]) to other vertices and CC score as shown in the main loop of
Algorithm 3. Then, for each vertex v ∈ I, we just need to reflect the farness differences.
Assume the identical vertex set is type-I, so distances between each pair of identical
vertex (dstG(u, v) where u, v ∈ I) is 2. far[u] includes the term that is shown in line 1

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:13

Fig. 4. Type-I (left) and type-II (right) identical vertices u and v.

of Algorithm 3 for all v ∈ I. Summation of these terms that considers the pairwise
distances between all identical vertices can be expressed as follows:∑

v∈I∧v
=u

(2 ∗ reach[v] + ff[v]) =
∑
v∈I

(2 ∗ reach[v] + ff[v]) − (2 ∗ reach[u] + ff[u]). (17)

Here, far[u] also has the ff[u] as the last addition (line 3 of Algorithm 3). If we
subtract that and the term in Equation (17) from far[u], the residual will be a com-
mon term that takes place in the farness value of each identical vertex, which is the
following:

far[u] −
(∑

v∈I
(2 ∗ reach[v] + ff[v]) − (2 ∗ reach[u] + ff[u]) + ff[u]

)
(18)

= far[u] −
∑
v∈I

(2 ∗ reach[v] + ff[v]) + 2 ∗ reach[u]. (19)

Now we find far[w] for an identical vertex w ∈ I s.t. w
= u. We actually just add the
sum of the terms in line 1 of Algorithm 3 for each identical vertex (Equation (17)) and
also include ff[w] (line 3 of Algorithm 3). In summary,

far[w] = far[u] −
∑
v∈I

(2 ∗ reach[v] + ff[v]) + 2 ∗ reach[u] (20)

+
∑
v∈I

(2 ∗ reach[v] + ff[v]) − (2 ∗ reach[w] + ff[w]) + ff[w], (21)

which gives

far[w] = far[u] + 2 ∗ (reach[u] − reach[w]). (22)

Hence, difference of farness values just depends on the reach values of vertices. For
type-II identical vertices, we replace 2 by 1, since the distance among each identical
pair is 1.

4.3.2. Post-Processing for the Degree-1 Vertices. Once Algorithm 3 is done, the only re-
maining part is computing the CC scores of removed degree-1 vertices since they are
not in G′ anymore. To do that, we resolve the dependencies created when the degree-1
vertices are being removed. We do a loop on the vertices, and for each vertex u we
visit, we check if u’s CC score is already computed. If not, we recursively follow the
dependencies to find the final representative vertex in G′. While coming back from
the recursion path, we use Equation (16) to find the farness and the CC score(s) of
the removed degree-1 vertices. Since the dependencies form a tree and at most O(1)
operations are performed per vertex, we need at most O(|V |) operations to resolve all
the dependencies.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:14 A. E. Sarıyüce et al.

5. BADIOS FOR BETWEENNESS CENTRALITY

Here, we propose a set of betweenness-preserving graph manipulation techniques simi-
lar to the ones described for CC. The proposed techniques will make the original graph
G = (V, E) smaller and disconnected while preserving the information required to
compute the distance-based metrics by using some auxiliary arrays.

5.1. Betweenness-Preserving Graph Splits

To correctly compute the BC scores after splitting G, we use the reach attribute as
described above and set reach[v] = 1 for all v ∈ V before the manipulations.

5.1.1. Articulation Vertex Cloning. Let u be an articulation vertex in a component C ob-
tained during the preprocessing phase whose removal splits C into k (connected) com-
ponents Ci for 1 ≤ i ≤ k. As in CC, we remove u and keep a local clone u′

i at each
component Ci. For BC on BADIOS, the reach values for each local clone are set with

reach[u′
i] =

∑
v∈C\Ci

reach[v] (23)

for 1 ≤ i ≤ k.
Algorithm 5 computes the BC scores of the vertices in a split graph. Note that the

only differences with BC-ORG are lines 1 and 3, and if reach[v] = 1 for all v ∈ V , then
the algorithms are equivalent. Hence, the complexity of BC-REACH is also O(mn) for a
graph with n vertices and m edges.

Let G = (V, E) be the initial graph, |V | = n, and G′ = (V ′, E′) be the split graph
obtained via preprocessing. Let bc and bc′ be the scores computed by BC-ORG(G) and
BC-REACH(G′), respectively. We will prove that

bc[v] =
∑

v′∈V ′|org(v′)=v

bc′[v′], (24)

when the graph is split at articulation vertices. That is, bc[v] is distributed to bc′[v′]s
where v′ is a local clone of v. Let us start with two lemmas.

ALGORITHM 5: BC-REACH: Modified Betweenness Centrality Computation
Data: G′ = (V ′, E′) and reach
bc′[v] ← 0,∀v ∈ V ′

for each s ∈ V ′ do
· · · �same as BC-ORG
while Q is not empty do

· · · �same as BC-ORG
end

1 δ[v] ← reach[v] − 1,∀v ∈ V ′

while S is not empty do
w ← S.pop()
for v ∈ P[w] do

2 δ[v] ← δ[v] + σ [v]
σ [w] × (1 + δ[w])

end
if w
= s then

3 bc′[w] ← bc′[w] + (reach[s] × δ[w])
end

end
end
return bc’

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:15

LEMMA 5.1. Let u, v, s be vertices of G such that all s � v paths contain u. Then,
δs(v) = δu(v).

PROOF. For any target vertex t, if σst(v) is positive, then

δst(v) = σst(v)
σst

= σsuσut(v)
σsuσut

= σut(v)
σut

= δut(v),

since all s � t paths are passing through u. According to (2), δs(v) = δu(v).

LEMMA 5.2. For any vertex pair s, t ∈ V , there exists exactly one component C of G′
that contains a clone of t and a representative of s as two distinct vertices.

PROOF (BY INDUCTION ON THE NUMBER OF SPLITS). Given s, t ∈ V , the statement is true
for the initial (connected) graph G since it contains one clone of each vertex. Assume
that it is also true after the �th splitting. Let C be this component. When C is further
split via t’s clone, all but one newly formed (sub)components contains a clone of t as the
representative of s. For the remaining component C ′, rep(C ′, s) = rep(C, s) that is not
a clone of t.

For all components other than C, which contain a clone t′ of t, the representative
of s is t′ by the inductive assumption. When such components are further split, the
representative of s will be again a clone of t. Hence, the statement is true for G�+1, and
by induction, also for G′.

The local clones of an articulation vertex v, created while splitting, are acting as the
original vertex v in their components. Once the reach value for each clone is set as
in (23), line 1 of BC-REACH handles the BC contributions from each new component (ex-
cept the one containing the source), and line 3 of BC-REACH fixes the contribution of
vertices reachable only via the source s.

THEOREM 5.3. Equation (24) is correct after splitting G with articulation vertices.

PROOF. Let C be a component of G′, s′, v′ be two vertices in C, and s, v be their original
vertices in V . Note that reach[v′]−1 is the number of vertices t
= v such that t does not
have a clone in C and v lies on all s � t paths in G. For all such vertices, δst(v) = 1, and
the total dependency of v′ to all such t is reach[v′]−1. When the BFS is started from s′,
line 1 of BC-REACH initiates δ[v′] with this value and computes the final δ[v′] = δs′ (v′).
This is the same dependency δs(v) computed by BC-ORG.

Let C be a component of G′, u′ and v′ be two vertices in C, and u = org(u′), v =
org(v′). According to the above paragraph, δu(v) = δu′(v′) where δu(v) and δu′(v′) are the
dependencies computed by BC-ORG and BC-REACH, respectively. Let s ∈ V be a vertex,
s.t. rep(C, s) = u′. According to Lemma 5.1, δs(v) = δu(v) = δu′(v′). Since there are
reach[u′] vertices represented by u′ in C, the contribution of the BFS from u′ to the BC
score of v′ is reach[u′] × δu′(v′) as shown in line 3 of BC-REACH. Furthermore, according
to Lemma 5.2, δs′ (v′) will be added to exactly one clone v′ of v. Hence, (24) is correct.

5.1.2. Bridge Removals. Let {u, v} be a bridge in a component C formed during graph
manipulations. Let u′ = org(u) and v′ = org(v). As stated in previous section, a bridge
removal operation is similar to a splitting via an articulation vertex; however, no new
clones of u′ or v′ are created. Instead, we let u and v act as a clone of v′ and u′ in the
newly created components Cu and Cv that contain u and v, respectively. Similar to (23),
we add

∑
w∈Cv

reach[w] and
∑

w∈Cu
reach[w] to reach[u] and reach[v], respectively, to

make u (v) the representative of all the vertices in Cv (Cu).
After a bridge removal, updating the reach values is not sufficient to make Lemma 5.2

correct. No component contains a distinct representative of u′ (v′) and clone of v′ (u′)
anymore. Hence, δv(u′) and δu(v′) will not be added to any clone of u′ and v′, respectively,

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:16 A. E. Sarıyüce et al.

by BC-REACH. But we can compute the difference and add

δv(u) =
⎛
⎝

⎛
⎝ ∑

w∈Cu

reach[w]

⎞
⎠ − 1

⎞
⎠ ×

∑
w∈Cv

reach[w],

to bc′[u] and add δu(v) to bc′[v], where δu(v) is computed by interchanging u and v on
the right side of the above equation. Note that Lemma 5.2 is correct for all other vertex
pairs.

COROLLARY 1. Equation (24) is correct after splitting G with articulation vertices and
bridges.

5.2. Betweenness-Preserving Graph Compression

Here, we present BADIOS’s betweenness-preserving compression techniques:
(1) degree-1 vertex removal, (2) compression by identical vertices, and (3) side-vertex
removal.

5.2.1. Compression with Degree-1 Vertices. As stated before, although a degree-1 vertex
removal is a special instance of a graph split with a bridge, we handle them separately
to avoid trivial components. Let u be a degree-1 vertex connected to v and appeared
in a component C formed during the preprocessing. To remove u, we add reach[u] to
reach[v] and increase bc′[u] and bc′[v], with

δv(u) = (reach[u] − 1) ×
∑

w∈C\{u}
reach[w],

δu(v) =
⎛
⎝

⎛
⎝ ∑

w∈C\{u}
reach[w]

⎞
⎠ − 1

⎞
⎠ × reach[u].

COROLLARY 2. Equation (24) is correct after splitting G with articulation vertices and
bridges and compressing it with degree-1 vertices.

5.2.2. Compression with Identical Vertices. Instead of basic work filtering applied for CC,
BADIOS uses the type-I and type-II identical vertices to compress the graph further for
BC. Hence, it exploits these vertices in a more complex way. To handle the complexity,
an ident attribute is assigned to each vertex where ident(v) denotes the number of
vertices in G that are identical to v in G′. Initially, ident[v] is set to 1 for all v ∈ V .

Let I be a set of identical vertices formed during the preprocessing phase. We remove
all vertices in I except one, which acts as a proxy for the others. Let v be the proxy vertex
for I. We increase ident[v] by

∑
v′∈I,v′
=v ident[v′] and associate a list I\{v} with v. The

integration of the identical-vertex compression is realized in three modifications on
Algorithm 2: During the first phase, line 1 is changed to σ [w] ← σ [w]+σ [v]×ident[v],
since v can be a proxy for some vertices other than itself. Similarly, w can be a proxy,
and line 2 is modified as δ[v] ← δ[v] + σ [v]

σ [w] × (δ[w] + 1) × ident[w] to correctly simulate
w’s identical vertices. Finally, the source s can be a proxy, and the current BFS phase
can be a representative for ident[s] phases. To handle that, the BC updates at line 3
are changed to bc′[w] ← bc′[w] + ident[s] × δ[w]. The BC scores of all the vertices in I
are equal.

The only paths ignored via these modifications are the paths between u ∈ I and
v ∈ I. If I is type-II, the u � v path contains a single edge and has no effect on
dependency (and BC) values. However, if I is type-I, such paths have some impact.
Fortunately, it only impacts the immediate neighbors’ BC scores of I. Since there

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:17

are exactly
∑

u∈I (ident[u](
∑

v∈I,u
=v ident[v])) such paths, this amount is equally
distributed among the immediate neighbors of I.

The technique presented in this section has been presented without taking the reach
attribute into account. Both attributes can be maintained simultaneously. The details
are not presented here for brevity. The main challenge is to keep track of the BC of
each identical vertex since they can differ if the reach value of the identical vertices
are not equal to 1.

COROLLARY 3. Equation (24) is correct after splitting G with articulation vertices and
bridges, and compressing it with degree-1, and identical vertices.

5.2.3. Compression with Side Vertices. Let u be a side vertex in a component C formed
after a set of manipulations on the original graph G. Since �(u) is a clique, no shortest
path is passing through u. Hence, we can remove u from C by compensating the effect
of the shortest s � t paths where u is either s or t. To do this, we initiate a BFS from
u similar to the one in BC-REACH. As Algorithm 6 shows, the only differences are two
additional lines 1 and 2. Note that this extra BFS is as expensive as the original one
that we avoid by removing u. As in CC, BADIOS performs the side vertex removals
since they can yield new special vertices in the graph, which will be used to improve
the performance.

ALGORITHM 6: Side-Vertex Removal BFS for Betweenness Centrality
Data: G� = (V�, E�), a side vertex s, reach, and bc′

· · · �same as BC-REACH
while Q is not empty do

· · · �same as the BFS in BC-REACH
end
δ[v] ← reach[v] − 1, ∀v ∈ V�

while S is not empty do
w ← S.pop()
for v ∈ P[w] do

δ[v] ← δ[v] + σ [v]
σ [w] (1 + δ[w])

end
if w
= s then

bc′[w] ← bc′[w] + (reach[s] × δ[w])+
1 (reach[s] × (δ[w] − (reach[w] − 1))

end
end

2 bc′[s] ← bc′[s] + (reach[s] − 1) × δ[s]
return bc’

Let v,w be two vertices in C different than u. Although both vertices will keep
existing in C − u, since u will be removed, δv(w) will be reach[u] × δvu(w) less than it
should be. For all such v, the aggregated dependency will be∑

v∈C,v
=w

δvu(w) = δu(w) − (reach[w] − 1),

since none of the reach[w] − 1 vertices represented by w lies on a v � u path and
δvu(w) = δuv(w). The same dependency appears for all vertices represented by u. Line 1
of Algorithm 6 takes into account all these dependencies.

Let s ∈ V be a vertex s.t. rep(C, s) = v
= u. When we remove u from C, due to
Lemma 5.2, δs(u) = δv(u) will not be added to any clone of org(u). Since u is a side vertex,

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:18 A. E. Sarıyüce et al.

δv(u) = reach[u] − 1. Since there are
∑

v∈C−u reach[v] vertices that are represented by
a vertex in C − u, we add

(reach[u] − 1) ×
∑

v∈C−u

reach[v]

to bc′[u] after removing u from C. Line 2 of Algorithm 6 compensates this loss.

COROLLARY 4. Equation (24) is correct after splitting G with articulation vertices and
bridges, and compressing it with degree-1, identical, and side vertices.

5.3. Combining the Techniques

For BC, ordering of heuristics is similar to the CC case, as explained in Section 4.3.
BADIOS first applies degree-1 removal since it is the cheapest to handle. Next, it splits
the graph by first removing the bridges, and then articulation vertices. It then removes
the identical vertices in the graph in the order of type-II and type-I. Notice that type-II
removals can reveal new type-I identical vertices but the reverse is not possible. The
framework iteratively uses these 4 techniques until it reaches a point where no re-
duction is possible. At that point, it removes the side vertices to discover new special
vertices. Similar to CC, the framework does not use side vertices until it really needs
them.

6. EXPERIMENTS

We implemented our framework in C++. The code is compiled with gcc v4.8.1 and
optimization flag -O2. The graph is kept in memory in the Compressed Storage by Row
format (essentially adjacency list that is compact in memory). The experiments are
run on a computer with Intel Xeon E5520 CPU clocked at 2.27GHz and equipped with
48GB of main memory. All the experiments are run sequentially.

For the experiments, we used 13 real-world networks from the UFL Sparse Ma-
trix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). Their properties are
summarized in Table I. They are from different application areas, such as grid (power),
router (as-22july06, p2p-Gnutella31), social (PGPgiantcompo, astro-ph, cond-mat-2005,
soc-sign-epinions, loc-gowalla, amazon0601, wiki-Talk), protein interaction (protein),
and web networks (web-NotreDame, web-Google). We symmetrized the directed graphs.
We categorized the graphs into two classes: small and large ones (separately shown in
Table I).

Our proposed techniques can be combined in many different ways. In this section,
we use lower case abbreviations for representing these combined methods. We will use
lower case letters “o” for the BFS ordering, “d” for degree-1 vertices, “b” for bridge, “a”
for articulation vertices, “i” for identical vertices, and “s” for side vertices. The ordering
is performed to improve the cache locality during centrality computation by initiating
a BFS from a random source vertex as in Algorithm 1 and renumbering the vertices
as their visit order. Using this scheme, for example, abbreviation das means that the
degree-1 removal is followed by the articulation vertex cloning, which is followed by the
side-vertex removal. This pattern is repeated until no further modification is possible.

6.1. Closeness Centrality Experiments

We first investigate the efficiency of BADIOS on reducing the graphs. We check the
number of remaining edges by applying our techniques on the test graphs. Figure 5(a)
and (b) shows the number of remaining edges in the reduced graph normalized with
respect to the original number of edges in G. We chose the variants, d, da, and das since
these manipulations are the only ones that reduce the number of edges or make new ar-
ticulation vertices appear. We measured the remaining number of edges in the largest

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

http://www.cise.ufl.edu/research/sparse/matrices/

Graph Manipulations for Fast Centrality Computation 26:19

Table I. The Graphs Used in the Experiments

Graph Time (in seconds)
Name |V | |E| Diam. Max deg. BC org. BC best BC Sp. CC org. CC best CC Sp.
as-22july06 22.9K 48.4K 11 2390 43.72 8.78 4.9 17.03 5.49 3.1
astro-ph 16.7K 121.2K 14 504 40.56 19.41 2.0 14.10 9.15 1.5
cond-mat-2005 40.4K 175.6K 18 278 217.41 97.67 2.2 79.16 46.21 1.7
p2p-Gnutella31 62.5K 147.8K 11 95 422.09 188.14 2.2 180.27 65.13 2.8
PGPgiantcompo 10.6K 24.3K 24 205 10.99 1.55 7.0 4.63 0.75 6.2
power 4.9K 6.5K 46 19 1.47 0.60 2.4 0.78 0.27 2.8
protein 9.6K 37.0K 14 270 11.76 7.33 1.6 4.12 2.33 1.7

geometric mean 2.8 geometric mean 2.5
amazon0601 403K 2,443K 19 2,752 42,656 36,736 1.1 17,653 11,901 1.5
loc-gowalla 196K 950K 12 14,730 5,926 3,692 1.6 2,117 1,138 1.9
soc-sign-epinions 131K 711K 14 3,558 2,193 839 2.6 889 264 3.4
web-Google 875K 4,322K 18 6,332 153,274 27,581 5.5 83,821 22,935 3.7
web-NotreDame 325K 1,090K 27 10,271 7,365 965 7.6 2,736 517 5.3
wiki-Talk 2,394K 4,659K 10 100,029 452,443 56,778 7.9 279,548 22,029 12.7

geometric mean 3.4 geometric mean 3.7
Notes: Diameters and maximum degrees are given along with the size information. Columns BC org. and
CC org show the original execution times of BC and CC computations without any modification, and BC best
and CC best are the minimum execution times achievable via our framework for BC and CC. The names of
the graphs are kept short where the full names can be found in the text.
Geometric means of speedups are shown in bold.

Fig. 5. The plots on the left and right show the number of remaining edges on the graphs that initially have
less than and more than 500K edges, respectively. They show the ratio of remaining edges of the variants,
which consecutively reduce the number of edges: base, d, da, and das. The number of remaining edges is
normalized w.r.t. the total number of edges in the graph and divided into two: largest connected component
and rest of the graph. Compression by removing degree-1 and side vertices reduces the number of edges
in the graph and the decrease of the number of edges helps to understand the impact of those heuristics.
Articulation vertex cloning helps to split the graph into multiple components and the share of edges in each
graph component is also given to show the structure of graphs.

connected component as well as the other components (shown as “rest”). Degree-1
vertex removal (going from first bar to second bar) provides 13% and 14% average
reductions in the sizes of small and large graphs, respectively. This result shows that
there is a significant amount of degree-1 vertices in real-world graphs, and they can be
efficiently utilized by our techniques. When we measure the impact of articulation ver-
tex cloningon the total number of connected components, we observe two facts: (1) there
is usually one giant (strongly) connected component in real-world social networks, and

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:20 A. E. Sarıyüce et al.

Fig. 6. The plots on the left and right show the CC computation times on graphs with less than and more
than 500K edges, respectively. They show the normalized runtime of the variants: base, o, do, dao, dbao,
dbaos, and dbaosi. The times are normalized w.r.t. base and divided into two: preprocessing and the CC
computation.

(2) other components are small in size. As can be seen from the second and third bars,
articulation-vertex cloning increases the yellow-colored regions in the graph, i.e., splits
the graphs. At last, we measure the effect of side vertex removal. The differences be-
tween the third and fourth bars show the reduction by side vertex removal. We observe
9% and 5% average reductions in small and large graphs.

Next, we measure the performance of BADIOS on CC computation time. We evaluate
the preprocessing and computation time separately. Figure 6(a) and (b) presents the
runtimes for each combination normalized w.r.t. the implementation of Algorithm 1.
For each graph, we tested six different combinations of the improvements proposed in
this work: They are denoted with o, do, dao, dbao, dbaos, and dbaosi. For each graph,
each figure has seven stacked bars for the six combinations in the order described above
plus the base implementation.

In many graph kernels, the order of edge accesses is important due to cache locality.
Therefore, we order our graphs after split and compression operations. The second
bars for each graph at Figure 6(a) and (b) shows the improvement gained by ordering
the graphs. We have 13% and 34% improvements (over the baseline) with ordering
for small and big graphs, respectively. Especially, larger graphs benefit more from the
graph ordering and the cache is utilized more efficiently.

In general, the preprocessing phase takes little time for all graphs. At most 7% of
the overall execution time is spent for graph manipulations on small graphs, and this
value is 6% for large graphs. With split and compression operations, BADIOS can
obtain significant speedup values. When we only remove the degree-1 vertices, we have
16% runtime improvement for small graphs and 54% improvement for large graphs.
When Figure 5(a) and (b) is compared with Figure 6(a) and (b), the correlation between
the reduction on the number of edges and the improvement on the performance
becomes more clear. In addition to degree-1 removal, if we split the input graph
with articulation vertex cloning, the speedups increase: In large graphs, this reduces
the overall execution time up to 5%. As expected, when there are more articulation
vertices in the graph, the speedups are higher. As explained in Section 4.1.2, a bridge
always exists between two articulation vertices, but bridge removal is cheaper than
articulation vertex cloning. We see the effect of cheap bridge removals when we
look at the combination odab (fifth bar): In small graphs, we have 4% improvement

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:21

with articulation vertex cloning plus bridge removal over only articulation vertex
cloning.

The side vertex removals turn out to be not efficient. We cannot observe significant
speedups when we remove the side vertices in graphs. On the other hand, filtering the
work via identical vertices brings good improvements. We gain 8% and 10% in small
and large graphs with identical vertex filtering. This shows that there are significant
amount of identical vertices in the reduced graph, and they can be utilized for faster
solutions.

Overall, we have decent speedup numbers for CC when all the techniques are applied.
Table I shows the runtime of the base algorithm, runtime of the combination where all
techniques are used, and the speedup obtained by that combination. For the largest
graph we have, wiki-Talk with 2.3M vertices and 4.6M edges, we reach a speedup of
12.7 over the base implementation.

6.2. Betweenness Centrality Experiments

Here, we experimentally evaluate the performance of BADIOS for BC computations.
As we did for CC, we measure the preprocessing time and BC computation time sepa-
rately. Figure 7(a) and (b) presents the runtimes for each combination normalized w.r.t.
Brandes’ algorithm. For each graph, each figure has seven stacked bars for the seven
combinations in the order described in the caption. To compare the reductions on the
execution times with the reductions on the number of edges and vertices, in Figure 7(c)
and (d), the number of edges remaining in the graph after the preprocessing phase is
given for the combinations d, da, dai, and dasi.

As Figure 7 shows, there is a direct correlation between the amount of edges re-
maining after the graph manipulations and the overall execution time (except for
soc-sign-epinions and loc-gowalla with 12% and 11% decrease in the number of ver-
tices, respectively). This proves that our rationale behind investigating splitting and
compression techniques is valid also for BC.

Table I shows the runtime of the base BC algorithm as well as the runtime of the
combination that lead to the best improvement and the speedup obtained by that
combination. Almost for all graphs, BADIOS provides a significant improvement. We
observe up to 7.9 speedup on large graphs. For wiki-Talk, applying all techniques
reduced the runtime from 5 days to 16 hours.

Although it is not that common, applying degree-1- and identical-vertex removal can
degrade the performance by a small amount. When the number of vertices removed is
small, their removal does not compensate the overhead induced by the reach and ident
attributes in the algorithms. The only graph BADIOS does not perform well on is the
co-purchasing network of Amazon website, amazon0601, where it brings less than 20%
of improvement. This graph contains large cliques formed by the users purchasing the
same item and hence does not have enough number of special vertices.

6.3. Comparison to Previous Work

There exist some other graph manipulation approaches in the literature to speed up the
exact BC computation [Baglioni et al. 2012; Puzis et al. 2012], which were published
after the release of our technical report (as noted in Sarıyüce et al. [2013b]). Baglioni
et al. [2012] proposed to find the trees in a graph in which the BC of nodes are trivial
to compute. Furthermore, removal of those trees reduces the size of the graph that in
turn speeds up the computation. It is actually same as the compression of degree-1
vertices in BADIOS. Another work that leverages special structures in a graph is by
Puzis et al. [2012]. They introduce two heuristics. First is about utilizing the vertices
with the same neighbor sets, named as structurally equivalent vertices, which we also

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:22 A. E. Sarıyüce et al.

Fig. 7. The plots on the left and right show the results on graphs with less than and more than 500K edges,
respectively. The top plots show the runtime of the variants: base, o, do, dao, dbao, dbaio, and dbaiso. The
times are normalized w.r.t. base and divided into three: preprocessing, the first phase, and the second phase
of the BC computation. The bottom plots show the number of edges in the largest 200 components after
preprocessing for the combinations base, d, da, dai, and dasi. Compression by removing degree-1 vertices,
identical vertices, and side vertices are useful to reduce the number of edges, and articulation vertex cloning
and bridge elimination help to split the graph into multiple components.

defined as the type-I identical vertices. Second heuristic is about partitioning the graph
by using articulation points, which is also used by BADIOS.

We compare BADIOS with those two papers. Both works are implemented in Java,
and it is unfair to compare them with BADIOS code that is in C++. There are actually
some common graphs used in Baglioni et al. [2012], Puzis et al. [2012], and our article
that show the huge difference between the implementations of the same Brandes’ algo-
rithm [Brandes 2001; Puzis et al. 2012] processes p2p-Gnutella31 graph in more than
52,000 seconds (Figure 7(a) in Puzis et al. [2012]), whereas our implementation finishes
the computation in 422 seconds (shown in Table I). Situation is similar for Baglioni
et al. [2012]: BC computation by their base implementation takes 564,343 seconds
(Table III in Baglioni et al. [2012]) to process soc-sign-epinions graph while our imple-
mentation is able to finish the computation in 2,193 seconds (Table I).1 Actually, both

1Different CPU powers and memory sizes can also contribute to the gap between runtimes.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:23

Fig. 8. Comparison of BADIOS with Baglioni et al. [2012] and Puzis et al. [2012]. Each bar shows corre-
sponding competitor work’s normalized time with respect to BADIOS. BADIOS is faster on all graphs; up to
3.25x and 2.25x speedups are observed over Puzis et al. [2012] and Baglioni et al. [2012], respectively.

works can be implemented by using certain parts of the BADIOS framework: Baglioni
et al. [2012] uses only degree-1 vertex elimination (same as the do variant in Figure 7(a)
and (b)—second bar), and [Puzis et al. 2012] uses the articulation vertex cloning and
compression based on type-I identical vertices. Both apply the heuristics only once be-
fore the BC computation. We implemented those works within the BADIOS framework
for a fair comparison.

Figure 8 presents the speedup of BADIOS over competitors. It is faster than both
competitors on all graphs (>1 speedups). In average, Baglioni et al. [2012] is 1.5 times
slower on both small and large graphs and for some graphs speed-up is around 2.25
(web-Google and web-NotreDame). Puzis et al. [2012] is even slower than Baglioni
et al. [2012] for most graphs. For PGPgiantcompo graph, BADIOS is 3.25 times faster.
In general, Baglioni et al. [2012] is more efficient than Puzis et al. [2012] although it
uses only one heuristic. It is mostly due to the fact that removing trees recursively is
more efficient than handling each vertex in them as articulation points. On the other
hand, there can be some articulation points that are not degree-1 vertex, but it has
been shown that real-world graphs do not contain good articulation points that can
separate large components, which limits the benefit of such vertices.

7. RELATED WORK

Several techniques have been proposed to enable fast BC and CC computations in
large networks in memory. Here, we summarize the efforts in different directions
and show the context of our work in the literature. Note that our scope is limited in
algorithms that deal with stationary data; thus, the literature on dynamic, incremental,
and streaming algorithms are excluded.

Parallel algorithms have been studied well for the centrality computation thanks
to the opportunities in coarser and finer execution levels. These include shared mem-
ory solutions for multicore architectures [Madduri et al. 2009], distributed memory
algorithms [Lichtenwalter and Chawla 2011], GPU implementations [Shi and Zhang
2011; Jia et al. 2011; Sarıyüce et al. 2013a], vectorization [Sarıyüce et al. 2014], and
combination of multiple parallelization approaches [Sarıyüce et al. 2015].

Another direction for faster solutions is approximation algorithms. Brandes and
Pich [2007] proposed the first algorithm to estimate centrality values, and Geisberger
et al. [2008] generalized that approach. Recently, Riondato and Upfal [2016] proposed

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

26:24 A. E. Sarıyüce et al.

very efficient algorithms to approximate BC values of vertices, which significantly
outperforms previous approaches with better accuracies.

In this article, our focus is on sequential and exact solutions for faster centrality com-
putation, which is different than the above approaches. To the best of our knowledge,
there are two concurrent works on BC computation since our first release, as noted in
our technical report [Sarıyüce et al. 2013b]. However, their focus is limited to BC com-
putation only. The first work introduces degree-1 vertex removal for BC [Baglioni et al.
2012]. In the second, Puzis et al. [2012, 2015] propose to remove articulation vertices
and structurally equivalent vertices that correspond to our type-I identical vertices.
Comparison of BADIOS with those two approaches is presented in Section 6.3.

8. CONCLUSION AND FUTURE WORK

In this work, we proposed the BADIOS framework to reduce the execution time of BC
and CC computations. The proposed framework employs techniques to split graphs
into pieces while keeping and organizing all the information to recompute the shortest
path distances, farness values, and pair dependencies that are the building blocks of
CC and BC computations. BADIOS also employs a set of compression techniques to
reduce the number of vertices and edges in the graphs. Combining these techniques
provides great reductions in graph sizes and improvements on the performance. An
experimental evaluation with various networks shows that the proposed techniques
are highly effective in practice, and they can be a great arsenal to reduce the execution
time for CC and BC computations. For BC, we show an average speedup of 2.8 on small
graphs and of 3.8 on large ones. In particular, for the largest graph we use, with 2.3M
vertices and 4.6M edges, the computation time is reduced from more than 5 days to less
than 16 hours. For CC, the average speedup is 2.4 and 3.6 on small and large networks
and 12.7 on the largest graph in our experiments.

As a future work, we plan to leverage further special structures in graphs to speed up
the centrality computation. For example, two connected vertices, each with degree of 2,
have the exact same BC scores. This property can be utilized for faster BC computation
by removing one of the vertices with its adjacent edges.

REFERENCES

M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. 2012. Fast exact computation of betweenness centrality
in social networks. In Proceedings of IEEE/ACM International Conference on Advances in Social Network
Analysis and Mining (ASONAM).

U. Brandes. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 2
(2001), 163–177.

U. Brandes. 2008. On variants of shortest-path betweenness centrality and their generic computation. Social
Networks 30, 2 (2008), 136–145.

U. Brandes and C. Pich. 2007. Centrality estimation in large networks. International Journal of Bifurcation
and Chaos 17, 7 (2007), 2303–2318.

Ö. Şimşek and A. G. Barto. 2008. Skill characterization based on betweenness. In Neural Information
Processing Systems.

L. Freeman. 1977. A set of measures of centrality based upon betweenness. Sociometry 4 (1977), 35–41.
R. Geisberger, P. Sanders, and D. Schultes. 2008. Better approximation of betweenness centrality. In Pro-

ceedings of ALENEX.
Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart. 2011. Edge vs. node parallelism for graph centrality

metrics. In Proceedings of GPU Computing Gems: Jade Edition.
S. Jin, Z. Huang, Y. Chen, D. Chavarria-Miranda, J. Feo, and P. C. Wong. 2010. A novel application of parallel

betweenness centrality to power grid contingency analysis. In Proceedings of IEEE International Parallel
& Distributed Processing Symposium.

S. Kintali. 2008. Betweenness Centrality: Algorithms and Lower Bounds. Arxiv preprint arXiv:0809.1906
(2008).

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

Graph Manipulations for Fast Centrality Computation 26:25

D. Koschützki and F. Schreiber. 2008. Centrality analysis methods for biological networks and their appli-
cation to gene regulatory networks. Gene Regulation and Systems Biology 2 (2008), 193–201.

V. Krebs. 2002. Mapping networks of terrorist cells. Connections 24, 3 (2002), 43–52.
R. Lichtenwalter and N. V. Chawla. 2011. DisNet: A framework for distributed graph computation. In

Proceedings of IEEE/ACM International Conference on Advances in Social Network Analysis and Mining
(ASONAM).

J.-K. Lou, S. D. Lin, K.-T. Chen, and C.-L. Lei. 2010. What can the temporal social behavior tell us? An
estimation of vertex-betweenness using dynamic social information. In Proceedings of IEEE/ACM In-
ternational Conference on Advances in Social Network Analysis and Mining (ASONAM).

A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis. 2012. A flexible open-source
toolbox for scalable complex graph analysis. In Proceedings of SDM.

K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarria-Miranda. 2009. A faster parallel algorithm
and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets.
In Proceedings of IEEE International Parallel & Distributed Processing Symposium.

R. Puzis, Y. Elovici, P. Zilberman, S. Dolev, and U. Brandes. 2015. Topology manipulations for speeding
betweenness centrality computation. Journal of Complex Networks 3, 1 (2015), 84–112.

R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes. 2012. Heuristics for speeding up betweenness
centrality computation. In Proceedings of SocialCom.

M. Riondato and E. Upfal. 2016. ABRA: Approximating betweenness centrality in static and dynamic graphs
with rademacher averages. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1145–1154.

A. E. Sarıyüce, K. Kaya, E. Saule, and Ü. V. Çatalyürek. 2013a. Betweenness centrality on GPUs and
heterogeneous architectures. In Proceedings of Workshop on General Purpose Processing Using GPUs
(GPGPU), in Conjunction with ASPLOS.

A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. 2013b. Shattering and compressing networks for
betweenness centrality. In Proceedings of the SIAM International Conference on Data Mining, SDM. An
extended version is available as a Tech Rep on ArXiv http://arxiv.org/abs/1209.6007.

A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. 2014. Hardware/software vectorization for closeness
centrality on multi-/many-core architectures. In Proceedings of the 28th International Symposium on
Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), Workshop on Multithreaded
Architectures and Applications (MTAAP).

A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. 2015. Regularizing graph centrality computations.
Journal of Parallel and Distributed Computing 76, C (Feb. 2015), 106–119.

Z. Shi and B. Zhang. 2011. Fast network centrality analysis using GPUs. BMC Bioinformatics 12 (2011),
149.

Received March 2015; revised September 2016; accepted November 2016

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 26, Publication date: March 2017.

http://arxiv.org/abs/1209.6007

