
16

Nucleus Decompositions for Identifying Hierarchy
of Dense Subgraphs

AHMET ERDEM SARIYÜCE, Sandia National Laboratories
C. SESHADHRI, University of California Santa Cruz
ALI PINAR, Sandia National Laboratories
ÜMIT V. ÇATALYÜREK, Georgia Institute of Technology

Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioin-
formatics, social networks, and visualization to name a few. Yet most standard formulations of this problem
(like clique, quasi-clique, densest at-least-k subgraph) are NP-hard. Furthermore, the goal is rarely to find
the “true optimum” but to identify many (if not all) dense substructures, understand their distribution in the
graph, and ideally determine relationships among them. Current dense subgraph finding algorithms usually
optimize some objective and only find a few such subgraphs without providing any structural relations.

We define the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each
nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is
a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling
nuclei can have limited intersections, which enables discovering overlapping dense subgraphs. With the right
parameters, the nucleus decomposition generalizes the classic notions of k-core and k-truss decompositions.

We present practical algorithms for nucleus decompositions and empirically evaluate their behavior
in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense
substructures and outputs dense subgraphs of comparable quality with the state-of-the-art solutions that
are dense and have non-trivial sizes. Our algorithms can process real-world graphs with tens of millions of
edges in less than an hour. We demonstrate how proposed algorithms can be utilized on a citation network.
Our analysis showed that dense units identified by our algorithms correspond to coherent articles on a
specific area. Our experiments also show that we can identify dense structures that are lost within larger
structures by other methods and find further finer grain structure within dense groups.

CCS Concepts: � Mathematics of computing → Graph algorithms;

Additional Key Words and Phrases: k-core, k-truss, graph decomposition, density hierarchy, overlapping
dense subgraphs, dense subgraph discovery

This work was funded by the DARPA GRAPHS program, DOE Applied Mathematics Research Program, and
Laboratory Directed Research and Development (LDRD) Program of Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000. An earlier version of this work was presented
in Sariyüce et al. [2015].
Authors’ addresses: A. E. Sariyüce and A. Pinar, Sandia National Laboratories, 7011 East Ave. Livermore,
CA 94551; emails: a.erdemsariyuce@gmail.com, apinar@sandia.gov; C. Seshadhri, University of California
Santa Cruz, 1156 High Street Baskin School of Engineering, Santa Cruz, CA 95064; email: sesh@ucsc.edu;
Ü. V. Çatalyuürek, Georgia Institute of Technology, Klaus Advanced Computing Building 266 Ferst Drive,
Atlanta GA 30332; email: umit@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1559-1131/2017/07-ART16 $15.00
DOI: http://dx.doi.org/10.1145/3057742

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://dx.doi.org/10.1145/3057742

16:2 A. E. Sariyüce et al.

ACM Reference Format:
Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2017. Nucleus decompositions for
identifying hierarchy of dense subgraphs. ACM Trans. Web 11, 3, Article 16 (July 2017), 27 pages.
DOI: http://dx.doi.org/10.1145/3057742

1. INTRODUCTION

Graphs are widely used to model relationships in a wide variety of domains such as
sociology, bioinformatics, infrastructure, and the World Wide Web (WWW), to name
a few. One of the key observations is that while real-world graphs are often globally
sparse, they are locally dense. In other words, the average degree is often quite small
(say, at most 10 in a million vertex graph), but vertex neighborhoods are often dense.
The classic notions of transitivity [Wasserman and Faust 1994] and clustering coef-
ficients [Watts and Strogatz 1998] measure these densities and are high for many
real-world graphs [Sala et al. 2010; Seshadhri et al. 2014].

Finding dense subgraphs is a critical aspect of graph mining [Lee et al. 2010]. It
has been used for finding communities and spam link farms in web graphs [Kumar
et al. 1999; Gibson et al. 2005; Dourisboure et al. 2007], graph visualization [Alvarez-
Hamelin et al. 2006], real-time story identification [Angel et al. 2012], DNA motif
detection in biological networks [Fratkin et al. 2006], finding correlated genes [Zhang
and Horvath 2005], epilepsy prediction [Iasemidis et al. 2003], finding price value mo-
tifs in financial data [Du et al. 2009], graph compression [Buehrer and Chellapilla
2008], distance query indexing [Jin et al. 2009], and increasing the throughput of
social networking site servers [Gionis et al. 2013]. This is closely related to the clas-
sic sociological notion of group cohesion [Beal et al. 2003; Forsyth 2010]. There are
tangential connections to classic community detection, but the objectives significantly
differ [Leskovec et al. 2008]. Community definitions involve some relation of inner
versus outer connections, while dense subgraphs purely focus on internal cohesion.

1.1. Challenges in Finding Dense Subgraphs

Our input is a graph G = (V, E). For vertex set S, we use E(S) to denote the set of
edges internal to S. The edge density of S is ρ(S) = |E(S)|/(|S|

2), the fraction of edges in
S with respect to the total possible. The aim is to find a set S with high density subject
to some size constraint. Typically, we are looking for large sets of high density.

In general, one can define numerous formulations that capture the main problem.
The maximum clique problem is finding the largest S, where ρ(S) = 1. Finding the S
with at least k vertices that have the highest average degree is known as the densest
at-least-k subgraph problem [Khuller and Saha 2009]. Note that the average degree
is regarded as the density metric in that work. Quasi-cliques, as defined recently
by Tsourakakis et al. [2013], are sets that are almost cliques, up to some fixed “defect.”
Unfortunately, most formulations of finding dense subgraphs are NP-hard, even to
approximate [Håstad 1996; Feige 2002; Khot 2006].

For graph analysis, one rarely looks for just a single (or the optimal, for whatever
notion) dense subgraph. We want to find many dense subgraphs and understand the
relationships among them. Ideally, we would like to see if they nest within each other,
if the dense subgraphs are concentrated in some region, and if they occur at various
scales of size and density. Our article is motivated by the following questions.

—How do we attain a global, hierarchical representation of many dense subgraphs in
a real-world graph?

—Can we define an efficiently solvable objective that directly provides many dense
subgraphs? We wish to avoid heuristics, as they can be difficult to predict formally.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://dx.doi.org/10.1145/3057742

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:3

Fig. 1. Density histogram of facebook (3, 4)-nuclei;
145 nuclei have a density of at least 0.8 and 359
nuclei have a density of more than 0.25.

Fig. 2. Size vs. density plot for facebook (3, 4)-
nuclei; 50 nuclei are larger than 30 vertices with
a density of at least 0.8. There are also 138 nuclei
larger than 100 vertices with a density of at least
0.25 (best seen in color).

1.2. Our Contributions

Nucleus decompositions: Our primary theoretical contribution is the notion of nu-
clei in a graph. r-clique is a subgraph of r vertices that are all connected to each other.
Roughly speaking, an (r, s)-nucleus, for fixed (small) positive integers r < s, is a maxi-
mal subgraph where every r-clique in it is part of many s-cliques. (The real definition is
more technical and involves some connectivity properties.) Moreover, nuclei that do not
contain one another cannot share an r-clique. This is inspired by and is a generalization
of the classic notion of k-cores and also k-trusses (or triangle cores).

We show that the (r, s)-nuclei (for any r < s) form a hierarchical decomposition
of a graph. The nuclei are progressively denser as we go towards the leaves in the
decomposition. We provide an exact, polynomial algorithm that finds all the nuclei and
builds the hierarchical decomposition. In practice, we observe that (3, 4)-nuclei provide
the most interesting decomposition. We find the (3, 4)-nuclei for a large variety of more
than 20 graphs. Our algorithm is feasible in practice, and we are able to process a 39
million edge graph in less than an hour (using commodity hardware). The source code
of our algorithms are available.1

Dense subgraphs from (3, 4)-nuclei: The (3, 4)-nuclei provide a large set of dense
subgraphs for range of densities and sizes. For example, there are 403 (3, 4)-nuclei
(of size at least 10 vertices) in a facebook network of 88K edges. We show the density
histogram of these nuclei in Figure 1, plotting the number of nuclei with a given density.
Observe that we get numerous dense subgraphs, and many with a density fairly close
to 1. In Figure 2, we present a scatter plot of vertex size vs. density of the (3, 4)-nuclei.
Observe that we obtain dense subgraphs over a wide range of sizes. For comparison,
we also plot the output of recent dense subgraph algorithms from Tsourakakis et al.
[2013]. (These are arguably the state of the art. More details in next section.) Observe
that (3, 4)-nuclei give dense subgraphs of comparable quality. In some cases, the output
of Tsourakakis et al. [2013] is very close to a (3, 4)-nucleus.

Representing a graph as a forest of (3, 4)-nuclei: We build the forest of (3, 4)-
nuclei for all graphs experimented on. An example output is that of Figure 3, the forest
of (3, 4)-nuclei for the facebook network. Each node of the forest is a (3, 4)-nucleus,
and tree edges indicate containment. More generally, an ancestor nucleus contains all
descendant nuclei. By the properties of (3, 4)-nuclei, any two vertices not connected
with an edge do not share a triangle. So the branching in the forest represents different

1http://bmi.osu.edu/hpc/software/nucleus.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://bmi.osu.edu/hpc/software/nucleus

16:4 A. E. Sariyüce et al.

Fig. 3. (3, 4)-nuclei forest for facebook. Legends for densities and sizes are shown at the top. Long chain
paths are contracted to single edges. In the uncontracted forest, there are 47 leaves and 403 nuclei. A
parent subgraph contains all the children subgraphs it has. Thus, different branches in the forest depict
the different regions in the graph. Thirteen connected components exist in the top level. Sibling nuclei have
limited overlaps up to 7 vertices (best seen in color).

regions of the graph. (All nuclei of less than 10 vertices are omitted. For presentation,
we contract long chain paths in the tree to single edges, so the forest has less than 403
nodes.)

In the nuclei figures, densities are color-coded, with hotter colors indicating higher
density. The log of sizes are coded by shape (circles comprise between 10 and 100
vertices, hexagons between 100 and 1,000 vertices, etc.). For a fixed shape, relative size
corresponds to relative size in number of vertices. We immediately see the hierarchy
of dense structures. Observe the colors becoming hotter as we go towards to leaves,
which are mostly red (density > 0.8). We see numerous hexagons and large circles
of color between light blue to green. These indicate the larger parent subgraphs of
moderate density (actually density of say 0.25 is fairly high for a subgraph having
many hundreds of vertices).

The branching is also significant, and we can group together the dense subgraphs
according to the hierarchy. We observe such branching in all our experiments and show
more such results later in the article. The (3, 4)-nuclei provide a simple, hierarchical
visualization of dense substructures. They are well defined and their exact computation
is algorithmically feasible and practical.

We also want to emphasize the overlap between sibling nuclei. While sibling nuclei
cannot share triangles, they can share edges, thus vertices. We observe roughly 20 pairs
of (3, 4)-nuclei having intersections of four to six vertices. For larger graphs, we observe
many more pairs of intersecting nuclei (with larger intersections).

Experimental Analysis: Our experiments had two thrusts. First, we verified that
our algorithms could identify many dense structures in real graphs. Our comparisons

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:5

with state of the art to find the densest subgraph showed that our methods were also
competitive and can find denser substructures in many cases. We also showed that
higher-order nucleus decompositions could identify denser structures and identify a
hierarchical density structure in the graph. Finally, we showed that our algorithms
were fast enough to process very large graphs in reasonable times. For instance, our
algorithms processed graphs with tens of millions of edges in under an hour.

In the second thrust of our experimental work, we wanted to validate our methods by
confirming that structures identified by our algorithms were meaningful. For this pur-
pose, we applied our techniques to a citation network for articles published in American
Physical Society (APS) journals. Our results showed that dense units identified by our
algorithms corresponded to coherent articles often marked by the same keyword. Our
experiments also showed that higher-order decompositions could provide a finer grain
view of the dense structures. For instance, (3,4) decomposition revealed a dense group
of articles that was lost within a much bigger group when (2,3) decomposition was used.
In another example, we observed that a dense structure found by (2,3) decomposition
was split into two siblings by (3,4) decomposition (which turned out to be subareas in
network science) to provide a more fine-grained view of the density structure.

The rest of the article is organized as follows: Section 2 summarizes the related
work, Section 3 introduces the main definitions and the lemma about the nucleus
decomposition, Section 4 gives the algorithm to generate a nucleus decomposition and
provides a complexity analysis, Section 5 contains the results of extensive experiments
we have, and Section 6 concludes the article by discussing the future directions.

2. PREVIOUS WORK

We focus on the dense subgraph discovery problem and aim to find many dense
structures and build relations among them. Here we give a summary of the recent
literature on dense subgraph discovery methods and explain the k-core and k-truss
decompositions on which we build our algorithms.

Dense subgraph algorithms: As discussed earlier, most formulations of the dens-
est subgraph problem are NP-hard. Some variants, such as maximum average de-
gree [Goldberg 1984; Gallo et al. 1989] and the recently defined triangle-densest sub-
graph [Tsourakakis 2015], are polynomial time solvable. Linear time approximation
algorithms have been provided by Asahiro et al. [2000], Charikar [2000], and
Tsourakakis [2015]. There are also dynamic dense subgraph algorithms to handle
streaming graph data. Sariyüce et al. [2013] introduced incremental algorithms to
maintain k-core decomposition. Recently, Epasto et al. [2015] and Bhattacharya et al.
[2015] introduced approximation algorithms to maintain densest subgraph, where they
use average degree as the density metric. Balalau et al. [2015] adapted the densest
subgraph problem for multiple subgraphs with highest total density and introduced
heuristics. There are numerous recent practical algorithms for various such objectives:
Andersen and Chellapilla’s use of cores for dense subgraphs [Andersen and Chellapilla
2009], Rossi et al.’s heuristic for clique [Rossi et al. 2013], and Tsourakakis et al.’s no-
tion of quasi-cliques [Tsourakakis et al. 2013]. These algorithms are extremely efficient
and produce excellent output. For comparison’s sake, we consider Tsourakakis et al.
[2013] as the state of the art, which was compared with previous core-based heuristics
and is far superior to prior works. Indeed, their algorithms are elegant, extremely effi-
cient, and provide high-quality output (and are much faster than ours; see Section 5.5
for more discussion). These methods are tailored to finding one (or a few) dense sub-
graphs and do not give a global/hierarchical view of the structure of dense subgraphs.
We believe it would be worthwhile to relate their methods with our notion of nuclei to
design even better algorithms.

k-cores and k-trusses: The concepts of k-cores and k-trusses form the inspiration
for our work. A k-core is a maximal subgraph where each vertex has minimum degree

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:6 A. E. Sariyüce et al.

k, while a k-truss is a subgraph where each edge participates in at least k triangles. The
first definition of k-cores was given by Erdős and Hajnal [1966]. It has been rediscov-
ered numerous times in the context of graph orientations and is alternately called the
coloring number and degeneracy [Lick and White 1970; Seidman 1983]. The first linear
time algorithm for computing k-cores was given by Matula and Beck [1983]. The earli-
est applications of cores to social networks was given by Seidman [1983], and it is now
a standard tool in the analysis of massive networks. The notions of k-truss is first intro-
duced by Saito and Yamada [2006] with a different name: k-dense subgraphs. Later, it
was independently proposed by Cohen [2008], Zhang and Parthasarathy [2012], Zhao
and Tung [2013], and de Simon et al. [2013] for finding clusters and for network vi-
sualization. They all provide efficient algorithms for these decompositions, and Cohen
[2008] and Wang and Cheng [2012] explicitly focus on massive scale. Wang et al. [2010]
proposed dense-neighborhood (DN) graph, a similar concept to k-truss, where each edge
should be involved in k triangles, and adding or removing a vertex from DN-graph
breaks this constraint. Putting additional connectedness constraints are investigated
in Huang et al. [2014], where they define “k-truss community” as the subgraph where
each edge resides in at least k triangles, and each edge pair is triangle-connected (shares
a common triangle transitively). Our (2, 3)-nucleus definition is the same. Regarding
the investigation of hierarchy extracted by k-core decomposition, Adcock et al. [2013]
provided a comparison of the tree-decomposition and k-core hierarchies and concluded
that they show similarities. Apart from the k-core and k-truss definitions, k-plex and
k-club subgraph definitions have drawn a lot of interest as well. In a k-plex subgraph,
each vertex is connected to all but at most k − 1 other vertices [Seidman and Foster
1978], which complements the k-core definition. In a k-club subgraph, the shortest
path from any vertex to other vertex is not more than k [Mokken 1979]. Regarding
the generalization of k-core idea, Tatti and Gionis [2015] very recently introduced an
adaptation of k-core decomposition in which average degree is increasing with higher k
values. Another interesting theoretical work, that we recently discovered, is introduced
by Francisco and Oliveira [2011], where they provide a more general definition of k-core
in terms of monotone vertex properties and subgraph involvements. All these methods
find subgraphs of moderate density and give a global decomposition to visualize a graph.

3. NUCLEUS DECOMPOSITION

Our main theoretical contribution is the notion of nucleus decompositions. We are given
an undirected, simple graph G.

Definition 3.1. Let r < s be positive integers and S be a set of s-cliques in G.

—Kr(S) the set of r-cliques contained in some S ∈ S.
—The number of S ∈ S containing the r-clique R ∈ Kr(S) is the S-degree of that r-clique.
—Two r-cliques R, R′ are S-connected if there exists a sequence R = R1, R2, . . . , Rk = R′

in Kr(S) such that for each i, some S ∈ S contains Ri ∪ Ri+1.

These definitions are generalizations of the standard notion of the vertex degree and
connectedness. Indeed, setting r = 1 and s = 2 (so S is a set of edges) yields exactly
that. Our main definition is as follows.

Definition 3.2. Let k, r, and s be positive integers such that r < s. A k-(r, s)-nucleus
is a subgraph that contains the edges in the maximal union S of s-cliques such that:

—The S-degree of any R ∈ Kr(S) is at least k.
—Any R, R′ ∈ Kr(S) are S-connected.

We simply refer to (r, s)-nuclei when k is irrelevant in the context. A union of cliques
is defined to be the subgraph where the vertex set is the union of vertices of cliques,

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:7

Fig. 4. Illustrative examples.

and the edge set is the union of edges of cliques. Note that we treat nuclei as a union of
cliques, although, eventually, we look at this as a subgraph. Our theoretical treatment
is more convenient in the former setting, and hence we stick with this definition. In
our applications, we simply look at nuclei as subgraphs.

As stated earlier, our definitions are inspired by k-cores and k-trusses. Set r = 1,
s = 2. A k-(1, 2)-nucleus is a maximal (induced) connected subgraph with minimum
vertex degree k. This is exactly a k-core. Setting r = 2, s = 3 gives maximal subgraphs,
where every edge participates in at least k triangles, and edges are triangle connected.
This is very similar to the definition of k-trusses or triangle-cores, which have more
relaxed connectivity constraints.

In Figure 4(a), we compare the (1, 2)- (k-core), (2, 3)-, and (3, 4)-nuclei in the given
graph. The smallest subgraph that k-core decomposition can report is the entire graph,
which is a 3-core. k-core cannot detect the bridge or any of the 4-cliques. (2, 3) decompo-
sition detects the 4-clique on the right as a 2-(2, 3)-nucleus and separates from the rest
of the graph. It basically leverages the fact that a bridge has no triangles. However, it
cannot give a finer structure, and 11 vertices on the left are reported as a single 2-(2, 3)-
nucleus. (3, 4) decomposition is able to distinguish all three 4-cliques as 1-(3, 4)-nuclei.
(3, 4)-nuclei can overlap on the edge level, and that is the reason two merged 4-cliques
on the left are separated.

Intuitively, a nucleus is a tightly connected cluster of cliques. For large k, we expect
the cliques in S to intersect heavily, creating a dense subgraph. For a fixed k, r and

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:8 A. E. Sariyüce et al.

same number of vertices, the density of the nuclei increases as we increase s. Consider
the example of Figure 4(b), where there is a 2-(2, 3)-nucleus and a 2-(2, 4)-nucleus on
the same number of vertices. Since in the latter case we need every edge to participate
in at least two 4-cliques, the resulting density is much higher.

So far, we have only discussed the degree constraint of nuclei. Note that a nucleus is
not just connected in the usual (edge) sense but requires the stronger property of being
S-connected. The standard definitions of trusses or triangle-cores omit the triangle-
connectedness. For us, this is critical. Two cliques of distinct (r, s)-nuclei can intersect.
For example, when r > 2, nuclei can have edge overlaps. This allows for finding even
denser subgraphs, as Figure 4(c) shows. In the left figure, cores, trusses, and so on, pick
up the entire graph. But there are actually two different 1-(3, 4)-nuclei (each 4-clique)
intersecting at an edge. The (3, 4)-nuclei are denser than the graph itself. Note that
any edge disjoint decomposition would not find two dense subgraphs.

Critically, the set of (r, s)-nuclei form a laminar family. A laminar family is a set
system where all pairwise intersections are trivial (either empty or contains one of the
sets).

LEMMA 3.3. The family of (r, s)-nuclei form a laminar family in terms of r-cliques.

PROOF. Consider k-(r, s)-nucleus S and k′-(r, s)-nucleus S ′, where k ≤ k′. Suppose they
had a non-empty intersection that includes an s-clique, so some Ks(S) is contained in
both S and S ′. Observe that r-cliques in Kr(S) are connected to the r-cliques in Ks(S),
which is also connected to the r-cliques in Kr(S ′). Furthermore, the (S ∪ S ′)-degree of a
member of Kr(S ∪ S ′) is at least k. Hence, S ∪ S ′ satisfies the two conditions of being a
nucleus, except maximality. By S is a k-(r, s)-nucleus, so S ∪ S ′ = S. So any non-empty
intersection is trivial, which is a contradiction.

Consider two nuclei that are not ancestor descendant. By the above lemma, these
two nuclei (considered as subgraphs of G) cannot share an s-clique. Furthermore, they
cannot even share an r-clique, since that would connect S and S ′. This is the key
disjointness property of nuclei.

Every laminar family is basically a hierarchical set system. Alternately, every lam-
inar family can be represented by a forest of containment. For every nucleus S, any
other nucleus intersecting S is either contained in S or contains S. Furthermore, all
these sets are nested in each other. It makes sense to talk of the smallest sized nucleus
containing S. This leads to the main construct we use to represent nuclei.

Definition 3.4. Fix r < s. Define the forest of (r, s)-nuclei as follows. There is a node
for each (r, s) nucleus. The parent of every nucleus is the smallest (by cardinality) other
nucleus containing it.

In our figures, we will only show the internal nodes of out degree at least 2 and
contract any path of out degree 1 vertices into a single path. This preserves all the
branching of the forest.

4. COMPUTING NUCLEUS DECOMPOSITIONS

Our primary algorithmic goal is to construct the tree of nuclei. Our algorithm adopts the
classic Matula-Beck result for getting k-cores in linear time [Matula and Beck 1983],
but an extension of this approach to generalized nucleus decompositions is far from
trivial, and the most intuitive extension does not work. Specifically, it will be wrong to
apply core decomposition on a graph with nodes corresponding to r-cliques and edges
decoding two nodes being part of the same s-clique, because each s-clique contains

(s
r

)

r-cliques. This information is lost in the graph representation leading to inaccurate

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:9

results. At some level, we are performing a hypergraph version of Matula-Beck. The
proofs therefore need to be adapted to this setting.

Analogously to k-cores, the main procedure set-k (Algorithm 1) assigns a number,
denoted by κ(·), to each r-clique in G.

ALGORITHM 1: set-k(G, r, s)
1 Enumerate all r-cliques and s-cliques in G(V, E);
2 For every r-clique R, initialize δ(R) to be the number of s-cliques containing R;
3 Mark every r-clique as unprocessed;
4 for each unprocessed r-clique R with minimum δ(R) do
5 κ(R) = δ(R);
6 Find set S of s-cliques containing R;
7 for each S ∈ S do
8 if any r-clique R′ ⊂ S is processed then
9 Continue;

10 for each r-clique R′ ⊂ S, R′ �= R do
11 if δ(R′) > δ(R) then
12 δ(R′) = δ(R′) − 1 ;
13 Mark R as processed;
14 return array κ(·) ;

It is convenient to denote the set of r-cliques in G by a sequence {(Ri)}: R1, R2, . . . ,
where Ri is the ith processed r-clique in set-k. We will refer to this index as time. When
we say “at time t,” we mean at the beginning of the iteration where Rt is processed.

CLAIM 1. The sequence {κ(Ri)} is monotonically non-decreasing.

PROOF. This holds because the loop processes R in non-decreasing order of δ(R) and
Step 11 ensures that no new value of δ(·) decreases below the current κ(R).

—Because of Claim 1, we can define transition time ti to be the first time when the κ-
value becomes i. Formally, ti is the unique index such that κ(Rti) = i and κ(Rti−1) < i.

—We say s-clique S is unprocessed at time t if all R ∈ Kr(S) are unprocessed at time t.
This set of s-cliques is denoted by St.

—The supergraph Gt has node set Kr(St), and R, R′ ∈ Kr(St) are connected by a link if
R ∪ R′ is contained in some s-clique of St. Links are associated with elements of St
(and there may be multiple links between R and R′).

We prove an auxiliary claim relating the δ(·) values to St.

CLAIM 2. At time t, for any unprocessed r-clique R, δ(R) is at least the St-degree of R.
If t = tk (for some k), then δ(R) is exactly the St-degree of R.

PROOF. Pick unprocessed R′. The value of δ(R) is initially the number of s-cliques
containing R′. It is decremented only in Step 12, which happens only when a processed
s-clique containing R′ is found. (Sometimes, the decrement will still not happen because
of Step 11.) Hence, the value of δ(R′) at time t is at least the number of unprocessed
s-cliques containing R′.

Suppose t = tk. For any preceding t̂ < t, the current κ(·) value is always at most k.
For unprocessed (at time t) R, δ(R) > k. Hence the decrement of Step 12 will always
happen, and δ(R) is exactly the St-degree of R.

CLAIM 3. Every k-(r, s)-nucleus is contained in Stk.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:10 A. E. Sariyüce et al.

PROOF. Consider k-(r, s)-nucleus S. Take the first R ∈ Kr(S) that is processed. At this
time (say, t), no S ∈ S can be processed. Hence, S ⊆ St. By Claim 2, δ(R) is at least the
St-degree of R, which is at least the S-degree of R. The latter is at least k, since S is a
k-(r, s)-nucleus. By definition of tk, t ≥ tk and hence St ⊆ Stk. Thus, S ⊆ Stk.

The main lemma shows that the output of set-k essentially gives us the nuclei.

LEMMA 4.1. The k-(r, s)-nuclei are exactly the connected components of Gtk.

PROOF. Consider a k-(r, s)-nucleus S. By Claim 3, it is contained in Stk. By the
nucleus definition, S is connected (as links) in Gtk. Let S ′ be the (set of links) connected
component of Gtk containing S. By Claim 2, at time tk, for any R ∈ Kr(S ′), δ(R) is exactly
the Stk-degree of R. Since S ′ is a connected component of Gtk, the Stk-degree is the S ′-
degree, which in turn is at least k. In other words, S ′ satisfies both conditions of being
a k-(r, s)-nucleus, except maximality. By maximality of S, S = S ′.

Building the forest of nuclei: From Lemma 4.1, it is fairly straightforward to
get all the nuclei. First run set-k to get the processing times and the κ(·) values. We
can then get all tk times as well. Suppose for any r-clique in G, we can access all the
s-cliques containing it. Then, it is routine to traverse Gtk to get the links of connected
components. To avoid traversing the same component repeatedly, we produce nuclei
in reverse order of k. In other words, suppose all connected components of Gtk+1 have
been determined. For Gtk, it suffices to determine the connected components involving
nodes processed in time [tk, tk+1). Any time a traversal encounters a node in Gtk+1 , we
need not traverse further. This is because all other connected nodes of Gtk+1 are already
known from previous traversals, and therefore it suffices to visit all nodes and links of
G0 exactly once. More information can be found in Section 4.2.

4.1. Bounding the Complexity

There are two options of implementing this algorithm. The first is faster but has forbid-
dingly large space. The latter is slower but uses less space. In practice, we implement
the latter algorithm. We use ctr(v) for the number of r-cliques containing v and ctr(G)
for the total number of r-cliques in G. We denote by RTr(G) the running time of an
arbitrary procedure that enumerates all r-cliques in G.

THEOREM 4.2. It is possible to build the forest of nuclei in O(RTr(G) + RTs(G)) time
with O(ctr(G) + cts(G)) space.

PROOF. The very first step of set-k requires the clique enumeration. Suppose we
store the global supergraph G = G0. This has a node for every r-clique in G and a link
for every s-clique in G. The storage is O(ctr(G) + cts(G)). From this point onwards, all
remaining operations are linear in the storage in terms of r- and s-cliques. This is by
the analysis of the standard core decomposition algorithm of Matula and Beck [1983].
k-(r, s) nucleus decomposition is the peeling process on r-cliques and their S-degrees
and can be thought of as the higher-order variant of Matula and Beck [1983]. Every
time we process an r-clique, we can delete it and all incident links from G. Every link
is touched at most a constant number of times during the entire running on set-k. As
explained earlier, we can get all the nuclei by a single traversal of G.

THEOREM 4.3. It is possible to build the forest of nuclei in O(RTr(G)+∑
v ctr(v)d(v)s−r)

time with O(ctr(G)) space.

PROOF. Instead of explicitly building G, we only build adjacency lists when re-
quired. The storage is now only O(ctr(G)). In other words, given an r-clique R, we

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:11

find all s-cliques containing R only when R is processed/traversed. Each R is processed
or traversed at most once in set-k and the forest building. Suppose R has vertices
v1, v2, . . . , vr. We can find all s-cliques containing R by looking at all (s − r)-tuples in
each of the neighborhoods of vi. (Indeed, it suffices to look at just one such neighbor-
hood.) This takes time at most

∑
R

∑
v∈R d(v)s−r= ∑

v

∑
R�v d(v)s−r = ∑

v ctr(v)d(v)s−r.

Let us discuss these runtimes in more detail. When r < s ≤ 3, it clearly benefits to
go with Theorem 4.2. Triangle enumeration is a well-studied problem and there exist
numerous optimized, parallel solutions for the problem. In general, the classic triangle
enumeration of Chiba and Nishizeki takes O(m3/2) [Chiba and Nishizeki 1985] and is
much better in practice [Cohen 2009; Schank and Wagner 2005; Suri and Vassilvitskii
2011]. This helps to keep the time and space complexities bounded.

For our best results, we build the (3, 4)-nuclei, and the number of 4-cliques is too large
to store. We go with Theorem 4.3. The storage is now at most the number of triangles,
which is manageable. The running time is basically bounded by O(

∑
v ctr(v)d(v)). The

number of triangles incident to v, ct3(v) is cc(v)d(v)2, where cc(v) is the clustering
coefficient of v. We therefore get a running time of O(

∑
v cc(v)d(v)3). This is significantly

superlinear, but clustering coefficients generally decay with degree [Sala et al. 2010;
Seshadhri et al. 2014]. Overall, the implementation can be made to scale to tens of
millions of edges with little difficulty.

4.2. Implementation Details for (3, 4)-Nucleus Decomposition

While it is possible to design a generic (r, s)-nucleus decomposition algorithm, runtime
performance can be drastically improved by case specific implementations. The main
reason for this is that in some cases the number of cliques is so large that maintaining
an explicit list becomes inefficient, even intractable. Here we present the implemen-
tation details for (3, 4)-nucleus decomposition and highlight the heuristics and data
structures we used for higher runtime performance. As mentioned in Section 4.1, we
use Theorem 4.3 for (3, 4)-nucleus decomposition, which is more space efficient and
enables us to work on large graphs with millions of edges. We start with enumerating
all the triangles by leveraging the MINBUCKET heuristic [Berry et al. 2014; Schank and
Wagner 2005; Suri and Vassilvitskii 2011] for efficiency. This heuristic is based on
enumerating wedges where the middle vertex has the lowest degree. Ties are broken
consistently to provide a total ordering. At the beginning, we create a directed graph
structure from the input graph, where an edge between vertices u and v is oriented from
u to v, if d(u) < d(v) or d(u) = d(v) ∧ u < v. This directed graph structure regularizes
the skewed degree distribution and enables faster triangle enumeration and 4-clique
counting for each triangle. A triangle is represented by the ids of three participating
vertices. To facilitate the faster lookups, we make use of hash maps based on three
vertex ids to store the triangles.

In the main loop (starting in line 4 of Algorithm 1), we use the bucket sort to update
the 4-clique counts of triangles during the peeling process. We use a bucket data
structure that is based on linked lists for storing its bucket contents and on a hash
map to quickly locate the link list entry of any given triangle. At each iteration, we
select the triangle with lowest 4-clique count, assign this count as its κ value, find the
4-cliques it is involved in, and check if the neighbor triangles in those 4-cliques are
unprocessed. If so, then we decrease their 4-clique counts. This process continues until
all triangles got their κ values.

Once we have the κ values for all triangles, we can construct the forest of nuclei
by traversing the entire graph only once. The key idea is to find the subgraphs where
all triangles have the same κ value (which is defined as subcore for k-core case in
Sariyüce et al. [2013]) and link them to each other based on containment. There is no

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:12 A. E. Sariyüce et al.

Table I. Properties for the Real-World Graphs of Different Types and Sizes

[Tsourakakis et al. 2013] (3,4)-nucleus
|V | |E| || |K4| ∑

vc3(v)d(v) (sec) Density size Density size
dolphins 62 159 95 27 2.2K < 1 0.68 8 0.71 8
polbooks 105 441 560 319 23.8K < 1 0.67 13 0.62 13
adjnoun 112 425 284 58 17.6K < 1 0.60 15 0.22 32
football 115 613 810 732 26.3K < 1 0.89 10 0.89 10
jazz 198 2.74K 18K 78K 2.3M < 1 1.00 30 1.00 30
celegans n. 297 2.34K 3241 2010 418K < 1 0.61 21 0.91 10
celegans m. 453 2.04K 3284 2967 565K < 1 0.67 17 0.64 18
email 1.13K 5.45K 5343 3419 1.2M < 1 1.00 12 1.00 12
facebook 4.03K 88.23K 1.6M 30M 712M 93 0.83 54 0.98 109
protein inter. 9.67K 37.08K 22.3K 12.6K 35M < 1 1.00 11 1.00 11
as-22july06 22.96K 48.43K 46.8K 114K 199M < 1 0.58 12 1.00 18
twitter 81.30K 2.68M 13M 104M 1.8B 396 0.85 83 1.00 26
soc-sign-epinions 131.82K 841.37K 4.9M 58M 1.4B 242 0.71 79 1.00 112
coAuthorsCiteseer 227.32K 814.13K 2.7M 18M 2.1B 50.1 1.00 87 1.00 87
citationCiteseer 268.49K 1.15M 847K 370K 297M 3.4 0.71 10 1.00 13
web-NotreDame 325.72K 1.49M 8.9M 232M 33.9B 671 1.00 151 1.00 155
amazon0601 403.39K 3.38M 3.9M 4.4M 802M 23 1.00 11 1.00 11
web-Google 875.71K 5.10M 13M 40M 11.4B 163 1.00 46 1.00 33
com-youtube 1.13M 2.98M 829K 1.5M 451M 43 0.49 119 0.92 24
as-skitter 1.69M 11.09M 28.7M 148M 1.6B 1, 036 0.53 319 0.94 91
wikipedia-2005 1.63M 19.75M 44.7M 78.9M 741B 1, 312 0.53 33 0.82 14
wiki-Talk 2.39M 5.02M 9.2M 64.9M 136B 605 0.48 321 0.59 95
wikipedia-200609 2.98M 37.26M 84M 153M 2, 015B 2, 830 0.49 376 0.62 103
wikipedia-200611 3.14M 39.38M 88.8M 163M 2, 197B 3, 039 1.00 55 1.00 32

Note: Largest graph in the dataset has more than 39M edges. Times are in seconds. Density of subgraph S
Is |E(S)|/(|S|

2), where E(S) is the set of edges internal to S. Sizes are in number of vertices.

need to traverse further once we encounter a triangle with higher κ, since it is already
traversed in previous iterations.

5. EXPERIMENTAL RESULTS

We applied our algorithms to a large variety of graphs, obtained from Stanford
Network Analysis Project (SNAP) [2014] and the University of Florida Sparse
Matrix Collection [2014]. Important properties of these graphs are given in Ta-
ble I. We counted the number of triangles that each edge is involved (3-degree)
and the number of 4-cliques that each triangle resides in (4-degree) (please see
Definition 3.1 for details). Their cumulative distributions as well as the degree dis-
tributions of vertices are given in Figure 5 for eight selected graphs (similar behaviors
observed for other graphs as well). All variants show a similar skewed distribution,
but it is more regular for high S values. All the algorithms in our framework are
implemented in C++ and compiled with gcc 4.8.1 at the -O2 optimization level. All
experiments are performed on a Linux operating system running on a machine with
two Intel Xeon E5520 2.27GHz CPUs, with 48GB of RAM.

We computed the (r, s)-nuclei for all choices of r < s ≤ 4, and we present a representa-
tive sample here. We mostly observe that the forest of (3, 4)-nuclei finds substructures
that are denser and presents the hierarchical structure at a finer granularity.

As mentioned earlier, we will now treat the nuclei as just-induced subgraphs of G.
A nucleus can be considered as a set of vertices, and we take all edges among these
vertices (induced subgraph) to attain the subgraph. The size of a nucleus always refers
to the number of vertices, unless otherwise specified. For any set S of vertices, the
density of the induced subgraph is |E(S)|/(|S|

2

)
, where E(S) is the set of edges internal

to S. We ignore any nucleus with less than 10 vertices. Such nuclei are not considered
in any of our results.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:13

Fig. 5. Cumulative S-degree distribution of r-cliques for the (1,2), (2,3), and (3,4) cases. The 3-degree of an
edge is the number of triangles that edge is involved, and the 4-degree of a triangle is the number of 4-cliques
in which that triangle is involved. All variants show a similar skewed distribution, but it is more regular for
higher orders (best seen in color).

Fig. 6. (3, 4)-nuclei forest for soc-sign-epinions. There are 465 total nodes and 75 leaves in the forest.
There is a clear hierarchical structure of dense subgraphs. Leaves are mostly red (>0.8 density). There are
also some light blue hexagons, representing subgraphs of size ≥100 vertices with density of at least 0.2 (best
seen in color).

5.1. The Forest of Nuclei

We were able to construct the forest of (3, 4)-nuclei for all graphs in Table I but only give
the forests for facebook (Figure 3), soc-sign-epinions (Figure 6), and web-NotreDame
(Figure 7). For the web-NotreDame figure, we could not present the entire forest, so
we show some trees in the forest that had nice branching. The density is color coded,
from blue (density 0) to red (density 1). The nuclei sizes, in terms of vertices, are coded
by shape: circles correspond to at most 102 vertices, hexagons in the range [102, 103],

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:14 A. E. Sariyüce et al.

Fig. 7. Part of the (3, 4)-nuclei forest for web-NotreDame. In the entire forest, there are 2, 059 nodes and 812
leaves; 79 of the leaves are clique, up to the size of 155. There is a nice branching structure leading to a more
detailed hierarchy (best seen in color).

squares in the range [103, 104], and triangles are anything larger. The relative size of
the shape is the relative size (in that range) of the set.

Overall, we see that the (3, 4)-nuclei provide a hierarchical representation of the
dense subgraphs. The leaves are mostly red, and their densities are almost always >0.8.
But we obtain numerous nuclei of intermediate sizes and densities. In the facebook
forest and to some extent in the web-NotreDame forest, we see hexagons of light blue
to green (nuclei of >100 vertices of densities of at least 0.2). The branching is quite
prominent, and the smaller dense nuclei tend to nest into larger, less-dense nuclei.
This held in every single (3, 4)-nucleus forest we computed. This appears to validate
the intuition that real-world networks have a hierarchical structure.

One way to quantify the branching structure in hierarchy is to check the number
of nuclei at different levels. Each level corresponds to a set of nuclei with same k
value: k = 1 at the top, and the value of k increases towards the leaves. Chainlike
hierarchies have a small number of nuclei at each level, but we need higher numbers,
as they indicate better branching. Figure 8 shows the number of nuclei, for each k
value, obtained by (1, 2)- (k-core), (2, 3)-, and (3, 4)-nucleus decompositions on eight
representative graphs. (1, 2)-nucleus decompositions result in a small number of nuclei
for each level and do not show a branching structure on any of our graphs. (2, 3)-nucleus
decompositions exhibit nice branching and have many more nuclei for each k value. For
all graphs, (2, 3)-nuclei have many nuclei at each level up to k = 15. However, (3, 4)-
nuclei presents more crowded forests for all graphs. It clearly outperforms (2, 3) on all
graphs, except web-NotreDame and as-skitter. Their branchings are quite similar in
web-NotreDame graph, where (2, 3) have more nuclei at the top-most levels, whereas the
difference on wikipedia-200611 is drastic: (3, 4)-nuclei have 4 to 5 times more nuclei
than (2, 3) at each level up to k = 10.

The (3, 4)-nuclei figures provide a useful visualization of the dense subgraph struc-
ture. The web-NotreDame has a million edges, and it is not possible to see the graph
as a whole. But the forest of nuclei breaks it down into meaningful parts, which can
be visually inspected. The overall forest is large (about 2,000 nuclei), but the nesting
structure makes it easy to absorb. We have not presented the results here, but even
the wikipedia-200611 graph of 38 million edges has forest of only about 4,000 nuclei
(which we were able to easily visualize with a drawing tool).

Other choices of r, s for the nuclei do not lead to much branching. We present all
nucleus trees for r < s ≤ 4 for the facebook graph in Figure 9 (except (3, 4), which is
given in Figure 3). Clearly, when r = 1, the nucleus decomposition is boring. For r = 2,
some structure arises, but not as dramatically as in Figure 3. Results vary over graphs,

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:15

Fig. 8. Nuclei counts for each k value in (1, 2)- (k-core), (2, 3)-, and (3, 4)-nucleus decompositions. (1, 2)-
nuclei exhibits very few nuclei at each level. (2, 3)-nuclei and (3, 4)-nuclei have nice branchings where the
(3, 4)-nuclei presents a better view. Note that, on soc-sign-epinions, web-NotreDame, and wikipedia-200611
graphs, the number of nuclei decrease after k = 20, meaning that leaf nuclei start around those levels (best
seen in color).

but for r = 1, there is pretty much just a chain of nuclei. For r = 2, some graphs show
more branching, but we consistently see that for (3, 4)-nuclei, the forest of nuclei is
always branched.

5.1.1. Size Histograms of Nuclei. We present Figure 10 to see the frequency of nuclei sizes
obtained by (1, 2)-, (2, 3)-, and (3, 4)-nucleus decompositions on four representative
graphs. (2, 3) and (3, 4) are able to produce many nuclei for various sizes, which can not
be observed for k-core. Up to 100 vertices, (3, 4) outputs many more nuclei than (2, 3),
especially on the facebook, soc-sign-epinions, and wikipedia-200611 graphs. And
most of those nuclei are quite dense, as also shown in Section 5.2. After 100 vertices,
frequencies of nuclei show a similar trend for (2, 3)- and (3, 4)-nucleus decompositions.

5.2. Dense Subgraph Discovery

We compare (1, 2)- (k-core), (2, 3)-, and (3, 4)-nucleus decompositions with a scatter plot
of all nuclei with size of vertices versus density, given in Figure 11. In general, k-core
performs worse than the other decompositions, that is, it results in much fewer nuclei
with lower densities. (3, 4)-nucleus decomposition is able to span the entire spectrum
of density and size better than the others. The presence of red dots is more dominant,
especially in the facebook, soc-sign-epinions, and wikipedia-200611 graphs. Specif-
ically, (3, 4)-nucleus decomposition is able to find very dense subgraphs of large sizes,
which cannot be found by other decompositions. For example, only (3, 4)-nucleus de-
composition can find a subgraph of 109 vertices with 0.98 edge density on facebook and
a clique of 112 vertices on soc-sign-epinions. However, there are also few instances
where (2, 3)-nucleus decomposition is able to find a large and dense subgraph that
cannot be found by (3, 4). On wikipedia-200611, (2, 3)-nucleus decomposition reports a
400 vertex subgraph with 0.44 density and (3, 4) can find a subgraph with 0.28 density
in that size range (404 vertices).

Given the superiority of (3, 4)-nucleus decomposition, we plot the density histograms
of the (3, 4)-nuclei for various graphs in Figure 12. The x-axis is (binned) density, and
the y-axis is the number of nuclei (all at least 10 vertices) with that density. It can be

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:16 A. E. Sariyüce et al.

Fig. 9. (r, s)-nuclei forests for facebook when r < s ≤ 4 (except (3, 4), which is given in Figure 3). For r = 1,
trees are more like chains. Increasing s results in a larger number of internal nodes, which are contracted in
the illustrations. There is some hierarchy observed for r = 2, but it is not as powerful as for the (3, 4)-nuclei,
that is, the branching structure is more obvious in the (3, 4)-nuclei (best seen in color).

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:17

Fig. 10. Nucleus size frequencies for (1, 2)-, (2, 3)-, and (3, 4)-nucleus decompositions. (2, 3) and (3, 4) outputs
many more nuclei for various sizes. (3, 4)-nuclei has up to 4 times (on wikipedia-200611) more nuclei than
(2, 3) for the range of 10 to 100 vertices (best seen in color).

clearly observed that we find many non-trivial dense subgraphs. It is surprising to see
how many near cliques (density > 0.9) we find. We tend to find more subgraphs of high
density, and the mass of the histogram is shifted to the right. The number of subgraphs
of density at least 0.5 is in the order of hundreds for most graphs.

As shown in Figure 11, an alternate presentation of the dense subgraphs is a scatter
plot of all (3, 4)-nuclei with size in vertices versus density. This is given in Figure 13,
where the red dots correspond to the (3, 4)-nuclei. We see that dense subgraphs are ob-
tained in all scales of size, which is an extremely important feature. Nuclei capture more
than just the densest (or high density) subgraphs but find large sets of lower density
(say around 0.2). Note that 0.2 is a significant density for sets of hundreds of vertices.

5.2.1. Comparisons with Previous States of the Art. How does the quality of dense subgraphs
found compare to the state of the art? In the scatter plots of Figure 13, we also show
the output of two algorithms of Tsourakakis et al. [2013] in green and blue. The idea
of Tsourakakis et al. [2013] is to approximate quasi-cliques, and their result provides
two very elegant algorithms for this process. (We collectively refer to them Optimal
Quasi-Cliques, OQC.) OQC algorithms only give a single output, so we performed
multiple runs to get many dense subgraphs. This is consistent with what was done
in Tsourakakis et al. [2013]. OQC algorithms clearly beat previous heuristics, and it is
fair to say that Tsourakakis et al. [2013] is the state of the art.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:18 A. E. Sariyüce et al.

Fig. 11. Density vs. size plots for (1, 2)-, (2, 3)-, and (3, 4)-nucleus decompositions. (3, 4)-nucleus decomposi-
tion is able to span the entire spectrum better than others. Large subgraphs of high edge densities can be
observed in (3, 4)-nuclei (best seen in color).

The (3, 4)-nucleus decomposition takes significantly longer than the algorithms
of Tsourakakis et al. [2013]. But we get denser subgraphs in almost all runs.
Moreover, the sizes are comparable if not larger than the output of Tsourakakis
et al. [2013]. Surprisingly, in facebook and soc-sign-epinions, some of the best
outputs of OQC are very close to (3, 4)-nuclei. Arguably, the (3, 4)-nuclei perform the
worst on wikipedia-200611, where OQC finds some larger and denser instances than
(3, 4)-nuclei. Nonetheless, the smaller (3, 4)-nuclei are significantly denser. We almost
always can find fairly large cliques.

In Table I, we consider the OQC output vs. (3, 4)-nuclei for all graphs. Barring four
instances, there is a (3, 4)-nucleus that is larger and denser than the OQC output.
In all cases but one (adjnoun), there is a (3, 4)-nucleus of density (of non-trivial size)
higher than the the OQC output. The nuclei have the advantage of being the output
of a fixed, deterministic procedure, and not a heuristic that may give different outputs
on different runs. We mention that OQC algorithms have a significant running time
advantage over finding (3, 4)-nuclei for a single subgraph finding.

5.3. Overlapping Nuclei

A critical aspect of nuclei is that they can overlap. Grappling with overlap is a major
challenge when dealing with graph decompositions. We believe one of the benefits of
nuclei is that they naturally allow for (restricted) overlap. As mentioned earlier, no

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:19

Fig. 12. Density histograms for (3, 4)-nuclei of selected graphs. x-axis (binned) is the density and y-axis is
the number of nuclei (at least 10 vertices) with that density. Number of nuclei with the density above 0.8 is
significant: 139 for soc-sign-epinions, 355 for web-NotreDame, and 1874 for wikipedia-200611. Also notice
that the mass of the histogram is shifted to the right in most graphs.

two (r, s)-nuclei can contain the same r-clique. This is a significant benefit of setting
r = 3, s = 4 over other choices.

In Figure 14, we plot the histogram over non-trivial overlaps for (3, 4)-nuclei (We
naturally do not consider a child nucleus intersecting with an ancestor). For a given
overlap size in vertices, the frequency is the number of pairs of (3, 4)-nuclei with that
overlap. This is shown for eight representative graphs. The total number of pairwise
overlaps (the sum of frequencies) is typically around half the total number of (3, 4)-
nuclei. We observed that the Jaccard similarities are less than 0.1 (usually smaller).
This suggests that we have large nuclei with some overlap.

There are bioinformatics applications for finding vertices that are present in numer-
ous dense subgraphs [Hu et al. 2005]. The (3, 4)-nuclei provide many such vertices. In
Figure 15, we give a scatter plot of all intersecting nuclei, where nuclei are indexed
by density. For two intersecting nuclei of density α > β, we put a point (α, β). We only
plot pairs where the overlap is at least five vertices. Especially for web-NotreDame,
amazon0601, as-skitter, and wikipedia-200611, we get significant overlaps between
dense clusters.

In contrast, for all other settings of r, s, we get almost no overlap. When r = 2, nuclei
can only overlap at vertices, and this is too stringent to allow for interesting overlap.

5.4. Case Study: Analysis of APS Citation Network

We apply our nucleus decompositions to analyze the citation network of articles pub-
lished by the APS in its family of journals.2 The APS citation network has 531,478
vertices and 6,035,617 edges. We ignore the direction of edges and use the citation
network as a graph of “related articles.” Our aim is to compare the (1, 2)-, (2, 3)-, and
(3, 4)-nuclei by checking whether the set of articles in a nucleus is meaningful and see
how they differ for each decomposition.

(1, 2) (k-core) decomposition does not result in an interesting hierarchy. It gives only
65 subgraphs of ≥5 vertices, and the hierarchy structure is roughly a chain. There are

2http://journals.aps.org/datasets.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://journals.aps.org/datasets

16:20 A. E. Sariyüce et al.

Fig. 13. Density vs. size plots for nuclei of four graphs. State-of-the-art algorithms are depicted with OQC
variants, and they report one subgraph at each run. We ran them 10 times to get a general picture of the
quality. Overall, (3, 4)-nuclei are very competitive with the state of the art and produce many subgraphs
with high quality and non-trivial sizes (best seen in color).

only 20 subgraphs with more than 0.5 edge density. On the other hand, (2, 3) and (3, 4)
algorithms result in 11,300 and 27,838 nuclei of ≥5 vertices. (3, 4) obtained denser
subgraphs in a more detailed hierarchy, as observed for the other real-world networks.
We focus on the differences between (2, 3)- and (3, 4)-nuclei. For each (2, 3)-nucleus,
we checked the best matching nucleus from (3, 4)-nuclei and vice versa. The Jaccard
index is used as the similarity metric. The (3, 4)-nuclei matche 92% of the (2, 3)-nuclei
with more than 0.5 Jaccard similarity, but the (2, 3)-nuclei find correspondence to only
58% of the (3, 4)-nuclei. Although there exist some dense subgraphs that can only be
obtained by (2, 3)-nuclei, (3, 4)-nuclei can be thought of as an approximate superset of
(2, 3).

We further investigated the articles in some nuclei from (2, 3) and (3, 4) decomposi-
tions and present two interesting observations.

Observation 1: We check the dense subgraphs that can only be found in (3, 4)-
nuclei. One such nucleus has 13 articles about the nucleosynthesis subject with 0.9
edge density, and it is located at the leaf level. None of these 13 articles can be found
in a (2, 3)-nucleus with fewer than 1,000 vertices. Nucleosynthesis is the process that
creates new atomic nuclei from pre-existing nucleons, primarily protons, and neutrons
and is studied by nuclear physicists (not to be confused with our nucleus definition).
Table II gives the articles with the author and date information. We observe that the

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:21

Fig. 14. Histograms over non-trivial overlaps for (3, 4)-nuclei. Child-ancestor intersections are omitted.
Overlap size is in terms of the number of vertices. Most overlaps are small in size. We also observe that
(2, s)-nuclei give almost no overlaps.

Fig. 15. Overlap scatter plots for (3, 4)-nuclei. Each axis shows the edge density of a participating nucleus
in the pairwise overlap. Larger density is shown on the y-axis. (3, 4)-nuclei are able to get overlaps between
very dense subgraphs, especially in web-NotreDame, amazon0601, as-skitter, and wikipedia-200611. In the
wikipedia-200611 graph, there are 1, 424 instances of pairwise overlap between two nuclei, where each
nucleus has the density of at least 0.8.

authors of these articles are mostly different, implying that it is not an artifact of the
series of self-cited articles by certain researchers.

This observation shows that higher-order nuclei can help discover structures that
will be lost within larger groups if lower-order structures are used.

Observation 2: Complex networks are well studied by physicists. We find the
subgraphs in (2, 3)- and (3, 4)-nuclei that include two seminal articles on complex
networks: (1) “Epidemic Spreading in Scale-Free Networks,” by Pastor-Satorras and
Vespignani (10.1103/PhysRevLett.86.3200), and (2) “Random Graphs with Arbitrary
Degree Distributions and Their Applications,” by Newman, Strogatz, and Watts

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:22 A. E. Sariyüce et al.

Table II. 13 Papers about Nucleosynthesis in the (3, 4) Nucleus

Authors Paper Year
Bergstrom et al. Constraints on the variation of the fine structure constant from

big bang nucleosynthesis
1999

Ichikawa, Kawasaki Constraining the variation of the coupling constants with big bang
nucleosynthesis

2002

Nollett, Lopez Primordial nucleosynthesis with a varying fine structure constant
An improved estimate

2002

Yoo, Scherrer Big bang nucleosynt. and cosmic m.wave backg. constr. on the time
var. of the Higgs vacuum exp. val.

2003

Kneller, McLaughlin Big bang nucleosynthesis and ∧QCD 2003
Dmitriev et al. Cosmological var. of the deuteron bind. energy, strong inter., and

quark masses f. big bang nucleosyn.
2004

Muller et al. Nucleosynthesis and the variation of fundamental couplings 2004
Li, Chu Big-bang nucleosynthesis with an evolving radion in the brane

world scenario
2006

Coc et al. Coupled variations of fundamental couplings and primordial nu-
cleosynthesis

2007

Dent et al. Primordial nucleosynthesis as a probe of fundamental physics
parameters

2007

Landau et al. Early universe constraints on time variation of fundamental con-
stants

2008

Dent et al. Unifying cosmological and recent time variations of fundamental
couplings

2008

Coc et al. Variation of fundamental constants and the role of A=5 and A=8
nuclei on primordial nucleosynthesis

2012

Note: Edge Density of the Nucleus Is 0.9.

(10.1103/PhysRevE.64.026118). Both articles had a strong impact on the literature
and were cited more than 3,000 times. We observe that the smallest (2, 3)-nucleus that
includes those two articles has 155 articles with 0.12 density. They are all about the dif-
ferent aspects of complex networks like scale-free and small-world properties. On the
other hand, the smallest subgraph that contains those two articles in the (3, 4)-nuclei
has 104 articles with 0.18 density, and it is a subset of that (2, 3)-nucleus with 155
articles. Details of the mentioned nuclei and relations are given in Figure 16. The 51
different articles between the two nuclei are mostly about synchronization networks,
which are known as the network of coupled dynamical systems that consists of con-
nected oscillators where oscillators are the vertices that emit and receive signals. So
the question is as follows: Where are those articles on synchronization networks in the
(3, 4)-nuclei? We find most of them in a nucleus with 25 articles and 0.55 density and
located as a sibling of the nucleus that has 104 articles. Another sibling is a nucleus
with 19 articles and 0.71 density, and none of them appears in the 155-article (2, 3)-
nucleus. In (3, 4)-nuclei, we observe further meaningful sets of articles on epidemic
spreading and percolation theory. The article set on percolation theory is also reported
in the (2, 3)-nuclei.

Overall, this observation shows that higher-order nuclei can provide a more fine-
grained breakdown of the dense structures. Here (3, 4) decomposition can match what
(2, 3) decomposition does and provides further information about how a dense structure
is decomposed.

We believe that our nucleus decompositions can be used in different application
domains to find densely connected subgraphs in adjustable granularity and to see the
relations among those subgraphs in the hierarchy structure.

5.5. Runtime Results

Table I presents the runtimes in seconds for the entire construction. To provide some
context, we describe runtimes for varying choices of r, s. For r = 1, s = 2 (k-cores), the

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:23

Fig. 16. (2, 3)- and (3, 4)-nuclei of the APS citation network on a complex networks subject. One-way arrows
denote containment relations, and double arrows indicate the same nuclei. Subject of the articles in a nucleus
is given next to them whenever possible.

decomposition is linear and extremely fast. For the largest graph (wikipedia-200611)
we have, with 39M edges, that it takes only 4.26s. For r = 2, s = 3, the time can be
two orders of magnitude higher. For (3, 4)-nuclei, it is an additional order of magnitude
higher. Nonetheless, our most expensive run took less than an hour on the wikipedia-
200611 graph, and the final decomposition is quite insightful. It provides about 6,000
nuclei with more than 10 vertices, most of them of have density of at least 0.4. The
algorithms of Tsourakakis et al. [2013] take roughly a minute for wikipedia-200611 to
produce only one dense subgraph.

The theoretical runtime analysis of Theorem 4.3 gives a runtime bound of∑
v c3(v)d(v). In Table I, we show this value for the various graphs. In general, we note

that this value roughly correlates with the runtime. For graphs where the runtime is in
many minutes, this quantity is always in the billions. For the large wiki graphs where
the (3, 4)-nucleus decomposition is most expensive, this is in the trillions.

6. FUTURE DIRECTIONS

The most important direction is in the applications of nucleus decompositions. We are
currently investigating bioinformatics applications, specifically protein-protein and

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

16:24 A. E. Sariyüce et al.

protein-gene interaction networks. Biologists often want a global view of the dense
substructures, and we believe the (3, 4)-nuclei could be extremely useful here. In our
preliminary analyses, we wish to see if the nuclei pick out specific functional units. If
so, then that would provide strong validation of dense subgraph analyses for bioinfor-
matics.

It is natural to try even larger values of r, s. Preliminary experimentation suggested
that this gave little benefit in either the forest or the density of nuclei. Also, the
cost of clique enumeration becomes forbiddingly large. It would be nice to argue that
r = 3, s = 4 is a sort of sweet spot for nucleus decompositions. Previous theoretical work
suggests that any graph with a sufficient triangle count undergoes special “community-
like” decompositions [Gupta et al. 2014]. That might provide evidence to why triangle-
based nuclei are enough.

A faster algorithm for the (3, 4)-nuclei is desirable. Clique enumeration is a well-
studied problem [Bron and Kerbosch 1973], and we hope techniques from these results
may provide ideas here. Of course, as we said earlier, any method based on storing 4-
cliques is infeasible (spacewise). We hope to devise a clever algorithm or data structure
that quickly determines the 4-cliques that a triangle participates in.

Last but not least, we seek for incremental algorithms to maintain the (r, s)-
nuclei for a stream of edges. There are existing techniques for streaming k-core al-
gorithms [Sariyüce et al. 2013], and we believe that similar methods can be adapted
for (r, s)-nuclei maintenance.

7. CONCLUSIONS

We introduced the nucleus decomposition of a graph to extract the hierarchy of dense
subgraphs. Our algorithms are generalizations of well known k-core, and k-truss con-
cepts, and for specific parameters, our experimental evaluation showed that gener-
alized nucleus decompositions provide better hierarchies and denser subgraphs than
the state of the art. We believe that our contributions will have an impact on better
understanding the relations between dense subgraphs in a graph and enable better
insights for large and complex graph data.

ACKNOWLEDGMENTS

We are grateful to Charalampos Tsourakakis for sharing his code base for Tsourakakis et al. [2013]. We also
thank the anonymous reviewers for many helpful suggestion to improve this article.

REFERENCES

A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. 2013. Tree-like structure in large social and information
networks. In Proceedings of the IEEE International Conference on Data Mining (ICDM). 1–10.

J. Ignacio Alvarez-Hamelin, Alain Barrat, and Alessandro Vespignani. 2006. Large scale networks finger-
printing and visualization using the k-core decomposition. In Advances in Neural Information Processing
Systems 18. 41–50.

R. Andersen and K. Chellapilla. 2009. Finding dense subgraphs with size bounds. In Proceedings of the
Workshop on Algorithms and Models for the Web-Graph (WAW). 25–37.

A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. 2012. Dense subgraph maintenance under streaming
edge weight updates for real-time story identification. Proc. VLDB Endow. 5, 6 (Feb. 2012), 574–585.

Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. 2000. Greedily finding a dense subgraph. J. Algor. 34,
2 (Feb. 2000), 203–221.

Oana Denisa Balalau, Francesco Bonchi, T.-H. Hubert Chan, Francesco Gullo, and Mauro Sozio. 2015.
Finding subgraphs with maximum total density and limited overlap. In Proceedings of the 8th ACM
International Conference on Web Search and Data Mining (WSDM’15). 379–388.

D. J. Beal, R. Cohen, M. J. Burke, and C. L. McLendon. 2003. Cohesion and performance in groups: A
meta-analytic clarification of construct relation. J. Appl. Psychol. 88 (2003), 989–1004.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:25

J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G. Wilson. 2014. Why do
simple algorithms for triangle enumeration work in the real world? In Proceedings of the 5th Conference
on Innovations in Theoretical Computer Science (ITCS’14). ACM, New York, NY, 225–234.

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. 2015. Space-
and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proceed-
ings of the 47th Annual ACM on Symposium on Theory of Computing (STOC’15). 173–182.

C. Bron and J. Kerbosch. 1973. Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM
16, 9 (Sep. 1973), 575–577.

G. Buehrer and K. Chellapilla. 2008. A scalable pattern mining approach to web graph compression with
communities. In Proc. of the 2008 International Conference on Web Search and Data Mining (WSDM’08).
95–106.

M. Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Proceed-
ings of the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX’00). 84–95.

N. Chiba and T. Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 1 (Feb.
1985), 210–223.

J. Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical
Report (2008).

J. Cohen. 2009. Graph twiddling in a mapreduce world. Comput. Sci. Eng. 11 (2009), 29–41.
UF Sparse Matrix Collection. University of Florida Sparse Matrix Collection. Retrieved March 2014 from

http://www.cise.ufl.edu/research/sparse/matrices/.
P. Colomer de Simon, M. Serrano, M. G. Beiro, J. I. Alvarez-Hamelin, and M. Boguna. 2013. Deciphering the

global organization of clustering in real complex networks. Sci. Rep. 3, 2517 (2013).
Y. Dourisboure, F. Geraci, and M. Pellegrini. 2007. Extraction and classification of dense communities in the

web. In Proceedings of the 16th International Conference on World Wide Web (WWW’07). 461–470.
Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E. Lee, and John H. Thornton, Jr. 2009. Migration motif:

A spatial - temporal pattern mining approach for financial markets. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). ACM, New York,
NY, 1135–1144.

A. Epasto, S. Lattanzi, and M. Sozio. 2015. Efficient densest subgraph computation in evolving graphs. In
Proceedings of the 24th International Conference on World Wide Web (WWW’15). 300–310.

P. Erdős and A. Hajnal. 1966. On chromatic number of graphs and set-systems. Acta Math. Hung. 17 (1966),
61–99.

U. Feige. 2002. Relations between average case complexity and approximation complexity. In Proceedings of
the Symposium on Theory of Computing. 534–543.

D. R. Forsyth. 2010. Group Dynamics. Cengage Learning.
A. P. Francisco and A. L. Oliveira. 2011. Fully generalized graph cores. In Complex Networks. Vol. 116. 22–34.
E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou. 2006. MotifCut: Regulatory motifs finding with

maximum density subgraphs. In ISMB (Supplement of Bioinformatics) (2006-08-28). 156–157.
G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A fast parametric maximum flow algorithm and applica-

tions. SIAM J. Comput. 18, 1 (Feb. 1989), 30–55.
D. Gibson, R. Kumar, and A. Tomkins. 2005. Discovering large dense subgraphs in massive graphs. In Proc.

of the 31st International Conference on Very Large Data Bases (VLDB’05). 721–732.
A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and I. Weber. 2013. Piggybacking on social networks. Proc.

VLDB Endow. 6, 6 (2013), 409–420.
A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report. Berkeley, CA, USA.
R. Gupta, T. Roughgarden, and C. Seshadhri. 2014. Decompositions of triangle-dense graphs. In Innovations

in Theoretical Computer Science (ITCS). 471–482.
J. Håstad. 1996. Clique is hard to approximate within n(1−ε). In Acta Mathematica. 627–636.
H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. 2005. Mining coherent dense subgraphs across massive

biological networks for functional discovery. Bioinformatics 21, 1 (Jan. 2005), 213–221.
Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in

large and dynamic graphs. In Proceedings of the ACM SIGMOD International Conf. on Management of
Data. 1311–1322.

L. D. Iasemidis, D.-S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R.
Carney, A. Prasad, B. Veeramani, and K. Tsakalis. 2003. Adaptive epileptic seizure prediction system.
IEEE. Biomed. Eng. 50 (2003), 616–627.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://www.cise.ufl.edu/research/sparse/matrices/

16:26 A. E. Sariyüce et al.

R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 2009. 3-HOP: A high-compression indexing scheme for reachability
query. In Proceedings of the SIGMOD Conference. 813–826.

S. Khot. 2006. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J.
Comput. 36, 4 (2006), 1025–1071.

Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP). 597–608.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. 1999. Trawling the web for emerging cyber-
communities. In Proc. of the Eighth International Conference on World Wide Web (WWW’99). 1481–1493.

V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. 2010. A survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data. Vol. 40.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008. Statistical properties of
community structure in large social and information networks. In Proceedings of the 17th International
Conference on World Wide Web (WWW’08). ACM, New York, NY, 695–704.

D. Lick and A. White. 1970. k-degenerate graphs. Can. J. Math. 22 (1970), 1082–1096.
D. Matula and L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM

30, 3 (1983), 417–427.
R. J. Mokken. 1979. Cliques, clubs and clans. Qual. Quant. 13, 2 (1979), 161–173.
R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and Md. M. A. Patwary. 2013. A fast parallel maximum clique

algorithm for large sparse graphs and temporal strong components. CoRR abs/1302.6256 (2013).
K. Saito and T. Yamada. 2006. Extracting communities from complex networks by the k-dense method.

In Sixth IEEE International Conference on Data Mining Workshops, 2006 (ICDM Workshops 2006).
300–304.

A. Sala, L. Cao, C. Wilson, R. Zablit, Haitao Zheng, and Ben Y. Zhao. 2010. Measurement-calibrated graph
models for social network experiments. In WWW’10. ACM, 861–870.

A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. L. Wu, and Ü. V. Çatalyürek. 2013. Streaming algorithms for
k-core decomposition. In Proc. VLDB Endow. 433–444.

A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek. 2015. Finding the hierarchy of dense subgraphs
using nucleus decompositions. In Proceedings of the 24th International Conference on World Wide Web
(WWW’15). 927–937.

T. Schank and D. Wagner. 2005. Finding, counting and listing all triangles in large graphs, an experimental
study. In Experimental and Efficient Algorithms. 606–609.

S. B. Seidman. 1983. Network structure and minimum degree. Soc. Netw. 5, 3 (1983), 269–287.
S. B. Seidman and B. Foster. 1978. A graph-theoretic generalization of the clique concept. J. Math. Sociol.

(1978).
C. Seshadhri, A. Pinar, and T. G. Kolda. 2014. Triadic measures on graphs: The power of wedge sampling.

Stat. Anal. Data Min. 7, 4 (2014), 294–307.
SNAP. retrieved March, 2014. Stanford Network Analysis Package. Retrieved March 2014 http://snap.

stanford.edu/snap.
S. Suri and S. Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In WWW’11. 607–614.
N. Tatti and A. Gionis. 2015. Density-friendly graph decomposition. In Proceedings of the 24th Interna-

tional Conference on World Wide Web (WWW’15). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 1089–1099.

C. Tsourakakis. 2015. The k-clique densest subgraph problem. In Proceedings of the 24th International Con-
ference on World Wide Web (WWW’15). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 1122–1132.

C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. 2013. Denser than the densest subgraph: Ex-
tracting optimal quasi-cliques with quality guarantees. In Proc. of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’13).

J. Wang and J. Cheng. 2012. Truss decomposition in massive networks. Proc. VLDB Endow. 5, 9 (2012),
812–823.

N. Wang, J. Zhang, K. L. Tan, and A. K. H. Tung. 2010. On triangulation-based dense neighborhood graph
discovery. Proc. VLDB Endow. 4 (2010), 58–68.

S. Wasserman and K. Faust. 1994. Social Network Analysis: Methods and Applications. Cambridge University
Press.

D. Watts and S. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393 (1998), 440–442.
B. Zhang and S. Horvath. 2005. A general framework for weighted gene co-expression network analysis.

Stat. Appl. Genet. Molec. Biol. 4, 1 (2005), Article 17+.

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

http://snap.stanford.edu/snap
http://snap.stanford.edu/snap

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs 16:27

Y. Zhang and S. Parthasarathy. 2012. Extracting analyzing and visualizing triangle k-core motifs within
networks. In Proc. of the 2012 IEEE 28th International Conference on Data Engineering (ICDE’12).
1049–1060.

F. Zhao and A. K. H. Tung. 2013. Large scale cohesive subgraphs discovery for social network visual analysis.
In Proc. VLDB Endow. 85–96.

Received November 2015; revised December 2016; accepted January 2017

ACM Transactions on the Web, Vol. 11, No. 3, Article 16, Publication date: July 2017.

