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Fast Counting and Utilizing Induced 6-Cycles in
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Abstract—Bipartite graphs are a powerful tool for modeling
the interactions between two distinct groups. These bipartite rela-
tionships often feature small, recurring structural patterns called
motifs which are building blocks for community structure. One
promising structure is the induced 6-cycle which consists of three
nodes on each node set forming a cycle where each node has exactly
two edges. In this paper, we study the problem of counting and
utilizing induced 6-cycles in large bipartite networks. We first
consider two adaptations inspired by previous works for cycle
counting in bipartite networks. Then, we introduce a new approach
for node triplets which offer a systematic way to count the induced
6-cycles, used in BATCHTRIPLETJOIN. Our experimental evaluation
shows that BATCHTRIPLETJOIN is significantly faster than the other
algorithms while being scalable to large graph sizes and number
of cores. On a network with 112M edges, BATCHTRIPLETJOIN is
able to finish the computation in 78 mins by using 52 threads. In
addition, we provide a new way to identify anomalous node triplets
by comparing and contrasting the butterfly and induced 6-cycle
counts of the nodes. We showcase several case studies on real-world
networks from Amazon Kindle ratings, Steam game reviews, and
Yelp ratings.

Index Terms—Bipartite, cycle, induced, motif.

I. INTRODUCTION

THE growing interest in bipartite graphs derives from the
applications which model the relationships between two

distinct groups [1], [2], [3], [4], [5]. In a bipartite graph, the
node set is divided into two disjoint and independent sets U
and V such that every edge connects a node in U to one in V .
For example, recommendation networks are often represented
as a bipartite graph with users as one node set and items as the
other [6]. Bipartite graphs are also used to model hypergraphs
where entities take part in group relations, such as actor-movie
[7], author-paper [8], and company-board member [9] connec-
tions. Despite their representation power, bipartite graphs are
understudied because most graph algorithms, including motif
analysis, are focused on the traditional unipartite graphs. One
solution is to project bipartite graphs to obtain the unipartite
representation but this comes at a cost of significant information
loss and inflated graph size [10], [11]. Hence, it is essential to
design algorithms that directly work on the bipartite graphs.
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Motif-based analysis is shown to have significant benefits for
various graph mining tasks [10], [12], [13]. The smallest non-
trivial motif in a bipartite graph is a butterfly ((2,2)-biclique),
also known as a four-cycle and a rectangle [14], [15]. Butterflies
are shown to be an effective building block for community
structure and used in various graph mining tasks in bipartite
graphs [16], [17], [18]. Sequential and parallel algorithms are
designed for butterfly counting in offline and online scenarios
[14], [15], [19], [20], [21]. However, butterflies capture the
higher-order relations between only two nodes from the same
node set. Alternative measures also have limited success, for
example a (3,3)-biclique suffers from the prohibitive cost of
computation [1] and a 3-path (i.e., butterfly minus an edge) is
unable to model cohesion [9]. There is a need to go for larger
bipartite motifs which can model higher-order relations while
being computationally affordable.

One promising structure in this context is the 6-cycle, pro-
posed by Opsahl [22] to model the triadic closure in bipartite
networks. A 6-cycle consists of three nodes on each node set
forming a cycle. Recently, Yang et al. introduced algorithms
for counting non-induced 6-cycles [23]. While their algorithms
are efficient, they ignore the inducedness constraint which is a
key to get more informative results by avoiding combinatorial
explosion. Pržulj’s seminal works has shown that induced motifs
(named as graphlets) [24], [25] better model the local structural
properties of complex networks than non-induced motifs [26].
The main reason is that the presence and the lack of each edge
is fixed in a graphlet (e.g., no diagonal edges exist in a four-
cycle), and hence the frequency of a graphlet is never inflated
or shadowed by another graphlet with same number of nodes
(e.g., number of four-clique graphlets do not inflate the number
of four-cycle graphlets). In applications where the presence or
absence of every edge matters, such as in biology and anomaly
detection, graphlet-based analysis is preferred over motif-based
approaches [25], [27], [28]. In an induced 6-cycle, each node has
exactly two edges. There is no butterfly (or biclique) since each
pair of nodes (from the same set) shares only one neighbor. An
induced 6-cycle relates three nodes in the same node set to each
other by forming a triangle in the projections with the minimal
number of edges (see Fig. 1). In that respect, induced 6-cycles
offer a more distilled perspective than butterflies or bicliques.
However, counting induced 6-cycles is more challenging than
non-induced 6-cycles since one has to account for the lack of
certain edges to ensure inducedness.

In this work, we present parallel algorithms to count induced
6-cycles in bipartite graphs. To the best of our knowledge,
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Fig. 1. A toy bipartite network G, an induced 6-cycle in G, and a non-induced
6-cycle in G. The induced 6-cycle (u1, u2, u3, v1, v2, v3) consists of exactly
six edges and the degree of each node is exactly 2. The non-induced 6-cycle
(u2, u3, u4, v2, v3, v4) has an additional edge, making the degree of two nodes
three. The induced 6-cycle does not include a butterfly whereas the non-induced
6-cycle contains two butterflies: u2, u4, v3, v4 and u3, u4, v2, v4. Both the left
and right projections of an induced or non-induced 6-cycle result in triangles;
each node pair is related since they share a neighbor in G. However, induced
6-cycles are the smallest bipartite structure that enables such projections.

there is no prior work on counting induced 6-cycles. Due to
the high computational cost, we use the affordances of shared-
memory parallelization for practical runtime performance. We
first consider two previous studies on cycle counting in bipartite
networks and adapt them for parallel induced 6-cycle counting.
In particular, we use the breadth-first search idea from [29] and
wedge join technique from [20]. We show that those approaches
have prohibitive time and space costs, and are therefore not
scalable for large bipartite networks. As a solution, we pro-
pose counting induced 6-cycles over node triplets (three nodes
on the same node set). Node triplets offer a systematic way
to count induced 6-cycles in batches, thus avoiding duplicate
work and enabling time-space tradeoffs for faster computation.
We further consider space improvements by minimizing global
storage and reduction of set intersection/difference operations
when designing the BATCHTRIPLETJOIN algorithm. In all our
algorithms, we expose embarrassingly parallel computations in
the coarse level and also make use of a preprocessing routine to
assign better workloads for the threads. Preprocessing filters out
the redundant parts of the graph while keeping the induced 6-
cycle count the same and performs graph reordering to increase
efficiency. We perform an extensive experimental evaluation on
real-world networks and investigate the runtime and memory
usage performance of our algorithms along with strong and weak
scalability studies. We also perform case studies to illustrate the
differences between induced 6-cycles and butterflies as well as
possible applications.

Our contributions can be summarized as follows:
� Preprocessing: We consider several techniques to filter

and reorder the graph to speed up the induced 6-cycle
counting. These techniques are applied to all our algo-
rithms. Section IV introduces several graph filtering and
ordering techniques to speed up the induced 6-cycle count-
ing. We analyze the effectiveness of these techniques in
Section IX-D.

� Cycle counting algorithms: Due to the lack of prior work on
induced 6-cycle counting, we first propose two algorithms

inspired by other cycle counting models in Section V. Then,
we give two new approaches based on counting induced
6-cycles for node triplets which improve both the runtime
and memory usage (Section VI). We provide worst-case
time complexities using the work-span model for parallel
computing.

� Evaluation on real-world networks: We compare the run-
time of our algorithms on differing number of cores
to demonstrate high scalability and practical runtimes
for various real-world bipartite networks (Section IX).
On a network with more than half a billion edges,
BATCHTRIPLETJOIN our best algorithm, finishes the com-
putation in 13.2 hours by using 52 threads.

� Detecting anomalous node triplets: We introduce a
new algorithm, FINDTRIPLETS, which finds node triplets
with high induced 6-cycle and low butterfly counts
(Section VII). FINDTRIPLETS is the model behind our case
studies on the Amazon-Kindle, Steam-Games, and
Yelp-Business real-world datasets, showing examples
of possible analysis and applications regarding induced
6-cycles (Section X).

Note that an earlier version of this paper has appeared in
ICPP’22 [30].

Outline: We present preliminary definitions and notation in
Section II and summarize the prior work on motif counting
in bipartite networks in Section III. Then, we give a series of
preprocessing techniques to speed up induced 6-cycle counting
in Section IV and adaptations of two cycle counting algorithms
for induced 6-cycle counting in Section V. Next, we present
our two main algorithms based on the use of node triples in
Section VI. Afterward, we show a process for finding induced
6-cycle dominant and butterfly deficient node triples in Sec-
tion VII. We give our experimental evaluation in Section IX,
case studies in Section X, and conclusion in Section XI.

II. PRELIMINARIES

We work on a simple and undirected bipartite graph G =
(U, V,E) where U is the set of nodes in the left set, V is the
set of nodes in the right set, and E is the set of edges. The
neighbors of a node v is denoted byN(v) and its degree (|N(v)|)
by d(v). We denote |U | + |V | as n (number of nodes) and |E|
as m (number of edges). The summation of all elements in a
list X is denoted as sum(X). We use the work-span model for
theoretical analysis [31]. The work of an algorithm is the total
number of operations and the span of an algorithm is the longest
dependency path. We use hash tables that perform n operations
of insertion, deletion, and membership queries inO(n)work and
O(log n) span with high probability. For space complexities, we
represent the number of processing units as p.

An induced 6-cycle is a set of six nodes u1, u2, u3 ∈ U and
v1, v2, v3 ∈ V and six edges as follows (w.l.o.g):

(i) (u1, v2), (u1, v3), (u2, v1), (u2, v3), (u3, v1), (u3, v2)
edges exist;

(ii) (u1, v1), (u2, v2), (u3, v3) edges do not exist.
If only (i) holds, it is a non-induced 6-cycle. In a given

bipartite network G, we find the total number of instances of
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induced 6-cycles. In an induced 6-cycle instance, two vertices
are connected if and only if they are also connected in G. The
degree of a node is exactly two in an induced 6-cycle and at least
two in a non-induced 6-cycle. Fig. 1 gives an example for both.

We define a wedge as a 2-path composed of two endpoint
vertices u1, u2 ∈ U and a center vertex v ∈ V with edges
(u1, v), (u2, v) ∈ E (we always consider the endpoints in the
left set and the center vertex in the right set). An induced 6-cycle
is made up of three wedges connected to each other in a cyclic
way. We use W (x) to denote the set of wedges where x is the
smaller of the two endpoints (in U ) and W (x, y) to denote the
set of wedges whose endpoints are x and y. The total number of
wedges centered on V is equal to

∑
v∈V

(
d(v)
2

)
and denoted by

|WV |. Likewise, |WU | =
∑

u∈U
(
d(u)
2

)
. We denote the wedge

count of a graph as |W | = max(|WU |, |WV |).

III. RELATED WORK

In this section, we review various related works on finding
motifs in bipartite networks.

Counting Short Cycles in Bipartite Networks: A cycle in a
bipartite network is considered to be short if its length k follows
g ≤ k ≤ 2g − 2 where g is the length of the smallest cycle in
the graph. The objective here is to count all non-induced short
cycles in bipartite networks. A message-passing algorithm was
proposed by Karimi and Banihashemi [32] which iteratively
passes messages across a node’s neighbors to count all short
cycles within a bipartite graph. Dehghan and Banihashemi [29]
proposed an algorithm to count short cycles by applying breadth-
first search to all nodes in either the left or right set of a bipartite
network.

Butterfly Counting: In this problem, the objective is to count
the number of butterflies in bipartite networks. A butterfly is
the smallest cycle in bipartite networks and has a variety of
applications such as document clustering [4] and link spam
detection [3]. The first work for butterfly counting is by Wang
et al. who introduced a counting scheme which uses the number
of wedges containing each node in the left set to calculate the
total butterfly count [14]. Sanei-Mehri et al. improved upon
Wang et al.’s algorithm by computing the number of wedges
for each node in the set with lower runtime cost [15]. The set
with the higher sum of squares of the degrees for each node is
selected. Along with the exact counting algorithms, they also
proposed randomized algorithms which can approximate the
number of butterflies in bipartite networks. In another work,
Sanei-Mehri et al. introduced streaming algorithms to count
butterflies in graph streams [21]. Shi and Shun [20] recently
designed a parallel butterfly counting algorithm which modified
Chiba and Nishizeki’s wedge retrieval process [19] to enable
parallelization.

6-Cycle Counting: The problem of counting 6-cycles in bipar-
tite networks has only recently been studied for large bipartite
networks. Yang et al. introduced algorithms to count the num-
ber of non-induced 6-cycles, which they denote as bi-triangles
[23]. Their algorithms are based on combining wedges and
super-wedges, with the former being 2-paths and the latter being
3-paths. They also introduce local 6-cycle counting algorithms

Algorithm 1: PREPROCESSING (G).

Input: G = (U, V,E): graph;
Output: G′ = (U ′, V ′, E ′): processed graph ;

1: G← 2-core of G ;
2: if |U | > |V | thenSwap(U, V ) // Ensure
|U | < |V |
// Sort the nodes in U by inc. count
of wedges

3: X ← SortbyWedgeCounts(U) ;
4: Let x’s rank R[x] be its index in X ;
5: parallel foreach u ∈ U do add R[u] to U ′

6: V ′ ← V ;
// N ′(x) is the neighbors of node x in
G′

// In both loops, neighbors sorted in
descending order

7: parallel foreach u ∈ U do
N ′(R[u])← Sort({v|(u, v) ∈ E})

8: parallel foreach v ∈ V
doN ′(v)← Sort({R[u]|(u, v) ∈ E})

9: return G′

which count the number of 6-cycles containing a specified node
or edge. In our work, we consider induced 6-cycle counting,
which is more challenging and promising for real-world appli-
cations.

IV. PREPROCESSING

We make use of a generic preprocessing step in all our
algorithms which formats the graph to speed up computations.
To speed up the computation for large bipartite graphs, we can
shrink and reformat the graph such that the induced 6-cycle count
stays the same. In PREPROCESSING, outlined in Algorithm 1,
we give a computation that takes as input a bipartite graph and
outputs another bipartite graph that filters out some parts of the
input and reorders the nodes and neighbor lists. We first update
the input graph to only consider the nodes and edges that are in
a 2-core, which is a maximal connected subgraph in which all
nodes have a degree of at least 2 (line 1). Since all the nodes in
an induced 6-cycle have a degree of at least 2, we can simply
ignore the nodes outside the 2-core, thus reducing the size of the
graph. Afterwards, if necessary, we swap the left (U ) and right
sets (V ) to ensure that the left set (U ) has the smaller number
of nodes (line 2). We always parallelize based on U in our
counting algorithms, hence making it the smaller set increases
the number of induced 6-cycles that are processed in batches for
each thread. Next, we reorder each node u ∈ U in increasing
order of wedges from u (lines 3 - 5). The wedge count for a
node u is

∑
v∈N(u) d(v)− 1 (we consider the wedges where

u is an end-point, as defined in Section II). Note that Shi and
Shun [20] showed that reordering the graph using approximate
degree ordering or degeneracy ordering yields efficient results
and here we consider wedge count based ordering in a similar
spirit. Finally, we sort each neighbor list in descending order of
node ids (lines 7 - 8). This enables linear time set intersection and
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Fig. 2. NODEJOIN’s BFS tree. The dotted lines represent the edges which do
not exist. The BFS tree goes from top to bottom with u1 being the root node
and node v1 at depth level three. We check for the lack of the blue edge in line
7 and of the red edge in line 9 in Algorithm 2.

difference operations. We evaluate the impact of our techniques
in PREPROCESSING as well as various node reordering schemes
in Section IX-D.

Work, span, and space complexity: In PREPROCESSING, core
decomposition (line 1) takes O(m) time [33]. The swapping of
left and right sets (line 2) isO(1) if pointers are swapped instead
of the contents themselves. Finally, reordering the nodes and
sorting neighbor lists in descending order (lines 3-8) takesO(|X|
log |X| + m log m) time where |X| = min(|U |, |V |). Overall,
PREPROCESSING takes O(m log m) work. Since core decompo-
sition is performed sequentially and sorting neighbor lists is done
in parallel, the span isO(m+ n log n). Asymptotically, it never
becomes a bottleneck in any of our counting algorithms. The
space complexity for storing the processed graph and temporary
variables is O(m).

V. ADAPTING CYCLE COUNTING

Since induced 6-cycle counting has not been studied before,
we start by proposing two adaptations inspired by the previous
works for cycle counting in bipartite networks. The first is a mod-
ified version of breadth-first search to count induced 6-cycles,
which Dehghan and Banihashemi also used to count short cycles
[29] (Section V-A). The second is based on the parallel wedge
retrieval algorithm proposed by Shi and Shun, which was used
for butterfly counting [20] (Section V-B).

A. Counting by Breadth-First Search

One of the more common methods for finding cycles in a graph
is through breadth-first search (BFS) [29]. The idea is to simply
perform a traversal for a few levels and determine the number of
cycles that the root node takes part in. To count induced 6-cycles,
we introduce the NODEJOIN algorithm, outlined in Algorithm 2.
Given a bipartite graph G = (U, V,E), NODEJOIN counts the
induced 6-cycles by performing a limited BFS from each vertex
u ∈ U up until a depth level of three. Fig. 2 illustrates the BFS
tree where u1 ∈ U is the root node. v2, v3 ∈ V are two of u1’s
neighbors, hence put at level one. In level two, we find a neighbor
of v2 which is not connected to v3, denoted byu3 (and vice versa,
denoted by u2). In the last level, we find a common neighbor of
u2 and u3, denoted by v1, which is not connected to u1.

For each root node u1 ∈ U , the same u2, u3 pair may appear
in multiple induced 6-cycles containing u1. To avoid duplicate
processing, we use the container S (line 4 in Algorithm 2) to

Algorithm 2: NODEJOIN (G).

Input: G (U, V,E): graph;
Output: count: number of induced 6-cycles;

1: G← PREPROCESSING (G);
2: counts← [] // |U | values
3: parallel foreach u1 ∈ U do
4: S ← ∅ // Hashmap of node pairs (from

U) to values
5: foreach v2, v3 ∈ N(u1) s.t. v2 > v3 do
6: H ← ∅ // Set of nodes
7: foreach u3 ∈ N(v2)\N(v3) and u3 > u1 do
8: add u3 to H
9: foreach u2 ∈ N(v3)\N(v2) and u2 > u1 do

10: foreach u3 ∈ H do
// S stores the number of v1s
(see Fig. 2)

11: if (u2, u3) /∈ S then
12: S[(u2, u3)]← |N(u2) ∩N(u3)\N(u1)|
13: counts[u1]← counts[u1] + S[(u2, u3)]
14: count← sum(counts) // Parallel

reduction
15: return count;

store the number of nodes in N(u2) ∩N(u3)\N(u1), which
corresponds to v1s in the last level of the BFS tree (line 12).
We also ensure an ordering such that u3 > u1 and u2 > u1

(lines 7 and 9) to break the symmetry and thus prevent the
duplicate processing of node pairs from U . Note that the counts
list contains the number of induced 6-cycles counted through
each vertex; it is not the actual count for each vertex. The
sum of counts gives the total induced 6-cycle count (line 14).
NODEJOIN has a coarse-grained parallelism where the root nodes
in U are shared among the threads (line 3).

A significant drawback of NODEJOIN is the recomputation of
set intersections across BFS trees. Multiple root nodes u1 may
participate in an induced 6-cycle with the same u2 and u3 node
pair, resulting in the recomputation ofN(u2) ∩N(u3) (line 12).
One solution would be to store each set intersection for all pairs
of root nodes, but it will have prohibitive space usage for large
networks.

Work and span: For each node u ∈ U , lines 3 and 5 it-
erate over all wedges where u is the center, corresponding
to O(|WU |) iterations. The cost of lines 7 and 8 is O(|U |).
Lines 9 and 10 take O(|U |) iterations each, for a total of
O(|U |2) iterations. Computing the set operations in line 12 takes
O(|V |) time because N(u2) ∩N(u3)\N(u1) can be computed
in linear-time by simultaneously going over the neighbor lists
of u2, u3, and u1 (neighbor lists are kept sorted in descend-
ing order, see Section IV). Overall, NODEJOIN can be per-
formed in O(|WU | · (|U |+ |U |2 · |V |)) work, which is equal to
O(|W | · |U |2 · |V |). Regarding the span, only the outer loop
on line 3 is parallelized, resulting in a span ofO(|W | · |U | · |V |).

Space complexity: In addition to the O(m) space taken by
the graph, NODEJOIN uses one global container counts (line 2)
and two local containers S (line 4) and H (line 6) per thread
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Fig. 3. A cycle of three wedges (red, blue, and green) and the lack of any
other edge are needed to form an induced 6-cycle. The dashed edges must be
nonexistent; including any of those would make the 6-cycle non-induced.

to store various auxiliary information. counts stores |U | values.
S stores O(|U |2) values. H stores up to |U | nodes. Therefore,
the space complexity of NODEJOIN is O(m+ |U |+ p · (|U |2 +
|U |) = O(p · |U |2). Note that in practice we observe that this is
a loose bound and the actual memory footprint is much smaller
(see Section IX-C).

B. Counting by Wedges

An alternative way to count induced 6-cycles is by aggre-
gating wedges. Since induced 6-cycles are composed of three
overlapping wedges (see Fig. 3), we can reduce the cost of
computation by operating on wedges rather than nodes. Shi
and Shun proposed to use (and store) wedges for counting
butterflies [20]. We can count induced 6-cycles using a similar
wedge retrieval technique while taking advantage of the patterns
associated with inducedness.

We describe our wedge based counting algorithm WEDGEJOIN

in Algorithm 3. WEDGEJOIN simply goes over triples of wedges
and counts the ones that form an induced 6-cycle. Wedge re-
trieval (lines 2-6) is based off of Shi and Shun’s [20] algorithm
and enables the parallel processing of wedges. The parallel
containerW allows for fast access of wedges based on endpoints.
Unlike their algorithm, we only find wedges with endpoints in
U instead of the entire node set. In our implementation, W is a
list of all the wedges in the graph such that each wedge consists
of two nodes from U (endpoints) and one node from V (center).
We partitionW based on the smaller endpoint (u1) and sort each
partition with respect to the larger endpoint (u2). For all nodes
u1 ∈ U , W enables the retrieval of all wedges with endpoints
u1, u2 and center v3 such that u1 < u2.

WEDGEJOIN finds cycles of wedges (u1, v3, u2), (u2, v1, u3),
and (u1, v2, u3) such thatu1 < u2 < u3. Line 8 (in Algorithm 3)
iterates over all blue wedges (u1, v3, u2) and line 10 iterates over
all green wedges (u2, v1, u3) (Fig. 3). The lack of edges (u1, v1),
(u2, v2), and (u3, v3) is needed to satisfy the inducedness (the
dashed black edges in Fig. 3). To ensure that the blue and green
wedge pair satisfy the inducedness constraint, we first check for
the nonexistence of (u1, v1) and (u3, v3) in line 13. Afterwards,
we traverse all red wedges (u1, v2, u3) (Fig. 3) in line 15. Finally,
we check for the last unwanted edge (u2, v2) in line 17 and
increment the induced 6-cycle count of the blue wedge.

We have two speedups for faster computation, mentioned in
lines 12 and 14. In the first speedup, we aim to skip the processing

Algorithm 3: WEDGEJOIN (G).

Input: G (U, V,E): graph;
Output: count: number of induced 6-cycles;

1: G← PREPROCESSING (G);
2: W ← ∅ // Parallel container of

wedges
3: parallel foreach u1 ∈ U do
4: foreach v3 ∈ N(u1) do
5: foreach u2 ∈ N(v3) s.t. u2 > u1 do
6: add (u1, v3, u2) to W (sorted by endpoints)
7: counts← [] // |W | values
8: parallel foreach w1 ∈W do
9: (u1, v3, u2)← w1 // Blue wedge in

Fig. 3; u1 < u2

10: foreach w2 ∈W (u2) do
11: (u2, v1, u3)← w2 // Green wedge in

Fig. 3; u2 < u3

12: // Speedup #1: If v3 ∈ N(u3), skip
all the successive wedges with
the same endpoints; also no need
to check v3 /∈ N(u3) for such wedges

13: if v1 /∈ N(u1) and v3 /∈ N(u3) then
14: // Speedup #2: Reuse the count

below for all the successive
green wedges with the same pair
of endpoints

15: foreach w3 ∈W (u1, u3) do
16: (u1, v2, u3)← w3 // Red wedge in

Fig. 3
17: if v2 /∈ N(u2) then counts[w1] + +
18: count← sum(counts) // Parallel

reduction
19: return count

of some green wedges with particular endpoints. Note that inW ,
the wedges with the same smaller-endpoint (u1) are sorted with
respect to their larger-endpoint (u2). This means that while going
over the green wedges (w2) in line 10, where u2 is the smaller-
endpoint, we may encounter successive green wedges with the
same pair of endpoints, u2 and u3 (where the center point (v1)
from V is different). In that case, if v3 ∈ N(u3) happens to be
true, we can skip processing all such successive green wedges
with endpoints u2, u3 because the (u3, v3) edge violates the
inducedness condition. We can do this by simply keeping a flag
and temporary variable to remember the larger-endpoint (u3)
from the last processed green wedge. This way we do not check
whether v3 /∈ N(u3) again and again. More importantly, if v3 ∈
N(u3), we skip processing all the green wedges with the same
pair of endpoints u2, u3. In the second speedup, we again take
advantage of the successive green wedges with the same pair
of endpoints. We perform the computation in lines 15 to 17
once for a w1, w2 pair and reuse the induced 6-cycle count for
all successive w1, w

′
2 pairs where w2 and w′2 share the same

endpoints. We use both speedups in our implementation.
WEDGEJOIN computes the true count of induced 6-cycles by

finding three wedges where: (1) Nodes on the left are unique:
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Lines 9 and 11 enforce uniqueness by establishing an ordering
u1 < u2 < u3; (2) Nodes on the right are unique: Each node on
right is the center of a traversed wedge (lines 9, 11, and 16) which
contain two endpoints—through the inducedness checks in lines
13 and 17, we prove uniqueness by checking if a pair of endpoints
from all three traversed wedges connects to multiple nodes on
right; (3) The six induced edges exist (the blue, green, and red
edges in Fig. 3): Since all nodes are unique, each traversed
wedge (lines 8, 10, and 15) contains two of the induced edges;
(4) The three non-induced edges do not exist (the dashed black
edges in Fig. 3): We have explicit conditions on lines 13 and 17
corresponding to the three inducedness checks. Finally, since
we go over all triples of wedges, all the induced 6-cycles are
counted.

Work and span: Wedge retrieval (lines 3-6) iterates over all
wedges where a v ∈ V is a center, corresponding to O(|WV |)
iterations. Starting in line 8, we iterate over all the wedges, taking
|WV | iterations. The loop on line 10 finds the wedges where a
node u ∈ U is the smaller endpoint, which is O(|WV |), as it is
upper bounded by the number all wedges with a center point
in V . We find the third wedge in line 15, which takes O(|V |)
iterations. Line 17 simply takesO(1) time. Overall, WEDGEJOIN

can be performed in O(|WV |+ |WV |2 · |V |) work, which is
equal toO(|W |2 · |V |). Compared with NODEJOIN, which has
O(|W | · |U |2 · |V |) work, WEDGEJOIN is expected to be faster
as |W | is often way smaller than |U |2 in real-world networks.
Regarding the span, as in NODEJOIN, only the outer loops are
parallelized, resulting in a span of O(|W | · |V |).

Space complexity: The global containers counts (line 7) and
W (line 2) each takesO(|WV |) space. Overall space complexity
is O(m+ |W |).

VI. NODE TRIPLETS FOR FASTER COUNTING

In this section, we propose a new technique that considers
node triplets to count the induced 6-cycles. We define a node
triplet to be a grouping of three unique nodes such that all
nodes are in the same set (U or V ) and there exists a 4-path
connecting the three nodes. Inspired by Yang et al.’s approach
for non-induced 6-cycles [23], we derive a formula to find
the number of induced 6-cycles for a given node triplet and
compute the total count by going over all node triplets. The
formula lets us systematically avoid the duplicate work and
engage in time-space tradeoffs for faster computation. We first
introduce the TRIPLETJOIN algorithm in Section VI-A which
simply applies the formula for all node triplets and also stores
the set of common neighbors for fast computation. Then, we
present our final algorithm, BATCHTRIPLETJOIN, in Section VI-B
which improves TRIPLETJOIN by storing common neighbors
more efficiently and reducing set operations.

A. Counting by Node Triplets

Node triplets offer a systematic way to count the induced
6-cycles. Given that there are exactly six edges in an induced
6-cycle and no two nodes share more than one neighbor, we can
derive a formula to find the number of induced 6-cycles for a
given node triplet:

Algorithm 4: TRIPLETJOIN (G).

Input: G (U, V,E): graph;
Output: count: number of induced 6-cycles;

1: G← PREPROCESSING (G);
2: counts← [] // |U | values

// For each node pair in U, common
neighbors stored in S

3: S ← ∅ ∗ |U | // |U | hashmaps of nodes to
sets

4: parallel foreach u1 ∈ U do
5: foreach vj ∈ N(u1) do
6: foreach ui ∈ N(vj) s.t. ui > u1 do
7: add vj to S[u1][ui]
8: parallel foreach u1 ∈ U do
9: H ← ∅ // Distance-2 neighbors of u1

with greater id
10: foreach vj ∈ N(u1) do
11: foreach ui ∈ N(vj) s.t. ui > u1 do
12: add ui to H
13: foreach u2, u3 ∈ H s.t. u3 > u2 do
14: if u3 ∈ S[u2].keySet() then
15: counts[u1]←

counts[u1] + (|S[u1][u2]\N(u3)|) ·
(|S[u1][u3]\N(u2)|) · (|S[u2][u3]\N(u1)|)

16: count← sum(counts) // Parallel
reduction

17: return count

Theorem 1: Given a bipartite network G = (U, V,E) and
three unique nodes u1, u2, and u3 ∈ U , the number of induced
6-cycles containing the node triplet (u1, u2, u3) is:

|N(u1) ∩N(u2)\N(u3)| · |N(u1) ∩N(u3)\N(u2)|·
|N(u2) ∩N(u3)\N(u1)| (1)

Proof: Let unique nodes v1, v2, and v3 ∈ V be in an induced
6-cycle with u1, u2, and u3 as depicted in the induced 6-cycle
of Fig. 3. The difference between a 6-cycle and an induced
6-cycle is that, in an induced 6-cycle, neither of v1, v2, and
v3 can be a common neighbor of all three nodes u1, u2, and u3.
Therefore, the number of induced 6-cycles containing u1, u2,
u3, v1, and v3 is the number of possible v2s which are neighbors
of u1 and u3 but not u2. This can be represented as |N(u1) ∩
N(u3)\N(u2)|. Likewise, the number of possible v1s and v3s
are |N(u2) ∩N(u3)\N(u1)| and |N(u1) ∩N(u2)\N(u3)|,
respectively. The sets of N(u1) ∩N(u2)\N(u3), N(u1) ∩
N(u3)\N(u2), and N(u2) ∩N(u3)\N(u1) are mutually ex-
clusive. Therefore, multiplying the size of these three sets gives
the number of induced 6-cycles for the node triplet u1, u2, u3.�

Algorithm 4 outlines the TRIPLETJOIN algorithm. Given a
bipartite graph G = (U, V,E), TRIPLETJOIN computes the num-
ber of participating induced 6-cycles for all node triplets of
U and returns the total sum. TRIPLETJOIN processes at most(|U |

3

)
node triplets, of which many may share multiple nodes,

such as the same pair of nodes u1, u2 ∈ U . This may cause
serious recomputation of N(u1) ∩N(u2), which corresponds
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to a significant runtime cost. Therefore, we store the common
neighbors of node pairs inU , i.e.,N(u1) ∩N(u2)∀u1, u2 ∈ U ,
in container S (lines 3-7). Then, for each u1, we use a container
H (line 9) to store all its distance-2 neighbors which are greater
than itself. Afterwards, we obtain node triplets by iterating over
unique node pairs in H and compute the induced 6-cycle count
of each by Theorem 1 (line 15). This process of finding node
triplets avoids going over all

(|U |
3

)
triplets by only processing

the three nodes which form a 4-path (lines 10- 12: u1-vx-u2 and
u1-vy-u3 for arbitrary vx and vy). Such node triplets are more
likely to be a part of an induced 6-cycle when compared to an
arbitrary node triplet in U.

Work and span: Lines 4-7 iterates over all wedges where a
v ∈ V is a center, corresponding to O(|WV |) iterations. Then,
for each node in U (line 8), we find its distance-2 neighbors
(lines 9-12). In total, lines 8 and 9-12 takes at most O(|WV |)
work due to each wedge with center v ∈ V contributing to a
unique distance-2 neighbor. Line 13 traverses through pairs of
distance-2 neighbors in H , which takes O(

(|U |
2

)
) work. Line 15

does a computation based on Theorem 1, which takes O(|V |)
time. In total, lines 8 and 13-15 is performed in O(|U |3 · |V |)
work. Therefore, TRIPLETJOIN can be performed in O(|WV |+
|WV |+ |U |3 · |V |), which is equal to O(|U |3 · |V |) work.
Note that this is a loose bound, especially due to the analysis
of lines 13-15. Regardless, this is asymptotically better than
NODEJOIN, which takes O(|W | · |U |2 · |V |) work. As in NODE-
JOIN and WEDGEJOIN, only the outer-most loops are parallelized,
resulting to a span of O(|U |2 · |V |).

Space complexity: In addition to the O(m) space required
for the graph and the O(|U |) space required for the container
counts (line 2), TRIPLETJOIN involves storing wedges (line 3)
in the global scope, which takes O(|WV |) space. Local storage
of distance-2 neighbors of a node u ∈ U (line 9) only takes
O(p · |U |) space. Overall, the space complexity isO(m+ |U |+
|W |+ p · |U |)=O(|W |).

B. Faster Triplet Counting With Less Space

Here we consider three orthogonal improvements on top of
TRIPLETJOIN for a more time and space efficient algorithm.

Storing size of intersections: By globally storing wedges in
WEDGEJOIN and set intersections in TRIPLETJOIN, we are able
to solve the recomputation issue of wedges and set intersec-
tions, respectively. However, for large graphs, the space required
for this storage is prohibitive and may exceed the amount of
available memory. To reduce the memory usage, we can make
a more efficient use of global storage across loop iterations
and local storage within loop iterations. Since local storage is
temporary, its memory is freed (and thus can be reallocated) after
each iteration, unlike global storage. Compared to TRIPLETJOIN,
which stores the set intersections in global storage, we can only
store the sizes of set intersections globally (not the sets) and use
local storage only for the set intersections which directly relate
to the associated loop iteration.

Reduced set operations: Another improvement is about the
computation of induced 6-cycle counts for a node triple. In an
induced 6-cycle, each node v ∈ V has exactly two edges. We

Algorithm 5: BATCHTRIPLETJOIN (G).

Input: G (U, V,E): graph;
Output: count: number of induced 6-cycles;

1: G← PREPROCESSING (G);
2: counts← [] // |U | values

// For each node pair in U, # of
common neighbors stored in S

3: S ← ∅ ∗ |U | // |U | hashmaps of nodes to
values

4: parallel foreach u1 ∈ U do
5: foreach vj ∈ N(u1) do
6: foreach ui ∈ N(vj) s.t. ui > u1 do
7: S[u1][ui]← S[u1][ui] + 1
8: parallel foreach u1 ∈ U do
9: H ← ∅ // Hashmap of nodes to node

sets
10: foreach vj ∈ N(u1) do
11: foreach ui ∈ N(v) s.t. ui > u1 do
12: add vj to H[ui]
13: foreach u2, u3 ∈ H.keySet() s.t. u3 > u2 do
14: if u3 ∈ S[u2].keySet() then
15: x← |H[u2] ∩H[u3]| ;
16: counts[u1]← counts[u1]+

(|H[u2]| − x) · (|H[u3]| − x) · (S[u2][u3]− x)
17: count← sum(counts) // Parallel

reduction
18: return count

can use this to improve upon Theorem 1 by eliminating the
need for the set difference operation, reducing the number of
computations. As shown in Theorem 2, we can instead subtract
the number of nodes which are connected to all three nodes in
a node triplet. Therefore, instead of computing three O(|V |) set
difference computations, we can simply compute one O(|V |)
set intersection computation.

Theorem 2: Given a bipartite network G = (U, V,E), three
unique nodes u1, u2, u3 ∈ U , and x = |N(u1) ∩N(u2) ∩
N(u3)|, the number of induced 6-cycles containing the node
triplet is:

(|N(u1) ∩N(u2)| − x) · (|N(u1) ∩N(u3)| − x)·
(|N(u2) ∩N(u3)| − x) (2)

Proof: Given a set X , |X| − |X ∩A| = |X\A|.
Therefore, |N(u1) ∩N(u2)| − x is equivalent to
|N(u1) ∩N(u2)\N(u3)| in Theorem 1. As such, Theorem 2 is
correct by the same reasoning as Theorem 1. �

We consider the improvements above in BATCHTRIPLETJOIN,
outlined in Algorithm 5, which reduces the number of com-
putations and is more efficient than TRIPLETJOIN in terms of
memory usage. In lines 4-7, we compute and globally store the
sizes of the set intersections between the neighbor lists for all
u1, ui node pairs. Afterwards, we iterate through all u1s (line 8)
and store the non-empty set intersections between the neighbor
lists of u1 and all ui ∈ U s.t. ui > u1 (lines 9-12). Finally, we
count the number of induced 6-cycles associated with each node
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triplet {u1, u2, u3} by Theorem 2 (line 16) and return the sum
of all the counts. In our implementation, we force the compiler
to vectorize the inner loops and it gave a slight improvement on
the largest networks.

Work and span: BATCHTRIPLETJOIN features three orthogonal
improvements over TRIPLETJOIN but the time complexity does
not change. Efficient usage of memory and reduction of set
operations (line 16) only offer constant time speedup and thus
does not affect the overall time complexity. Overall, the work
and span of BATCHTRIPLETJOIN is equal to TRIPLETJOIN, which
is O(|U |3 · |V |) work and O(|U |2 · |V |) span.

Space complexity: BATCHTRIPLETJOIN utilizes three global
storage containers - one for storing the graph, one for the
container counts (line 2), and one for the container S (line 3)
- and one local container H (line 9). Storing the graph requires
O(m) space and counts uses O(|U |) space. S stores the size
of the non-empty intersections of the neighbor lists of node
pairs in U , which is equal to the number of wedges centered
in V , namely O(|WV |). The local container H stores edges
and thus takes O(p ·m) space. In total, the space complexity of
BATCHTRIPLETJOIN is O(m+ |U |+ |WV |+ p ·m)=O(|W |).

VII. FINDING ANOMALOUS TRIPLES

Here, we propose a way to do anomalous detection by using
butterfly and induced 6-cycle counts, which we use in our case
studies in Section X.

Triples of nodes (in the same set) which are in many butterflies
form a clique-like structure. These node triplets may also be in
many induced 6-cycles due to their high degrees. However, it
would be interesting to find node triplets which are in many
induced 6-cycles but few butterflies. This causes a positive
relationship between pairs of nodes and a negative relationship
between triplets of nodes from the same set.

Algorithm 6, FINDTRIPLETS, shows the pseudocode for find-
ing node triplets whose butterfly count is upper bounded and
induced 6-cycle is lower bounded by parameters ub and lb,
respectively. Lines 2-9 performs butterfly counting for node
pairs and stores the number of common neighbors in a hashmap
S if its butterfly count is upper bounded by ub. The butterfly
count for each node pair {u1, u2} on line 8 is obtained by(
(N(u1)∩N(u2))

2

)
. Then, lines 11-15 iterate through node triplets

{u1, u2, u3} where {u1, u2}, {u1, u3}, and {u2, u3} are all in
S and computes its induced 6-cycle count. We use Theorem 2
to compute the induced 6-cycle count for each node triplet and
store each triplet in a hashmap T if its induced 6-cycle count is
lower bounded by lb. Finally, lines 17-19 formats hashmap T
into a list of node triplets which the algorithm returns.

Work and span: Butterfly counting on lines 2-9 iterates over
all wedges where a v ∈ V is a center, taking O(|WV |) work
and O(|V | · |U |) span. Then, similar to BATCHTRIPLETJOIN,
lines 11-15 computes the induced 6-cycle count for node
triplets with O(|U |3 · |V |) work. Since we parallelize based
on node pairs, the span for induced 6-cycle counting be-
comes O(|U | · |V |). Finally, lines 17-19 takes O(|U |3) work
and O(|U |3) span to convert a hashmap into a set of
node triplets. Overall, the work and span of FINDTRIPLETS

TABLE I
STATISTICS OF THE REAL-WORLD BIPARTITE NETWORKS USED IN THE

EXPERIMENTS (SECTION VIII)

Algorithm 6: FINDTRIPLETS (G, ub, lb).

Input: G (U, V,E): graph, ub: upper bound
(butterflies), lb: lower bound (induced 6-cycles);

Output: triplets: set of node triplets;
1: S ← ∅ ∗ |U | // |U | hashmaps of nodes to

sets
2: parallel foreach u1 ∈ U do
3: H ← ∅ // Hashmap of nodes to sets
4: foreach v ∈ N(u1) do
5: foreach u2 ∈ N(v) s.t. u2 > u1 do
6: add v to H[u2]
7: foreach u2 ∈ H.keySet() do
8: x← |H[u2]|·(|H[u2]|−1)

2 ;
9: if x ≤ ub then S[u1][u2] = H[u2]

10: T ← ∅ // Hashmap of node pairs to
sets

11: parallel foreach u1, u2 s.t. u2 ∈ S[u1].keySet() do
12: foreach u3 ∈ S[u1].keySet() ∩ S[u2].keySet() do
13: x← |S[u1][u2] ∩ S[u1][u3]|;
14: y ← (|S[u1][u2]| − x) · (|S[u1][u3]| − x) ·

(|S[u2][u3]| − x);
15: if y ≥ lb then add u3 to T [u1, u2]
16: triplets← ∅ // Set of node triplets
17: foreach u1, u2 ∈ T.keySet() do
18: foreach u3 ∈ T [u1, u2] do
19: add {u1, u2, u3} to triplets
20: return triplets

is O(|WV |+ |U |3 · |V |+ |U |3)=O(|U |3 · |V |) and O(|V | ·
|U |+ |U | · |V |+ |U |3)=O(|U |3), respectively.

Space complexity: FINDTRIPLETS uses global containers S
(line 1), T (line 10), and triplets (line 16) with a local container
H (line 3). S takes O(|U |2 · |V |) space by storing intersections
of node pairs in U , T and triplets both take O(|U |3)) space
for storing node triplets, and H uses O(p · (|U | · |V |)) space.
Therefore, the space complexity of FINDTRIPLETS is O(|U |2 ·
|V |+ 2 · |U |3 + p · (|U | · |V |))=O(n3).

VIII. DATASETS

Here we introduce our real-world datasets from Konect [34]
and ICON [35]. Table I gives broad statistics of the datasets. We
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TABLE II
STATISTICS OF THE NETWORKS AFTER PRE

also give the statistics of our real-world datasets after PREPRO-
CESSING and the computed work complexities of our algorithms
in Table II. For brevity, we use PRE (PREPROCESSING), NJ
(NODEJOIN), WJ (WEDGEJOIN), TJ (TRIPLETJOIN), and BTJ
(BATCHTRIPLETJOIN). TJ (BTJ) has the best work complexity
for most of the datasets.
DBLP (DB) is the graph of authors and their papers

[36]. Github (GI) connects users with their projects [37].
IMDB (IM) contains actors and the movies they played in [38].
Kindle (KI) is the network of books and the users who rated
those books [39]. Twitter (TW) contains Twitter users and the
tags they mentioned in their tweets [40]. Movielens (ML) is a
network of users and the movies they rate [41]. Reuters (RE)
contains story-word inclusions in Reuters news [42]. Live-
Journal (LJ) is the network of users and their group mem-
berships [43].

IX. EXPERIMENTS

In this section, we evaluate our algorithms in Section VI as
well as the adaptations in Section V on real-world datasets (see
Section VIII).

All experiments are performed on a Linux operating sys-
tem running on a machine with Intel Xeon Gold processor at
2.1 GHz and 1125 GB DDR4 memory. The processor contains
4 sockets with each having 13 cores for a total of 52 cores.
We implemented our algorithms in C++ with Intel TBB 2020.2
[44] and OpenMP 4.5 [45] and compiled using GCC 10.2.0
at the -O3 level. We use the hashmap implementation in [46].
Our implementation of all the algorithms is available at https:
// tinyurl.com/ par6cycle-code. We terminated the computation
if it took more than 24 hours to finish, denoted by “-” in the
results. We also denote the computations that go out of memory
by “OOM”.

We first consider the strong scaling performance of our al-
gorithms in Section IX-A. Then, we analyze the weak scaling
behavior in Section IX-B. Next, we look at the memory usage
in Section IX-C. Lastly, we examine the impact of PRE and
how different choices translate to improvements in runtime in
Section IX-D.

A. Strong Scaling Experiments

Here we provide the strong scaling experiments for all algo-
rithms. Table III shows our runtime experiments on real-world
networks using 1 and 52 threads. We also show the speedup of

TABLE III
RUNTIME (IN SECONDS) WHEN USING 1 AND 52 THREADS

Fig. 4. Speedup of BATCHTRIPLETJOIN for strong scaling experiments on 2,
4, 8, 16, 32, and 52 threads when compared to a single thread. We also show the
ideal speedup as a dotted line.

BTJ compared to the second best algorithm in terms of runtime
on 52 threads. NJ and WJ are not able to finish computation even
with 52 threads on the three largest networks: ML, RE, and LJ.
The runtimes for WJ are typically better than NJ as suggested
by the numerical calculation of time complexities in Table II.
For TJ, the three largest networks timed out on a single thread
but were completed on 52 threads. BTJ has the best sequential
and parallel runtimes. The only configuration where it could not
finish the computation in 24 hours is the sequential run on LJ.
On the largest network with 112M edges (LJ), BTJ is able to
finish the computation in 78 mins by using 52 threads. It is 6.4×
faster than the next best algorithm, TJ.

In Fig. 4, we plot the speedup of BTJ on 2, 4, 8, 16, 32, and 52
threads. To show the speedup on LJ, we ran BTJ until comple-
tion, which took approximately 47.4 hours with a single thread.
Comparing 52 threads to a single thread, there is approximately
a 3x speedup for DB, 33x speedup for TW, 36x speedup for KI,
IM, and LJ, 44x speedup for GI and RE, and a 49x speedup for
ML. DB, the network with the smallest induced 6-cycle count,
does not scale after 8 threads. The larger networks, such as ML,
RE, and LJ, do not have a significant decline in scalability when
using 52 threads, suggesting that they would continue scaling
for even larger number of threads. GI, ML, and RE achieved
the highest speedup due to their large induced 6-cycle counts
in relation to graph size (Table I), indicating a dense induced
6-cycle structure. With the speedup numbers consistently over
32x on 52 threads for the networks with the largest induced
6-cycle counts, BTJ exhibits strong scalability.
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TABLE IV
RUNTIME (IN SECONDS) OF OUR ALGORITHMS ON 52 DUPLICATES OF THE

ORIGINAL DATASET USING 52 THREADS

TABLE V
MEMORY USED (IN GIGABYTES)

TABLE VI
FRACTION OF RUNTIME SPENT ON PRE FOR BTJ ON 52 THREADS

Fig. 5. Efficiency of BATCHTRIPLETJOIN for weak scaling experiments on 2,
4, 8, 16, 32, and 52 threads when compared to a single thread. We also show the
ideal efficiency (= 1.0) as a dotted line.

B. Weak Scaling Experiments

Here we provide the weak scaling experiments for all al-
gorithms. For weak scaling, we consider x duplicates of the
original network when running onx number of threads. Runtime
results on 52 threads for GI, KI, IM, TW, and ML are shown
in Table IV. All the algorithms timed out in 24 hours for RE
and LJ on 52 threads. Also, DB achieved poor weak scaling
results since PRE accounts for over 90% of the time spent
(more details in Table VI). BTJ is the only algorithm that could
compute the duplicated ML network, which has 520M edges,
in under 24 hours (13.2 hours). WJ was unable to process the
weak scaling experiments on 52 threads for KI, IM, and ML
due to prohibitive space complexity. BTJ outperforms the other
algorithms significantly in terms of runtime.

We plotted the weak scaling behavior of BTJ on 2, 4, 8, 16, 32,
and 52 threads in Fig. 5. We computed the ratio of runtime using
x threads on the duplicated network to the sequential runtime on

TABLE VII
ABLATION STUDY FOR THE THREE TECHNIQUES IN PRE

the original network. BTJ performs best on the networks with the
highest proportion of induced 6-cycles to graph size, GI and ML.
Having approximately 60% efficiency or better even when the
graph is 52 times the size of the original, BTJ can be considered
to be scalable in terms of weak scaling although there is room
for improvement.

C. Memory Experiments

Here we give the memory usage results. We used the system
activity reporter utility (SAR) and run it in the background
during the computation. We measure the amount of used space
in our machine every second and report the maximum amount
used in Table V. Unlike the other algorithms, NODEJOIN does
not use any global storage across parallel threads, and thus
typically requires the least memory. BTJ has a significantly
smaller memory footprint than TRIPLETJOIN thanks to globally
storing the sizes of set intersections instead of the entire set. This
is also in line with the space complexities of the algorithms.

D. Analyzing the PREPROCESSING

We analyze the impact of the various techniques used in PRE
for the best performing algorithm BTJ. As seen in Table II, which
lists the size and statistics of the graphs after preprocessing, there
is a significant reduction in graph sizes which directly impacts
the runtime of the algorithms.

We first look at how much time PRE takes. Table VI shows the
proportion of runtime spent on PRE for BTJ on 52 threads. For
DB, the dataset with the smallest number of induced 6-cycles, the
majority of the time was spent on PRE. Note thatDB is the second
largest network in terms of node count and has the third highest
number of edges, so applying PRE on the nodes and edges takes a
significant amount of time compared to traversing the relatively
small number of induced 6-cycles. This is the opposite for all
the other networks - PRE takes minimal time compared to the
rest of the computation. It is even negligible for the three largest
networks -ML,RE, andLJ. PRE is the most useful when there is a
significant number of induced 6-cycles in the graph, which is true
for most networks in our dataset. Handling the networks with
low induced 6-cycle density remains a challenge, as exemplified
by DB.

Next, we perform an ablation study for the three techniques
in PRE. Table VII shows the runtime on 52 threads when a
section of PRE is skipped. Applying all the techniques (denoted
by “None”) achieves the best result for six of the eight networks,
including the three largest (ML, RE, and LJ). Certain prepro-
cessing techniques has drastic impacts in some networks, e.g.,
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TABLE VIII
RUNTIME (IN SECONDS) FOR DIFFERENT ORDERINGS FOR BTJ ON 52

THREADS (BEST IN BOLD)

TW benefits heavily from 2-core filtering and node set swapping
as 23% of the network is removed during the 2-core filtering and
there is a large imbalance between the node sets. With larger
networks, the runtime savings from each PRE section is more
significant, in particular 2-core filtering and swapping node sets
provide drastic gains (see Tables I and II).

Lastly, we check the impact of different node ranking choices.
In line 3 of PRE, we perform increasing wedge ordering on U .
To test its performance compared to other ordering schemes,
we conduct experiments using degree, degeneracy, and wedge
orderings. Degree ordering ranks the nodes based on their de-
grees. Degeneracy ordering is an ordering of vertices given by
repeatedly finding and removing vertices of smallest degree, also
known as ordering by core numbers. Wedge ordering uses the
number of 2-paths from each node. Table VIII shows the runtime
with 52 threads on the decreasing and increasing versions of
each of those ordering schemes. We have also included the
runtime when no ordering is implemented, denoted as “None”,
to measure the impact of node ordering on speed. The increasing
versions of each ordering scheme typically outperform the de-
creasing versions. In the increasing versions, the amount of work
(i.e., number of induced 6-cycles) is more evenly distributed
across parallel threads, preventing the runtime of one thread
to dominate over the others. For example, in increasing degree
ordering, the highest degree node is likely to participate in more
induced 6-cycles compared to a lower degree node. Since we
process induced 6-cycles based on the node with minimum id
and higher degree nodes are assigned a higher id, we process
a lower proportion of induced 6-cycles for higher degree nodes
in their parallel threads (and vice versa). Comparing individual
ordering schemes, increasing wedge ordering outperforms the
other ordering schemes in six of eight networks, including the
two largest networks (RE and LJ), which is why we consider it
as the default ordering in PRE.

X. BUTTERFLY VERSUS INDUCED 6-CYCLE

Here we present case studies on the Amazon ratings-Kindle
items dataset, Amazon-Kindle (AK in short) [47], the
Steam-Games network (SG in short) [48], [49], [50], and
the Yelp reviews-businesses dataset, Yelp-Business (YB in
short) [51]. AK contains 5.7 M Kindle store product reviews
spanning May 1996 - Oct 2018, SG contains 7 M reviews from

Fig. 6. Amazon-Kindle’s Kindle item projections. Red: 430 K butterflies
and 0 induced 6-cycles; Green: 260 butterflies and 2.5 K induced 6-cycles.

the Steam video game platform, and YB contains 6.7 M business
reviews for 150 K businesses. For our case studies, we use
Algorithm 6, FINDTRIPLETS, along with a maximal butterfly and
minimal induced 6-cycle variant.

A. Amazon-Kindle And Steam-Games

For AK, Fig. 6 shows anecdotal examples from the projection
graphs containing Amazon Kindle products. For the induced
6-cycle projection, each pair of items are in very few butterflies
but the three items as a whole are in many induced 6-cycles. The
inverse is true for butterfly projection - we find three products
where each pair of items participate in many butterflies but as
a group participate in very few induced 6-cycles. In Fig. 6,
the butterfly and the induced 6-cycle projections correspond
to 430 K (0) and 260 (2.5 K) butterflies (induced 6-cycles),
respectively. Both projections contain the illustrated version of
Life on the Mississippi.

In the induced 6-cycle projection for AK, the Life on the
Mississippi book is commonly paired with Mark Twain’s famous
The Adventures of Tom Sawyer novel or a Benjamin Franklin
autobiography. Life on the Mississippi is a real-life memoir
about Mark Twain’s personal experience along the Mississippi
river and The Adventures of Tom Sawyer is a fictional work
about a boy growing up in the 1840 s. Fans of Mark Twain
would be interested in both Mark Twain’s books while history
enthusiasts would prefer the nonfiction autobiographies of Mark
Twain and Benjamin Franklin. With The Adventures of Tom
Sawyer having more than twice the number of reviews than
the other two novels, many Benjamin Franklin autobiography
readers have read this classic novel without an interest in Mark
Twain. After all, Benjamin Franklin is known as a polymath
while Mark Twain is mainly known as a writer.

The butterfly projection for AK provides a different perspec-
tive: it contains three different versions of the Life on the Missis-
sippi book. This is an aspect of Amazon’s review system where
users who rated one of these versions automatically reviewed all
three. As such, there exists no induced 6-cycles with these three
items as they form a large bi-clique.

If we disregard any duplicate edges, butterflies can relate
to a series of items. While AK features many induced 6-cycle
dominant clusters, SG contains several butterfly dominant re-
lationships. In SG, there exists a clique-like relationship within
the Blackwell and Space Pilgrim video game franchises (Fig. 7).
With 490 induced 6-cycles and 36 K butterflies, there is a strong
link between the first three games in the Blackwell video game
series. Episodes 2, 3, and 4 of the Space Pilgrim series also
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Fig. 7. Steam-Games’s Steam game projections. Top: 36 K butterflies and
490 induced 6-cycles; Bottom: 6 K butterflies and 102 induced 6-cycles.

Fig. 8. Yelp-Business’s business projection with 70 K induced 6-cycles
and 2.6 K butterflies.

corresponds to just 102 induced 6-cycles compared to 6 K
butterflies.

B. Yelp-Business

Induced 6-cycles, as with butterflies, can find the proximity of
businesses to each other. Groups of businesses in YBwhich have
high butterfly or induced 6-cycle counts are typically located
close to each other. The majority of customers would rather
visit businesses close to their area than those far away.

Fig. 8 contains three New Orleans, LA restaurants which are
in 70262 induced 6-cycles and 2633 butterflies. Their locations
form an ‘L’ shape where the the seafood locations (Deanie’s
Seafood and The Original Pierre Maspero’s) are the endpoints
and the bar (The Carousel Bar & Lounge) is in the middle. The
comparable seafood locations are the farthest distance away,
reducing the number of intersecting customers and therefore its
butterfly count. For three nodes to have a high induced 6-cycle
and low butterfly count, each pair of nodes should participate
in a similar number of butterflies as the other two pairs. Since
the two seafood locations share a strongly overlapping customer
base, increasing the distance between them causes its butterfly
count to be comparable with the pairs containing the distinctive
bar.

Groups of three businesses which share many induced 6-
cycles but few butterflies often follow a trend in their relative
positions. Those with comparable characteristics tend to form a
triangle in their placements stretched away from high popula-
tion areas. Distance becomes a greater factor than preference
the more similar businesses are to each other, often causing
customers to disregard the farthest location. Therefore, many
customers only consider the two closest businesses but not the

third, creating induced 6-cycles. While butterflies can signal how
close businesses are to each other with its clique-like projections,
induced 6-cycles can provide an intuition for the relative direc-
tion between businesses. As a future work, one can predict the
relative distances and perspectives between businesses based on
their butterfly and induced 6-cycle counts.

XI. CONCLUSION AND FUTURE WORK

We introduced efficient and scalable parallel algorithms to
count induced 6-cycles in bipartite networks. To the best of our
knowledge, this is the first inquiry in induced 6-cycle count-
ing. Experiments on real-world bipartite networks show that
our best algorithm, BATCHTRIPLETJOIN, is highly parallelizable
in relation to the number of processors and enables practical
computation for large networks with up to half a billion edges;
on the 52 times scaled Movielens network with a total of
520M edges, BATCHTRIPLETJOIN finishes the computation in
13.2 hours by using 52 threads.

Although BATCHTRIPLETJOIN exhibits strong performance, it
is unable to compute some large networks in under 24 hours
with 52 threads, such as the 52 times scaled Reuters and
LiveJournal networks (3B-5B edges). It also shows poor
scalability when the network has relatively few induced 6-cycles,
as in the DBLP network. As a future work, we will investigate
scaling our algorithm to larger networks with billions of edges
along with handling the networks with low induced 6-cycle
counts. One interesting question in this context is how quickly
one can terminate the computation if the graph has no induced
6-cycles.

Our framework can also easily be extended to larger bipartite
motifs, such as induced 8-cycles, by updating our batch scheme
from node triplets to node quadruples. It would be interesting
to see potential applications regarding these larger structures.
Dynamic bipartite graphs are another avenue for innovation as
many real-world networks change over time. We will investigate
fast approaches to updating the induced 6-cycle count with each
outgoing or incoming connection.
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