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Abstract—Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis

method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is significantly larger

due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can

consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics.

In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the

literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations

of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to

investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on

temporal network motif models.

Index Terms—Network motifs, temporal networks, temporal motifs

Ç

1 INTRODUCTION

AN important local property of networks is the network
motifs, which are defined as the limited size, recurrent

and statistically significant patterns [1]. Motifs are shown
to be more effective when considered as connected, non-
isomorphic, and induced subgraphs [2]. Motifs are used
to model and examine interactions among small sets of
vertices in networks. Finding frequent patterns of interac-
tions can reveal functions of participating entities [3], [4],
[5], [6], [7], [8] and help characterize the network. Also
known as higher-order structures, motifs are regarded as
basic building blocks of complex networks in domains
such as social networks, food webs, and neural net-
works [1]. The triangle, for example, is the most basic
motif in simple undirected networks and plays an impor-
tant role in defining the global network characteristics
such as clustering coefficients.

In temporal networks, edges are associated with tempo-
ral information (timestamps), which indicate the occurrence
time. We call the temporal edges as events. For example, in
an email network each node is an email address and an
event represents the email sent from one address to another
at a specific time, or an event in the call detail records is a
phone call from a person to another at a certain time.

Temporality brings new challenges for network analy-
sis [9]. Motif-driven techniques, for instance, should

consider the temporal information on edges which signifi-
cantly increases the spectrum of motifs with respect to static
networks. The event order, inter-event time intervals, and
durations are some of the aspects that need to be incorpo-
rated [10]. Thus, it is beyond non-trivial to design a model
for temporal network motifs that considers all those charac-
teristics while being practical. There are several studies [11],
[12], [13], [14] and each proposes a temporal motif model in
a different way. A motif can be valid in some models but
not in the others, due to the specific constraints required by
the different models. Also, the prior studies are introduced
in various subfields of computer and network science and
mostly unaware of each other. Consequently, there does not
exist a unified approach that can address the limitations of
those models while leveraging their novelties. A compara-
tive evaluation on these model is essential in that respect.
Note that the motif-driven approach is different from the
temporal subgraph isomorphism or periodic subgraph min-
ing [15]. The motifs have limited sizes, when compared to
the subgraphs, and it enables the exploration of all the com-
binations of edges among the nodes and all the permuta-
tions of edges in temporal order.

In this work, we introduce a comparative survey for the
four models: by Kovanen et al. [11], [16], Song et al. [12],
Hulovatyy et al. [13], and Paranjape et al. [14]. These four
models are the first works that introduced new approaches
while handling various aspects of temporality. They are
also used heavily in various applications (Section 3). We
aim to address three questions:

1) What are the differences between these models in
terms of the aspects of temporality and the con-
straints incorporated?

2) How do these differences affect the frequency and
spectrum of the resulting temporal motifs?

3) What are the implications of these effects and how
do they benefit real-world applications?
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For the first, we give a comparison with respect to the differ-
ent aspects of temporality, and highlight the advantages
and limitations of each (Section 4). For the second, we evalu-
ate two key aspects of temporality: temporal inducedness
and timing constraints (Section 5). We focus on the tempo-
rality features that are overlooked in previous studies, such
as the behavior of intermediate events. We also suggest a
new lens, event pairs, to analyze the characteristics of the
sequences in temporal motifs and investigate the temporal
correlations. Lastly, we interpret the results in each experi-
ment and discuss what domains can be affected by the
assumptions in those four models (Section 5). We explore
all three-event two-/three-nodes (36 in total) and four-event
two-/three-/four-nodes (696 in total) motifs. We believe
that our work will steer the temporal motif research in a
healthy direction.

2 BACKGROUND

GðV;EÞ is a temporal network where V is the set of nodes
and E is the set of events. Each event ei 2 E is a 4-tuple
ðui; vi; ti;DtiÞ [10]. ui and vi are the (source and target) node
pair where the ith event occurs, ti is the starting time of ith
event, and Dti is its duration. E is a time-ordered list of m
events where the starting times are t1 � t2 � t3 � � � � � tm,
and V is the set of nodes that appear in E. In real-world
temporal networks, it is very common that the inter-event
time, tiþ1 � ti, is significantly larger than Dti, thus event
durations can be ignored. For simplicity, we also follow this
convention in our work and consider each event in set E as a 3-
tuple ðui; vi; tiÞ. Here we distinguish edges and events,
where the edge ðu; vÞ is the static projection of an event
ðu; v; tÞ. We also refer the set of motifs with the number of
nodes and events; e.g., 3n3e motifs have three-nodes and
three-events.

3 RELATED WORK

In this work, we focus on four temporal motif models [11],
[12], [13], [14] and give a detailed overview and comparison
in Section 4 (Note that the works by Nicosia et al. [17]
and [18] also provided short surveys covering a few works
available). Here we summarize the previous work on (1)
applications of temporal motifs, (2) algorithmic improve-
ments for temporal motif finding, and (3) temporal sub-
graph isomorphism, a related topic to our subject.

Applications. Motif has been a versatile tool for several
application domains that are engaged with the temporal net-
works. Building on the notion of static motifs [1], [2], there
have been several works that considered snapshot-based
adaptations to incorporate the temporality, listed below in
chronological order. Jin et al. [19] investigated the temporal
node-weighted networks and devised trend motifs based on
the weight changes on the nodes over a specified period of
time. They counted the trend motifs in financial and protein-
interaction networks. Chechik et al. analyzed a yeast meta-
bolic network by activity motifs to understand timings of
transcriptions [20]. Activity motif is defined as a partially (or
totally) ordered combination of chains, forks, and joins to
understand the interactions among gene activations and
repressions. Zhao et al. proposed communication motifs to

study synchronous and asynchronous human communica-
tion networks, such as call detail records (CDR) and Face-
book wall post interactions, and understand the information
propagation [21]. Communication motif is defined as a static
network motif where each connected edge pair satisfies a
timing constraint and there is no particular order defined
among the edges. Lastly, Sarkar et al. [22] investigated the
undirected static motifs in the subsequences of microblog
network snapshots to study the information diffusion pro-
cess. They created motif based features to predict the net-
work at the stage of inhibition.

Bajardi et al. worked on the cattle trade movements
among farms in Italy and used the dynamic motifs, which
are defined as the chain motifs ordered in time, to model
cause-effect relations [23]. Faisal and Milenkovic introduced
static-temporal motifs to study human aging [24]. Kovanen
et al. introduced the first holistic temporal motif model
that is independent of a particular topology and explicitly
considers the temporal adjacency [11] (more details
in Section 4). Most of the following studies embraced this
model. Jurgens and Lu investigated the editor interactions
in Wikipedia with temporal motifs [25]. Kovanen et al.
adapted their model [11] for colored networks, where the
colors denote categorical node attributes, and studied a
CDR with respect to sex, age group, and subscription type
attributes [26]. Zhang et al. analyzed two bipartite networks,
ship-chartering and ship order-to-build networks, to see
how the 2,2-bicliques are formed in time [27]. Their analysis
does not rely on Kovanen et al.’s model and can be consid-
ered as a snapshot based approach. Li et al. performed a
study on mobile communication networks to analyze the
ordering among edges in three-node motifs [28]. Zhang
et al. introduced an extensive analysis for online and offline
human interactions [29] by using the temporal motif model
by Kovanen et al. [11]. They analyzed phone messages as
well as face-to-face interactions (by RFID) and sexual con-
tacts by using 3-event and 4-event temporal motifs. Xuan
et al. studied the online task-oriented networks, where peo-
ple collaborate to work on tasks, and used temporal motifs
to understand the collaboration patterns [30]. Li et al. con-
sidered temporal motifs for heterogeneous networks where
there are multiple types of nodes and edges [31]. They ana-
lyzed the DBLP network (of papers, authors, terms, venues,
and years), meme-tracker data, and news articles (of docu-
ments, locations, and topics). More recently, Kosyfaki et al.
proposed flow motifs to analyze the dynamics of evolution
in edge-weighted temporal networks, such as bitcoin trans-
actions, passenger flows, and facebook interactions (aggre-
gated over certain time intervals) [32].

Algorithmic Improvements. Algorithmic improvements are
studied for faster temporal motif finding and counting.
Gurukar et al. proposed a fast technique called COMMIT [33]
to find the communication motifs proposed by [21]. Building
on Paranjape et al.’s model [14], Kumar et al. introduced an
efficient algorithm to enumerate temporal cycles of any
length [34] by extending the seminal cycle counting algo-
rithms of Johnson [35]. Sun et al. introduced fast algorithms
to find temporal motifs (by [11]’s model) by using a time-first
search approach [36], [37]. Liu et al. presented sampling algo-
rithms to find the approximate frequency of temporal motifs
up to two orders of magnitude faster [38].
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Temporal Subgraph Isomorphism. A related subject is the
problem of temporal subgraph isomorphism. Redmond and
Cunningham first introduced the problem to find a query
subgraph with temporal constraints in a given temporal net-
work [39], [40]. Unlike temporal motifs, there is no size con-
straint in the isomorphism problem. Mackey et al. proposed
another variation where there is a total ordering among the
edges [41]. Franzke et al. introduced another definition
where there is more flexibility in defining the temporal
order of edges; e.g., relative time intervals can be specified
for each edge in the temporal subgraph [42].

4 OVERVIEW OF TEMPORAL MOTIF MODELS

To the best of our knowledge, there are four models:

� Kovanen et al. [11] proposed the first model that has
the notion of temporal adjacency to relate the events
in a motif.

� Song et al. [12] introduced another model for stream-
ing workloads where the motifs are found on-the-fly
and the events in a motif can be partially ordered.

� Hulovatyy et al. [13] considered new relaxations and
restrictions to improve Kovanen et al.’s model and
also discussed the events with durations.

� Paranjape et al. [14] proposed a practical model with a
specified time window to bound all events in a motif.

Note that we focus on motif models in this work and refrain
from discussing the temporal subgraphs, which are larger
in size and often only considered with respect to a template.
We first briefly explain the main idea in each paper and
then compare them with respect to different aspects.

The first temporal network motif model is introduced by
Kovanen et al. [11]. The idea is to use edge timestamps to
build more expressive motifs than the classical network
motifs in static networks [1]. Kovanen et al. define the tem-
poral motif as an ordered set of events with two features: (1)
time difference between each pair of consecutive events (in
the whole set) is less than the threshold DC , an input param-
eter, (2) for each node in the motif, its adjacent events in the
motif are consecutive, i.e., the node does not participate in
any other event between its events in the motif. This is
aimed to consider causality among the events.

Song et al. [12] proposed the event pattern matching
problem for the real-time graph streams. By considering the
graph structure, event pattern matching improves the tradi-
tional complex event processing [43]. They approached the
problem from time series and stream processing perspective
and used the graph structure as a new feature. Event pat-
tern is simply a temporal motif model that considers node/
edge labels, partial orderings among events, and an input
parameter, DW , which is an upper bound for the time differ-
ence between the first and the last events in the motif.

Hulovatyy et al. [13] came up with another temporal
motif model based on the notion of graphlets (induced
motifs) in static networks [2]. Hulovatyy et al. improved the
model by Kovanen et al. by (1) only considering the induced
subgraphs, i.e., all interactions among a given set of nodes
are taken into account, and (2) relaxing the constraint that
adjacent events of a node should be consecutive. They also
discussed the use of events with durations in temporal

network motifs, for the first time. Furthermore, they intro-
duced an additional restriction (constrained dynamic
graphlets) to reduce the computational complexity while
obtaining approximate results. Authors have shown that
their new model captures various temporal motifs from
each node’s perspective and gives more effective results
than the prior techniques for predicting aging-related genes
in humans.

The last model, by Paranjape et al. [14], also considers a
relaxation of the first model proposed by [11]. The constraint
that the adjacent events of a node should be consecutive
(in [11]) is relaxed so that the motifs that occur in a short
burst can be caught. Time window, DW , to bound the time
difference between the last and the first events in amotif.

A given motif can be valid in some models but not in the
others, due to the specific constraints required by the differ-
ent models. Fig. 1 gives four example motifs in a temporal
network and describes the validity of each motif with
respect to the four models.

There are several aspects of temporal networks and
motifs that are handled differently in each of those four
models. Table 1 presents an overview. Those aspects are
crucial across the diverse application space of temporal net-
works. For instance, fraudsters in financial transaction net-
works camouflage their identities by getting involved in
repetitive legal transactions. A strictly induced temporal
motif is helpless in this context since it considers all the
transactions among a set of entities in which the few fraudu-
lent transactions can be overlooked. In a communication
network, on the other hand, it might make more sense to
use induced motifs to fully understand the information dis-
semination. Here we discuss each aspect and highlight the
advantages and limitations of the four models accordingly.

4.1 Motif as Induced Subgraph

In static networks, considering all the edges among a given
set of nodes (rather than selecting a subset) has been shown
to be more effective in motif-based analysis [44]. Because
the non-induced motifs become artificially recurrent and
shadow the importance of larger induced structures. For

Fig. 1. Comparison of four temporal motif models [11], [12], [13], [14]. A
temporal network with six events is shown on the left. The table on the
right has four motifs and shows whether they are valid motifs according
to the four models, where DC=5s (inter-event timing constraint) and
DW=10s (entire motif timing constraint). The first motif is not valid
according to [11], [13] because it breaks the DC constraint; the second
motif is invalid in [14] since it is not an induced subgraph, and it also vio-
lates the DC constraint in [11], [13]; the third motif violates the consecu-
tive event restriction, thus not a valid motif in [11]; and the last motif is
valid according to all the models.
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instance, an induced square motif (1 ! 2, 2 ! 3,
3 ! 4; 1 ! 4) implies that no diagonal edges exist (i.e.,
1 ! 3 and 2 ! 4 are missing) whereas a non-induced
square motif has no such restriction (i.e., every 4-clique
is also a square). In temporal networks, “inducedness” is
more involved. In order to capture all the interactions
among a given set of nodes, one should consider the
time interval in which those events occur and also watch
for the number of events in that period. Formally, a tem-
poral subgraph induced by the node set V 0 2 G for a
time interval ½ts; tf � includes all the events ðu; v; tÞ in G
such that u; v 2 V 0 and ts � t � tf . If there is an addi-
tional restriction for the number of events, say k (as in
the motif definition), then one can consider only the con-
secutive k events to form a motif. This means that there
should not be any other event ðu; v; tÞ 2 G such that
u; v 2 V 0 and ti � t � tiþ1 for any consecutive event pair
in the motif with timestamps ti and tiþ1.

The first model in [11] does not require a motif to be
induced in the static sense, e.g., a diagonal edge in the square
example above can be allowed.However, one important con-
dition in Kovanen et al.’s model [11] is that a node’s adjacent
events in a motif should be consecutive in time, i.e., there
cannot be any adjacent event outside the motif which occurs
between two events in the motif. For example, if there is a
temporal motif with events ðu; v; 5Þ, ðv;w; 8Þ, and ðu; v; 12Þ,
then there cannot be any other event in the graph that con-
tains u and occurs in ½5; 12� interval. Likewise, no event adja-
cent to v can exist in [8,12] interval. We call this consecutive
events restriction. This can be seen as node-based temporal
inducedness since all the events that are adjacent to a node
should be part of themotif for a given time interval. This also
avoids the exponentially many motifs in certain scenarios,
like when a node has a burst of events in the form of a star.
Note that, Hulovatty et al. [13] and Paranjape et al. [14]
argued that this constraint is too restrictive and shadows
important motifs occurring in short bursts. Song et al.’s
model [12] does not rely on such a restriction either.

Song et al. [12] approach the inducedness from a differ-
ent perspective. They argue that if the temporal data is
observed in a streaming setting, it is often desirable to
catch certain events in a specific structure, e.g., some tem-
poral and non-induced motifs (like squares) in financial
transaction networks are a strong indicator of fraud [34],
[45]. Therefore, unlike static networks, non-induced motifs
in temporal networks are valuable, especially when the
network is being streamed and time-sensitive decision
making is demanded. Hence, [12] does not consider
induced subgraphs.

Hulovatyy et al. [13] is the first to discuss the lack of
induced subgraphs in the initial model by Kovanen et al. [11].
Authors argue that the temporal motif must be induced by
relying on Przulj et al.’s work where they proposed to use
induced motifs for static networks since the non-induced
counts would be artificially amplified [44]. However, the pro-
posed model in [13] only captures the static inducedness, i.e.,
considering all the edges among the given set of nodes in a
static projection (e.g., a diagonal edge in the square example
above is not allowed). There is no restriction for the temporal
behavior, even in the node-level since the consecutive events
restriction (of [11]) does not exist. For example, given four
events ða; b; 2Þ; ðb; c; 4Þ; ðc; a; 5Þ; ðc; a; 6Þ; the triangle formed by
the first, second, and fourth events is a valid motif in [13]’s
model (third event can be ignored). There is another approach
in [13], named constrained dynamic graphlet, that is somehow
related to the inducedness. Considering a snapshot-based
representation where consecutive snapshots have a similar
dense structure for some set of nodes, the events that are being
repeated in the new snapshots do not give any new informa-
tion and also cause redundancy in computation. Hence,
watching for the new events that are not observed in the prior
snapshots is more interesting and alsomore efficient. Hulova-
tyy et al. incorporates this observation in the constrained
dynamic graphlet model such that if two events ðu1; v1; t1Þ and
ðu2; v2; t2Þ are consecutive in a temporal motif (where
u1; v1 6¼ u2; v2), then there is no event ðu2; v2; t

0Þ in the tempo-
ral graph forwhich t1 � t0 � t2. In a sense, this enables the dis-
covery of temporal motifs where there are causal
relationships.

The model by Paranjape et al. [14] requires the motifs
to be induced, but only in the static projections, as
in [13].

4.2 Event Durations

As defined in Section 2, each event in a temporal network
can have a duration that denotes how long the event exists,
e.g., each phone call in CDR has its duration. Temporal
motifs should be modeled to take the durations into account
in such cases. This is acknowledged in [11] but omitted
from the model for simplicity. Likewise, [14] mentions that
their model can be generalized for the events with duration
but it is not clear how the timing constraints would be
adjusted. In [12], authors consider the event duration as an
edge label where the motifs can be defined accordingly,
e.g., a motif where the duration of each edge is less than 30
secs. The only work that incorporated the duration into the
model definition is [13] where they propose the dynamic

TABLE 1
Aspects of Temporal Motif Models
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graphlet model; the time difference between two consecu-
tive events are determined with respect to the end time of
the first and the start time of the second event.

4.3 Partial Ordering

Temporal networks have timestamps associated with the
edges and a temporal motif is often defined with respect to
the ordering among its edges. However, the ordering
among the events of a motif can be total or partial. In the for-
mer, each event pair is ordered and the order of all events
are unique. In the partial ordering, there can be some event
pairs for which the ordering is undefined. For instance, an
acyclic-triangle motif with nodes A;B;C and edges A ! B,
A ! C, B ! C can be defined in a way that B ! C pre-
cedes both A ! B and A ! C. A temporal motif with a par-
tial ordering can always be expressed as a set of multiple
motifs where each covers a different total ordering for the
nodes who are partially ordered, i.e., the example above is
union of ðB ! CÞ � ðA ! CÞ � ðA ! BÞ and ðB ! CÞ �
ðA ! BÞ � ðA ! CÞ. However, finding all possibilities is
not practical and also redundant. [11] and [12] consider this
and define temporal motif models with a partial ordering.
In both models, there is a strict partial ordering among the
events, which means that the ordering is irreflexive (eibei),
transitive (ðei � ej ^ ej � ekÞ ! ei � ek), and asymmetric
(ei � ej ! ejbei). Note that, this ordering assumes that each
event in the given temporal network has a unique time-
stamp (timestamps are strictly increasing), which is not real-
istic: many real-world temporal networks have events (on
different edges) with the same timestamp (timestamps are
non-strictly increasing), e.g., an email network where a per-
son can send an email to multiple people at the same time.
Furthermore, if the temporal network’s timespan is too
large, it is often desirable to reduce the resolution by creat-
ing snapshots. Thus, the models in [11] and [12] do not han-
dle such networks. [14] only mentions that their model can
be extended to handle partial ordering but does not provide
further details. In [13], partial ordering is not taken into
account at all and the motif model is defined to have a total
ordering among its events. Note that the models that
assume a total ordering also fail to handle the networks
where event timestamps are not unique.

4.4 Directed Edges, Node/Edge Labels

All models, except [13], considered directed edges in their
definitions. Hulovatty et al. only mention that their model is
extendible for directed edges [13]. For the node/edge labels,
only [12] established their model accordingly. We believe
that other models can also handle node/edge labels. Note
that none of the models consider edge weights, which is
also challenging and mostly overlooked for static networks.

4.5 Timing Constraints

Connectivity in the temporal dimension is a key feature for
temporal motif models. There have been different
approaches to formalize temporal connectedness in the pre-
vious works [11], [12], [13], [14]. Kovanen et al. defined the
temporal motif as a connected temporal subgraph such that
for any pair of consecutive events that share a node, the
time difference should be less than DC [11]. The same

approach is also used by Hulovatyy et al. [13]. Note that
both models require graph connectivity to consider conse-
cutive events. On the other hand, [12] and [14] consider a
window-based temporal connectivity where all the events
in a temporal motif must occur within a given time interval,
denoted as DW . Namely, the time difference between the
last and the first events is limited by DW .

Those two approaches yield temporal motifs with differ-
ent semantics. DC is useful to detect temporal correlations
since each pair of consecutive events should occur in a cer-
tain time period, but it fails to bound all the events in a
motif, i.e., can only give a loose limit, ðjE0j � 1Þ � DC , for the
entire motif where E0 is the set of events. DW , on the other
hand, presents a holistic temporal view for the entire motif
but cannot consider the temporal correlations between con-
secutive events. Consider a connected temporal motif with
three ordered events where we set DC ¼ 5 for the models
in [11], [13] and DW = 10 for the models in [12], [14]. If the
timestamps of those three events are 1, 9, and 10, DW based
models consider this motif valid, but DC based models do
not since the first two events are not close enough for DC=5.
One can say that the first two events are too far apart, thus
there is no temporal correlations. However, it is also possi-
ble that the third event occurred right after the second only
because of some important information that is initially con-
veyed by the first event; thus there is a temporal correlation
between the first and third events. Either interpretation can
make sense depending on the type of temporal network
being considered. For instance, a temporal cycle can be
formed this way where person A tells person B that she
started a new job. Then B sees C like a week later and tells
about A’s new job, which immediately results in C calling A
for congratulations. Here the delayed convey of the infor-
mation can be captured with DW parameter.

One can consider to use both parameters to have a trade-
off between the two extremes of DW and DC . Depending on
the number of events in the temporal motif, one of those two tim-
ing constraints can be useless for certain values of DW and DC .
Given a motif withm events and DC=DW ratio, we have

Constraints ¼
DC if 0 � DC

DW
� 1

m� 1

DC;DW if 1
m� 1 < DC

DW
< 1

DW if DC
DW

	 1

8>>>><
>>>>:

:

There are m� 1 time intervals among m events. The loose
bound defined by DC for the entire motif window is DC �
ðm� 1Þ. In the first case, any DW larger than that bound is
meaningless; so satisfying DC constraint is sufficient. It is
also meaningless to consider a DC value (third case) that is
not smaller than DW ; just considering DW would also satisfy
the other. The only case where both constraints make sense
is when DW is smaller than the loose bound DC � ðm� 1Þ
(second case). Exploring the parameter space in that case
may enable to consider temporal motifs with respect to both
inter-event timings (DC) and entire motif timing (DW ).

5 EXPERIMENTAL EVALUATION

In this section, we present an extensive evaluation for the
various aspects considered in the four temporal network
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motifs [11], [12], [13], [14]. We are particularly interested in
the impacts of temporal inducedness and timing constraints.
Our code (including plot scripts) is available for reproduc-
ibility: https://codeocean.com/capsule/dee9010a-48c6-45a1-
8609-6ca8fb9ea942/.

Datasets. We select various directed temporal network
datasets from several domains, including phone messages,
emails, Facebook wall interactions, posts in Q/A websites,
and call detail records (CDR). Table 2 gives several statistics
about our datasets. For each network, we provide the num-
ber of nodes, events (interactions), edges (unique pairs of
nodes in events), timestamps (#T, unique timestamps across
the entire timespan), the percentage of events with unique
timestamp (jEuj=jEj), and the median interevent-time (m
(Dt), in seconds). The time resolution of all the networks is
one second. In addition to the number of events, edges, and
the percentage of events with unique timestamp, we give
the median interevent-time for each dataset, which is the
median of time intervals between all pairs of consecutive
events in the network. This gives us an idea about how to
choose the timing parameters (DC and DW ) in order to
address the trade-off between discovering more motifs and
reducing the computational costs. In the phone message
networks, an event ðu; v; tÞ represents a message sent to per-
son v by person u at time t; we have SMS-A [46], SMS

(Copenhagen) [47], and College-messages [48]. E-

mail presents the emails between members of European
research institution [48], where an event ðu; v; tÞ denotes an
email sent from person u to person v at time t. Among the
online social networks; FBWall is the collection of posts
between users on Facebook in the New Orleans region [49],
where an event ðu; v; tÞ indicates user u posted on the user
v’s wall at time t; StackOverflow and SuperUser are the
interaction networks on two stack exchange websites [48],
where event ðu; v; tÞ stands for the answer/comment user u
posted on user v’s question/answer at time t. Note that we
slice out the earliest 10 percents of the events from the origi-
nal StackOverflow datasets for the efficiency purposes.
We also study the Bitcoin-otc, a trust network where
users rate each other to reflect their trust regarding the bit-
coin transactions [48]. We also use Calls(Copenhagen),
which is the collection of phone calls between university
students over a period of four weeks [47].

Motif Notation. We consider three-event and four-event
motifs in this work and it is not feasible to visualize all.
Instead, we introduce a notation to refer to the temporal

motifs in our experiments. We use 2n digits to denote a
temporal motif with n events. Each pair of digits is an
event from the node represented by the first digit to the
node denoted by the second digit. The first two digits are
always 01, to denote that the first event occurred from
node 0 to node 1. The sequence of pairs and the digit num-
ber of each node follow the chronological order of events
and nodes. Fig. 2 presents some examples. For instance,
011202 (top-left) corresponds to a triangle temporal motif
where the first event is from the black node (0) to the
white node (1), the second one is from the white node (1)
to the gray node (2), and the last event is from the black
node (0) to the gray node (2). Note that we only consider
the motifs that grow as a single component, by adding one
event at a time.

A New Lens: Event Pairs. In this work, we consider an
alternative way to interpret the temporal motifs [29]. We
simply look at the sequence of two events that share a node
(i.e., event pairs). Event pairs can be seen as the building
blocks of the larger motifs (with 	 2 events). Given a pair of
consecutive events that share a node in the motif, ðu1; v1; t1Þ
and ðu2; v2; t2Þ, where t1 < t2, there are six types of event
pairs (also shown in Fig. 2):

� Repetition. Two events occur on the same edge
(u1 = u2, v1 = v2).

� Ping-pong. Second event is reverse of the first one
(u1 = v2, v1 =u2).

� In-burst. Two events share the same target (u1 6¼ u2,
v1 = v2).

� Out-burst. Two events share the same source (u1=u2,
v1 6¼ v2).

� Convey. The source of the second event is the target
of the first event (v1 =u2, u1 6¼ v2).

� Weakly-connected. The target of the second event is
the source of the first event (u1 = v2, v1 6¼ u2).

A motif with m events can be represented as a sequence
of m� 1 event pairs, as long as each consecutive event pair
shares a node (see Fig. 2 for examples). Considering event
pairs as the building blocks is useful for three reasons:

TABLE 2
Important Statistics for the Temporal Network Datasets We Use

in Our Experiments

Name Nodes Events Edges #T jEuj=jEj m(Dt)

Bitcoin-otc 5.88K 35.6K 35.6K 35.4K 99.2% 707
CollegeMsg 1.90K 59.8K 20.3K 58.9K 97.2% 37
Calls-Copen. 536 3.60K 924 3.59K 99.7% 194
SMS-Copen. 568 24.3K 1.30K 24.0K 97.6% 32
Email 986 332K 24.9K 208K 50.5% 15
FBWall 47.0K 877K 274K 868K 98.0% 42
SMS-A 44.4K 548K 69.0K 470K 73.1% 3
StackOver. 260K 6.35M 4.15M 5.97M 88.2% 6
SuperUser 194K 1.44M 925K 1.44M 99.2% 83

Fig. 2. [Left] We use 2n digits to denote a temporal motif with n events.
Each event is given by a pair of digits, where the source node is the first
and the target node is the second digit. The first two digits are always
01, to denote that the first event occurred from node 0 to node 1. The
sequence of pairs and the digit number of each node follow the chrono-
logical order of events and nodes. [Right] Event pair representations, all
six types are listed. At the bottom, a three-node three-event motif is
denoted as a sequence of repetition and out-burst, and a four-event
motif is denoted as a sequence of repetition, convey, and ping-pong.
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� It is a 6-letter alphabet, thus a simple and succinct way
to deal with the temporal and structural complexity.

� It is expressive; can exactly represent all 2n3e or 3n3e
motifs (36 in total, 62) and all 3n4e or 2n4e motifs
(216 in total, 63). It also gives 216 (63) broad descrip-
tions (not exact) for the 480 4n4e motifs that grow as
a single component.

� It is well-suited to capture the temporal correlations:
event pairs within larger motifs can reveal the
mesoscale characteristics while providing an easy
interpretation.

Questions. In our experimental evaluation, we are looking
to answer the following questions about temporal network
motifs by using the various real-world temporal networks
in our dataset:

Q1: What are the implications of temporal inducedness con-
straints discussed in Section 4.1? In particular, is there any
bias in the spectrum or counts of motifs obtained by conse-
cutive event restriction in [11] and constrained dynamic
graphlets in [13]? We answer those in Section 5.1.

Q2: How the timing constraints, DC and DW , impact the spec-
trum or counts of motifs? What are the biases implied by each
constraint? How would the combination of those two con-
straints compare? We consider those in Section 5.2. Note
that we avoid the experiments in prior studies [14] about
the choice of parameters.

Q3: What new insights can we capture by using the lens of
event pairs? What kind of event pairs observed in each data-
set? Is there any commonality for all datasets or for the ones
from the same domain? We answer all in Section 5.3.

Comparison Criteria. We are only interested in the motif
counts and behavior of the motif spectrum in our evalua-
tion; runtime performance is not in our scope in this work
(but is a promising future direction). Note that, in static
motif analysis [1] a null model (randomized graph) is often
used as reference to measure the statistical significance of
motifs. However, it is difficult to choose a proper null model
for temporal motifs: the intertwined temporal and structural
complexity in temporal networks makes it challenging to
consider a null model that can mimic the realistic features.
This issue is also highlighted by Kovanen et al. [11].
Although there has been several new random reference
models for temporal networks [50], our preliminary analy-
sis showed that there is no reliable random graph model
which can mimic both the structural and temporal features
in real-world networks. We tried several link-shuffling and
time-shuffling models from [50], some are too restrictive
where the motif counts barely change, and some others are
too loose where all the motifs are reported as significant.
Therefore, as also done in [11], we consider the motif count
as the main indicator of motif significance, which gives a
relative comparison. We consider three-event and four-
event motifs in our experiments.

5.1 Temporal Inducedness Constraints

As discussed in Section 4.1, temporal network motif models
have different approaches to define temporal inducedness.
Here we evaluate the impact of two restrictions by using
3n3e (three-nodes, three-events) motifs: (1) Consecutive
events, proposed in [11] to ensure node-based temporal

inducedness, (2) Constrained dynamic graphlets, proposed
in [13] to filter out the stale information.

5.1.1 Consecutive Events Restriction

In this part, we evaluate the advantages and limitations of
adding the consecutive events restriction from [11]. As
explained in Section 4.1, consecutive events restriction is a
node-based constraint. If a node is part of a motif, then the
adjacent events of the node in themotif should be consecutive,
i.e., the node cannot have an adjacent event outside the motif
while it is engaged in the motif. The third column in Fig. 1
also demonstrates this restriction, where white node interacts
with the dashed node at t ¼ 8 thus the motif is not valid
according to [11]. Consecutive events restriction is useful
when handling a star node for instance, which is adjacent to
many events. The continuity requirement ensures that the
node can only be engaged with a linear number of motifs,
avoiding quadraticallymany.However this is a double-edged
sword: it permits fast counting and analysis, but can miss
important patterns. Here we count the motifs with and with-
out consecutive events restriction on all 32 3n3e motifs and
use DC ¼ 1500s timing configuration (i.e., no DW is specified).
Table 3 presents the results (all results are available in the sup-
plementary materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2021.3077495). We compare the total
counts of 3n3e motifs without or with consecutive event
restriction for DC=1500s (2nd and 3rd columns). We also give
the ranking changes of the four motifs among all 32 3n3e
motifs after the consecutive restriction is added (last four col-
umns). Overall, the given motifs are amplified when the con-
secutive event restriction is applied.

The motif counts show that in all datasets except Bit-
coin-otc, over 95 percent of the motifs are removed if
the restriction is applied. We observe that four motifs, 010210,
011210, 012010, and 012110, are often amplified by the consecu-
tive event restriction. These motifs are not frequently
observed in the non-consecutive scenario but rise to a signif-
icantly higher ranking after the consecutive restriction is
applied. The amplification of these motifs is most com-
monly observed in message networks, such as CollegeMsg
and SMS(Copenhagen) All of these motifs follow an ask-
reply pattern, where the last event replies the first event. It
is not an immediate response and another node is involved
in the second event, which appears to be another conversa-
tion. Note that if the consecutive events restriction is not

TABLE 3
The Impact of Consecutive Events Restriction

Network Non-cons. Cons. 010210 011210 012010 012110

Calls-Cop. 1.66K 77 +7 -9 0 0
CollegeMsg 1.59M 2.55K +18 +23 +10 +16
SMS-Copen. 198K 389 +16 +18 +14 +17
SMS-A 1.02M 35 +11 +11 +2 +6
Email 1.84M 1.82K +1 +4 +4 +4
FBWall 268K 904 +14 +10 +13 +2
Bitcoin-otc 6.42K 1.93K 0 0 +2 +3
StackOver. 3.78M 1.02K -11 +8 -5 0
SuperUser 481K 10.9K +4 +4 -4 +5
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considered, adjacent events of a node are not required to be
consecutive. Then, the second event would be allowed to
form a different motif, by skipping the third event (reply)
and adding another adjacent event from another conversa-
tion. This would shadow the original ask-reply pattern
between the first and the third events and, in turn, over-
states the motifs where the first and second events form a
star. When it is important to distinguish ask-reply patterns
from the big star structures, consecutive events restriction
can be advantageous. For instance, using consecutive events
restriction can be useful for temporal networks of text mes-
sages and emails. A burst of messages or emails from one
individual to others may be spam (or the information value
may not be high), while two reciprocal messages or emails
in short time are likely to indicate a real conversation. On
the other hand, considering this restriction in other tempo-
ral networks, like online interactions in social networks,
may suggest biased results by artificially amplifying the
ask-reply patterns. All in all, while the consecutive events
restriction filters out the discontinuous engagements from the
node’s perspective, it yields biased motif counts by consistently
amplifying ask-reply motifs where the first and last events are
reciprocal. This can be advantageous in the analysis of mes-
sage and emails (where bursts of messages/emails are too
common) but may introduce bias in the analysis of other
temporal networks.

5.1.2 Constrained Dynamic Graphlets

As defined in Section 4.1, constrained dynamic graphlets
are defined in [13] to exclude stale information in the tem-
poral motifs. Constrained dynamic graphlet only includes
the new events that are not observed in the prior time-
stamps; formally, if two events ðu1; v1; t1Þ and ðu2; v2; t2Þ are
consecutive in the graphlet (where u1; v1 6¼ u2; v2), then
there must be no event ðu2; v2; t

0Þ in the temporal graph for
which t1 � t0 � t2.

Here we investigate how the constrained dynamic graph-
lets impact the spectrum of observed motifs and give a com-
parison against the temporal motifs without such restriction.
Note that this restriction is mainly motivated by the snapshot-
based representation, which implies that there are multiple
events occurring at the same timestamp. For most real-world
temporal networks, the raw data has a fine resolution (e.g., 1
second) and it is unlikely to observe multiple events occurring
at the same timestamp. We also show this in Table 2 in the
second last column: more than 97 percent of the events have
unique timestamps in most datasets. Hence, nearly all motifs
would be able to escape from the constrained dynamic graph-
let restriction since almost always only one event occurs in a
give timestamp. Thus we degrade the resolution of our data-
sets to 300s in order to highlight the difference between con-
strained dynamic graphlet counting and vanilla temporal
motif counting (i.e., without constraints). Note that this will
have an additional impact on both types of the motif counts:
each will have less motifs when compared to 1s resolution
(This is because we assume the events in a motif have a total
ordering, so events within the same timestamp are not
included in the same temporal motif). In both scenarios, we
only consider DC ¼ 1500s as the timing constraint and investi-
gate the counts of 3n3e motifs.

We first check the impact of degrading the resolution on
vanilla temporal motif counts. Message networks are
affected most; we observe 80 percent decrease in counts
from 1s to 300s. Degrading the resolution has less impacts
on the stack exchange networks, where the inter-event time
intervals are larger than the other datasets. Comparing the
ratios of each motif at 1s and 300s resolutions shows that
the change of proportion is always less than 1 percent.
Hence degrading the resolution affects all motifs equally, so
does not introduce any bias into our evaluation.

Now we compare the two methods after the resolution is
degraded to 300s. Table 4 presents the results (complete
results are available in the supplementary materials), avail-
able online. We look at the changes in the ratios for all 3n3e
motifs (ratio of a particular motif count to the sum). We
observe the largest variance in Email, which indicates that
some motifs change significantly than others. Message net-
works also show strong variance while the variances are
less than 0.1 in the stack exchange networks. There are
some commonalities across all datasets: 010102, 010202,
012020, and 010201 are the motifs that show the most significant
proportion changes when going from vanilla counts to restricted
counts. The decrease in 010201 is due to the fact that the con-
strained dynamic graphlet does not favor the delayed repeti-
tions: if there exists many 01s after the 02, only the first one
is considered and the rest is ignored. Note that it is often
likely to see such delayed repetitions in communication net-
works such as messaging and email. The decrease in 010201
translates to increases in the motifs with immediate repeti-
tions, such as 010102, 010202, and 012020. Note that Email
shows a different behavior with respect to these motifs
where most ratios decrease drastically. The common feature
of the motifs with decreases (010102, 010202, 010201) is that
there is a repetition and out-burst from the initial sender
node (0), either one after the other or interleaved. We
believe that the prevalence of out-bursts is due to the the
carbon copies (cc) in emails. It is also likely that the carbon
copies occur at the both timestamps of the repetition, thus
those motifs are removed by the constrained dynamic
graphlet restriction. Using the constrained dynamic graphlet
restriction can adversely impact the analysis of communication
networks (such as text messages and emails) where two parties are
engaged in a conversation. Delayed repetitions are likely to
occur when the sender is engaged in another conversation
and ignoring those motifs will amplify the motifs with
immediate repetitions.

TABLE 4
The Motif Proportion Changes (percentage) When Going From
Vanilla Temporal Motifs to the Constrained Dynamic Graphlets

Network Variance 010102 010202 012020 010201

Calls-Cop. 1.70 +0.22% -3.45% +1.39% -5.60%
CollegeMsg 3.36 +3.31% +4.36% +3.76% -2.12%
SMS-Copen. 3.49 +2.37% +3.23% +3.26% -0.99%
SMS-A 2.34 +4.09% +4.98% +1.54% -1.93%
Email 18.98 -9.63% -10.05% +2.88% -18.00%
FBWall 1.03 +1.06% +1.09% +0.75% -0.78%
Bitcoin-otc 0.00 0.00% 0.00% 0.00% 0.00%
StackOver. 0.04 +0.26% +0.27% +0.26% -0.09%
SuperUser 0.06 +0.63% +0.65% +0.24% -0.14%
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Summary. Overall, we observe that both the consecutive
events restriction and constrained dynamic graphlets
exhibit a bias towards certain types of motifs, consistently
in most datasets. This can have an adverse affect in the anal-
ysis of certain types of temporal networks.

5.2 Impact of Timing Constraints

Both timing constraints (DC and DW ) have their specialties in
capturing temporal motifs: DC emphasizes the continuity,
while DW provides a holistic view and brings a strict bound to
the motif timespan. Here we use both parameters and compare
the patterns we observed in the two extremes (only-DC and
only-DW ). For all experiments, we set the DW as 3000 seconds and
change the DC to obtain different DC=DW ratios. Our choice relies
on the same principle used in [14]; we use inter-event times as
proxy. As we discussed in Section 4.5, the DC=DW ratio must
be in ð 1

m�1 ; 1Þ interval to make the both constraints useful, i.e.,
we are considering only-DC if the DC=DW ratio is too small and
only-DW if the ratio is too large. For three-event motifs we select
three configurations: DC=DW = 0.5 (only-DC), 0.66 (DW -and-DC),
and 1.0 (only-DW ); for four-event motifs there are four configu-
rations: DC=DW = 0.33 (only-DC), 0.5, 0.66, and 1.0 (only-DW ).
Since we only change the DC here, some motifs in larger
DC=DW configurations will not satisfy the DC constraint when
the ratio becomes smaller, thus the set of motifs observed
under a smaller DC=DW ratio is a subset of a larger DC=DW

configuration.
We first discuss the motif counts and spectrum under

different timing constraints by using the event pairs (Sec-
tion 5.2.1). Then, we look at the behavior of intermediate
events (non-first, non-last) (Section 5.2.2). Last, we check
how the motif timespans are shaped by the different timing
parameters (Section 5.2.3).

5.2.1 Motifs Counts and Event Pairs

We compare the motif counts obtained with different timing
constraint configurations and analyze the frequency and
ratio of the event pairs (R, P, I, O, C, W) in 3n3e motifs.

We Observe That Considering only-DW Amplifies the Number
of R, P, I, O Motifs. Enforcing the DC constraint helps to find
less R, P, I, O motifs since consecutive events should be
close to each other. Table 5 shows that R, P, I, O motifs are

overrepresented in the situation where DC is ignored. The
number of R, P, I, O motifs is 10 times greater than C, W
motifs in all datasets. The number of R, P, I, O motifs
observed in only-DC configuration is 40 percent less than the
only-DW configuration. Among all datasets message net-
works are affected most, where the number of R, P, I, O
motifs is reduced to 56.8 percent in CollegeMsg and 60.3
percent in SMS-Copenhagen. The number of C, W motifs is
also reduced when switched to only-DC configuration, but
the reduction rates are smaller than the R, P, I, O motifs.
Using both constraints can achieve a balance between the
two extremes, where the number of R, P, I, O motifs is
reduced to nearly 80 percent and the C, W motifs is reduced
to 90 percent.

We also compare the ratios of event pair types between only-
DC and only-DW configurations for all three-events (3e) (two- or
three-nodes) and four-events (4e) (two-, three-, or -four nodes)
motifs. Fig. 3 presents representative results; for StackOver-
flow (3e motifs) and Calls-Copenhagen (4e motifs) (com-
plete results are available in the supplementary materials),
available online. In most datasets, we observe that the ratio of repeti-
tions decreases when going from only-DW to only-DC configuration
whereas the increases show variety. The ratio of repetitions for 3e
motifs in StackOverflow is reduced from 18.0 percent in only-
DW to 16.4 percent in only-DC (Fig. 3a). It is similar for 4emotifs;
in Calls-Copenhagen, the repetitions decrease from 15.7
percent in only-DW to 12.5 percent in only-DC (Fig. 3b). The
decrease in repetitions also means an increase in other types of
event pairs. For stack exchange interactions, the ratio of in-
bursts increases: for 3e motifs in StackOverflow, the in-bursts
increases from 22.5 percent in only-DW to 25.6 percent in only-
DC . As interactions in StackOverflow are answers and com-
ments, this indicates that new posts are often answered and
commented by many different persons in a short time period,
and we can have better grasp of the in-bursts of answers and
comments by bringing the DC constraint. For 4e motifs in
Calls-Copenhagen, on the other hand, the proportions of
ping-pongs and conveys increase when going from only-DW to
only-DC configuration. This implies that in CDR networks ask-
reply and message delivering patterns tend to happen in a
short time period, therefore become more prominent in the
only-DC configuration.

5.2.2 Intermediate Event Behaviors

Next, we investigate the intermediate event behaviors
under different configurations. Since DW only limits the

TABLE 5
Counts of Event Pairs and Their Reduction Rates When Going

From only-DW to DW -and-DC and only-DC Configurations

Network Motif Type only-DW DW -and-DC only-DC

Count Count Ratio Count Ratio

College. R, P, I, O 514K 421K 81.9% 292K 56.8%
C, W 68.3K 56.4K 82.6% 40.2K 58.9%

FBWall R, P, I, O 395K 315K 79.7% 242K 61.3%
C, W 45.9K 40.6K 88.4% 32.7K 71.2%

Bitcoin. R, P, I, O 8.91K 7.21K 80.9% 5.94K 66.6%
C, W 338 316 93.5% 282 83.4%

SMS-Cop. R, P, I, O 293K 241K 82.1% 177K 60.3%
C, W 31.1K 27.0K 86.8% 21.0K 67.5%

SMS-A R, P, I, O 894K 745K 83.4% 561K 62.8%
C, W 66.0K 58.6K 88.8% 43.6K 66.1%

Fig. 3. Ratios of event pairs in only-DW and only-DC configurations. Each
figure shows a pair of pie charts for the ratio of event pairs in six
categories. Fig. 3a has the distributions for 3e motifs in
StackOverflow; Fig. 3b gives the ratios for 4e motifs in Calls-

Copenhagen. The proportion of repetitions decreases in almost all
datasets when going from only-DW to only-DC while the ones with
increasing ratios are different.

LIU ETAL.: TEMPORAL NETWORK MOTIFS: MODELS, LIMITATIONS, EVALUATION 953

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 20,2022 at 17:11:01 UTC from IEEE Xplore.  Restrictions apply. 



interval between the first and the last events, it has no con-
trol on the behavior of intermediate events, i.e., when the
second event happens in three-event motifs or when the sec-
ond/third events happen in four-event motifs. Due to the
bursty nature of temporal networks, the intermediate events
in the motifs can be heavily skewed to the first event or the
last event. Ideally, such bias is greatly reduced by DC con-
straint, since it limits the time difference between consecu-
tive events. Here we show a few representative motifs in
different datasets for 3n3e and 4n4e motifs in Fig. 4 (all
results are available in the supplementary materials), avail-
able online. Fig. 4a shows the intermediate event occur-
rence of motif 010102 in SMS(Copenhagen). In only-DW

case, the occurrence of the second event is significantly
skewed to the first event since the second event is a repeti-
tion of the first. The lapse between the second and the last
event can cover the entire timespan of the motif, and it is
hard to guarantee the relevance of the last event in this sce-
nario. The skewness in the second event occurrence is reduced
when DC=DW ¼ 0:66, and the distribution is further regularized
in only-DC configuration. Similar skewed patterns are also
observed in the other 3n3e motifs. Fig. 4b displays the inter-
mediate event occurrence of motif 011221 in FBWall. Due
to the ping-pong behavior formed by the last two events,
the second event occurrence is skewed to the last event for

only-DW , and the bias is reduced in DC=DW ¼ 0:66 and only-
DC configurations. We also observed similar patterns in
4n4e motifs. Fig. 4c shows the intermediate event occur-
rence of motif 01212303 in CollegeMsg. In only-DW case,
the occurrence of the second event is skewed to the first
event and the third event is skewed to the last event, as both
first-second and third-fourth pairs are in-bursts. Tuning
DC=DW from 1.0 to 0.33 regularizes the distribution of the occur-
rence and ensures that the timing of the intermediate event
does not depend on the type of the motif.

5.2.3 The Timespan of Motifs

Lastly, we compare the distributions of motif timespans (the
time difference between the last and first events) for only-DC

and only-DW configurations. Note that the DC only gives a
loose bound to the timespan of motifs (DC � ðm� 1Þ where
m is the number of events), while the DW gives a hard limit.
Fig. 5 shows a representative result; the timespan of all
010102 motifs in CollegeMsg for different timing con-
straints (other results are in the supplementary materials),
available online. In only-DC , the distribution of motif time-
spans follows a normal distribution where the mean is
approximately equal to the value of DC . This indicates that,
although DC provides a loose bound, using only-DC fails to

Fig. 4. Behavior of intermediate event occurrences. In each figure, the x-axis denotes the occurrence time of intermediate events with respect to the
first and last events. 0 percent denotes the first event occurrence and 100 percent represents the last event occurrence. The y-axis shows the fre-
quency of the intermediate events; second events (blue) in three-event motifs and second & third events (blue & red) in four-event motifs. In all cases,
enforcing the DC constraint regularizes the skew in only-DW case.
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control the timespan of motifs. We observe that the motif time-
spans are more uniform in DC=DW ¼ 0:66 configuration, and the
distribution is further regularized in only-DW configuration.
Obtaining a set of motifs with uniform timespan distribu-
tion can be important in the analysis of real-world events
which shows a variety in the timespan. For example, people
have different churn behaviors in subscription services
(some leave after a week and some others unsubscribe after
a month) and one may be interested to see the temporal
motifs that lead to the attrition. In such cases, selecting the
motifs with uniform time distribution can enable to see the
patterns that are related to customer’s timeline rather than
the absolute period of subscription.

Summary. We observe that DC and DW have complemen-
tary features; the former fails to bound timespans whereas
the latter introduces bias for the occurrence of intermediate
events. Combining both parameters by choosing a ratio for
DC=DW in ð 1

m�1 ; 1Þ interval can yield a trade-off.

5.3 Motifs as Sequence of Event Pairs

In this section, we use our new lens, event pairs, to analyze
the characteristics of the sequences. In particular, we are
interested in the temporal correlations among different
types of event pairs and how the ordered sequences of event
pairs show variety in various datasets. Fig. 6 presents the
heat maps for all three-event motifs (both two- and three-
nodes) in SMS-A, SMS-Copenhagen, Calls-Copenha-

gen, and Email using both timing constraints (DC ¼ 2000s
and DW ¼ 3000s); densities are color coded with respect to
the min. and max. values in each dataset (all results are
available in the supplementary materials), available online.
Since there are two pairs of events in the three-event motifs,
we represent those as an ordered sequence of two pairs in a
heat map. Regarding the counts, we often observe the majority
of motifs are formed by the sequences involving repetitions, while

only a few motifs are formed by the sequences including weakly-
connected event pairs. This is also observed in the previous
studies [14], [21]. The weakly-connected event pairs are rare
since the two events take place in a non-transitive order,
therefore are likely to be irrelevant.

In terms of the ordered sequences, we observe highly
similar patterns in all message networks. The sequences
involving both the repetitions and ping-pongs are the
majority. Note that only two nodes are involved if there are
only repetitions and ping-pongs; thus those interactions in
message networks tend to be very local, and in most cases
one-to-one conversations. Message networks also show a
certain preference in the sequences involving in-bursts, out-
bursts, and conveys. In-bursts and out-bursts seem to be
incompatible as we do not observe many motifs that contain
both. Conveys are often followed by out-bursts but not by in-
bursts or conveys, and in-bursts are often followed with conveys,
while the opposites rarely happen.We believe it is due to nature
of information. The information delivered by conveys is
likely to be distributed to multiple nodes through out-
bursts. Meanwhile, the information gathered from multiple
nodes through in-bursts is often further propagated through
conveys. In Calls-Copenhagen and Email, there are less
motifs formed by the sequences involving ping-pongs; how-
ever out-bursts are very dominant. Phone calls are not
instantaneous events and happen for a duration; thus the
information are mutually exchanged and repetitions are
less likely to happen. Similarly, email communications do
not have information limit when compared to the messages.
Asymmetrical trends observed for message networks are
also common for calls and emails.

Summary. Sequences of event pairs suggest interesting
findings about the interplays among different types of pairs.
In particular, the commonalities observed for message net-
works and the asymmetrical trends are surprising thanks to
event pairs based analysis.

6 DISCUSSION

In this work, we introduced a comparative survey for the
existing temporal motif models. We evaluated both advan-
tages and limitations of these models with respect to two
key aspects: temporal inducedness and timing constraints.
In addition, we use the event pairs to analyze the sequences
in the observed motifs. Our experimental evaluation shows
that; (1) The temporal inducedness restrictions (consecutive

Fig. 5. Distribution of the motif timespans for 010102 motifs in Colle-

geMsg. The x-axis denotes the timespan of the motif and the y-axis
shows the count of such motifs. The distributions are more regularized
when going from only-DC to only-DW .

Fig. 6. Ordered sequences of event pairs for three-event motifs. Each block denotes a type of three-event motif, where y-axis shows the first pair of
events (first and second event) and the x-axis shows the second pair of events (second and third event). The color indicates the motif counts in log
scale and calculated with respect to the minimum and maximum counts in each dataset. Repetitions and ping-pongs are the most dominant in mes-
sage networks, while repetitions and out-bursts are more common in calls and emails. Also, conveys, in-bursts, and out-bursts have asymmetrical
trends in their compatibility.
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events restriction and constrained dynamic graphlets)
exhibit a bias towards certain types of motifs, consistently
in most datasets, (2) Timing constraints, DC and DW , have
complementary strengths, where the former fails to bound
timespans whereas the latter introduces bias for the occur-
rence of intermediate events; hence combining both param-
eters by choosing a ratio for DC=DW in ð 1

m�1 ; 1Þ interval for
m event motifs can yield a trade-off; (3) Sequences of event
pairs suggest interesting findings about the interplays
among different types of pairs, such as asymmetrical trends.

There are several directions worth to explore as a future
work. Besides temporal inducedness and timing con-
straints, for instance, temporal motifs with event durations
is a promising avenue. We believe that devising an ultimate
unifying model would be too ambitious due to the diverse
characteristics of temporal networks and application-driven
models (e.g., for phone calls) are likely to yield more effec-
tive and practical results. Also, understanding how the
observed motif counts are related to the intrinsic network
characteristics is important and recently introduced random
reference models can be helpful [50]. We also intend to uti-
lize the sequence of event pairs for the event prediction.
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