
Peeling Bipartite Networks for Dense Subgraph Discovery
Ahmet Erdem Sarıyüce

University at Buffalo

erdem@buffalo.edu

Ali Pinar

Sandia National Laboratories

apinar@sandia.gov

ABSTRACT

Finding dense bipartite subgraphs and detecting the relations among

them is an important problem for affiliation networks that arise in a

range of domains, such as social network analysis, word-document

clustering, the science of science, internet advertising, and bioin-

formatics. However, most dense subgraph discovery algorithms

are designed for classic, unipartite graphs. Subsequently, studies

on affiliation networks are conducted on the co-occurrence graphs

(e.g., co-author and co-purchase) that project the bipartite structure

to a unipartite structure by connecting two entities if they share

an affiliation. Despite their convenience, co-occurrence networks

come at a cost of loss of information and an explosion in graph

sizes, which limit the quality and the efficiency of solutions. We

study the dense subgraph discovery problem on bipartite graphs.

We define a framework of bipartite subgraphs based on the butterfly

motif (2,2-biclique) to model the dense regions in a hierarchical

structure. We introduce efficient peeling algorithms to find the

dense subgraphs and build relations among them. We can iden-

tify denser structures compared to the state-of-the-art algorithms

on co-occurrence graphs in real-world data. Our analyses on an

author-paper network and a user-product network yield interesting

subgraphs and hierarchical relations such as the groups of collabo-

rators in the same institution and spammers that give fake ratings.

ACM Reference format:

Ahmet Erdem Sarıyüce and Ali Pinar. 2018. Peeling Bipartite Networks for

Dense Subgraph Discovery. In Proceedings of WSDM 2018: The Eleventh ACM

International Conference on Web Search and Data Mining , Marina Del Rey,

CA, USA, February 5–9, 2018 (WSDM 2018), 9 pages.

https://doi.org/10.1145/3159652.3159678

1 INTRODUCTION

Many real-world systems are naturally modeled as affiliation, two-

mode, or bipartite networks [9, 26]. In a bipartite network, vertices

are decomposed into two disjoint sets, primary and secondary, such

that edges can only connect vertices from different sets. For example

authors and papers can be the primary and secondary vertex sets,

with an edge representing authorship. Finding dense subgraphs

in the real-world affiliation networks, and relating them to each

other has been shown to be useful across different domains. Lit-

erature is rich with the examples such as spam group detection

in web [21], word and document clustering [16], and sponsored

ACM acknowledges that this contribution was authored or co-authored by an em-

ployee, or contractor of the national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only. Permission to make digital or hard copies for

personal or classroom use is granted. Copies must bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. To copy otherwise, distribute, republish, or post, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00

https://doi.org/10.1145/3159652.3159678

100
102
104
106
108

1010
1012
1014

IMDb
DBLP

d-label

d-style

wiki-it

kindle

ed

ge
s

bipartite
projection

100
102
104
106
108

1010
1012
1014
1016
1018

IMDb
DBLP

d-label

d-style

wiki-it

kindle

bu

tte
rfl

ie
s

/ t
ria

ng
le

s bipartite
projection

Figure 1: Number of edges and higher-order structures in bipartite graphs

and their projections

search advertising on webpages [18]. Despite their representation

power, bipartite graphs are underutilized, since most graph mining

algorithms, including dense subgraph discovery, are studied on the

traditional unipartite graphs. For this reason, affiliation networks

are projected to co-occurrence graphs, such that two vertices in the

primary set are connected by an edge if they share an affiliation.

For instance, an author-paper network can be transformed into a

co-authorship network, where two authors are connected if they co-

authored a paper. However, this transformation comes at a cost of

information loss and inflated graph size, as we will discuss in more

detail later. Therefore, designing algorithms that can work directly

on the bipartite graph, which provides an accurate representation

of the underlying system, is essential.

This paper studies finding dense subgraphs in a bipartite graph

and detecting the relations among them. Our approach is inspired

by the k-core [30, 42] and k-truss [15, 38, 46, 48] decompositions

in unipartite networks, which are instances of peeling algorithms.

They have been shown to be effective to detect dense subgraphs

with hierarchical relations [41].

1.1 Problem and Challenges

Our aim is to find many, if not all, dense regions in bipartite graphs

and determine the relations among them. Despite a few successful

studies that directly focus on bipartite networks [8, 13], a com-

mon practice in the literature for working with bipartite graphs

has been creating co-occurrence (projection) graphs. Although the

projection enables the use of well-studied unipartite graph mining

algorithms [9], it has significant drawbacks:

• Information loss and ambiguity: Bipartite graphs comprise

one-to-many relationship information, but this information is

reduced to pairwise ties when projected to a weighted or un-

weighted unipartite form. Those pairwise ties are treated inde-

pendently, which distorts the original information. In addition,

projections are not bijective irrespective of the projection tech-

nique being used, which creates ambiguity.

• Size inflation: A secondary vertex in a bipartite network with

degree d results in a d-clique in the projected graph. Thus, the

number of edges in the projected graph can be as many as∑
v ∈V

(dv
2

)
, whereas it is only

∑
v ∈V dv in the bipartite network,

where V is the set of secondary vertices. Fig. 1 (left) shows the

difference between some bipartite networks and their projections

https://doi.org/10.1145/3159652.3159678
https://doi.org/10.1145/3159652.3159678

Table 1: Notations

G = (U , V , E) bipartite graph with vertices in U and V, and edges E

N (u, G), N (u) set of vertices that are connected to vertex u in G
d (u) degree of vertex u , i.e., |N (u) |
(a, b)-biclique complete bipartite graph where |U | = a and |V | = b
Gp = (U , Ep) unweighted projection of G , as in Def. 1

Gwp = (U , Ewp) weighted projection of G , as in Def. 1

△p number of triangles in the projected graph Gp
butterfly or (2, 2)-biclique

θ (u) tip number of vertex u , as in Def. 6

ψ (e) wing number of edge e , as in Def. 8

– we observe up to 6 orders of magnitude increase in size, which

degrades the performance. This also artificially boosts the clus-

tering coefficients and the local density measures in the projected

graph by creating many triangles. Regarding the smallest higher-

order structures, a projection can have up to 699 quadrillion

triangles whereas its original bipartite network has 77 billion

butterflies (2,2-biclique), as in Fig. 1 (right).

Given the drawbacks of the projection approaches, we work di-

rectly on the bipartite graph to discover the dense structures. It has

been shown that the higher-order structures (motifs, graphlets) of-

fer deeper insights for analyzing real-world networks and detecting

dense regions in a better way [7, 23, 41, 44, 45]. Peeling algorithms,

k-core and k-truss decompositions, find dense regions in unipar-

tite graphs and determine the relations among them [22, 23, 48].

Nucleus decomposition [41] is a generalization of these two ap-

proaches and can work on higher-order structures such as 4-cliques.

However, none of them are applicable for the bipartite networks.

k-core decomposition assumes that all vertices represent the same

kind of entity, which does not hold for bipartite graphs. k-truss
decomposition works on triangles, which do not exist in bipartite

graphs. Nucleus decomposition uses small-cliques, which are also

nonexistent in bipartite graphs. Thus, we needhigher-order struc-

tures that capture the cohesiveness in bipartite graphs. Then

the peeling algorithms can be adapted to run on these structures to

find the dense regions with hierarchical relations.

1.2 Contributions

We introduce new algorithms to efficiently find dense bipartite

subgraphs with hierarchy of relations. Our contributions can be

summarized as follows:

• Introducing k-tip and k-wing bipartite subgraphs:We sur-

vey attempts to define higher-order structures in bipartite graphs,

and use the butterfly structure (2,2-biclique) as the simplest super-

edge motif. Building on that, we define the k-tip and k-wing
subgraphs based on the involvements of vertices and edges in

butterflies, respectively.

• Extension of peeling algorithms: We introduce peeling al-

gorithms to efficiently find all the k-tip and k-wing subgraphs.

Our algorithms are inspired by the degeneracy based decompo-

sitions for unipartite graphs. We present detailed psueducodes

and analyze their complexities.

• Evaluation on real-world data: We evaluate our proposed

techniques on real-world networks. Fig. 2 presents a glance of re-

sults on the IMDbmovie-actor with 1.6M vertices and 5.6M edges.

Our algorithms are able to extract larger and denser subgraphs of

various sizes. We also examine the ratings data for the Amazon

Kindle books and analyze the author-paper network of the top

database conferences. We highlight the interesting subgraphs and

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

100

101

102

103

100 101 102 103

|V
'|

|U'|

Butterfly
densest
subgraph

(a) Wing

100

101

102

103

100 101 102 103

|V
'|

|U'|
(b) (2, 3) nucleus

Figure 2: Dense subgraphs for the IMDb network. Each dot is a bipartite

subgraph and edge density is color coded. U ′ and V ′ are the primary and

secondary vertex sets and their sizes are given on the x- and y-axes. Wing

decomposition results in 36 bipartite subgraphs with ≥ 0.9 edge density that

have at least 10 vertices in each side, and perform competitive to the butterfly

densest subgraph [31]. Other algorithmsworking on projections, on the right,

cannot report any bipartite subgraphs in that quality.

hierarchies we detect that cannot be discovered by the existing

approaches. Finally, we present the runtime performances.

2 BACKGROUND

This section reviews basics about the bipartite networks and the

peeling algorithms. We present our notation in Table 1.

LetG = (U ,V ,E) be an undirected, unweighted, simple (no loop,

no multi-edge) bipartite graph. U is the set of primary vertices,

V is the set of secondary vertices, and E is the set of edges s.t.

∀(u,v) ∈ E, u ∈ U ∧ v ∈ V . N (u,G) denotes the neighbor set of a
vertexu in the bipartite graph. We abuse the notation by using N (u)
whenG is obvious. d(u) is the degree of the vertex u and defined as

|N (u)|. We define the density of a bipartite subgraph G = (U ,V ,E)
as the ratio of the number of existing edges over the number of

all possible edges, i.e.,
|E |
|U | · |V | . H = (U

′,V ′,E ′) is an induced

subgraph of the bipartite graph G = (U ,V ,E), if U ′ ⊆ U , V ′ ⊆ V ,
and V ′ = ∪u ∈U ′N (u,G), E

′ = ∪u ∈U ′∪v ∈V ′(u,v). G = (U ,V ,E) is
an (a,b)-biclique if it is a complete graph between a vertices on

one side and b vertices on the other.

We present two ways to convert a bipartite graph to a unipartite

graph [33, 34], also illustrated in Fig. 3a. Weighted projection is

built by assigning weights to the edges. Weights are computed in

proportion to the number of vertices connected to each affiliation

in the bipartite graph.

Definition 1. Given a bipartite graphG = (U ,V ,E), itsweighted
projection is an edge-weighted unipartite graph Gwp = (Vwp ,Ewp)

s.t. Vwp = U ,Ewp = {(u1,u2,w) | N (u1) ∩ N (u2) , ∅ ∧ w =∑
v ∈(N (u1)∩N (u2))

1

|N (v) | }. Unweigted projection is the same as

weighted projection where the edge weights are 1.

k-core [30, 42] and k-truss [15, 38, 46, 48] subgraphs, which
inspire our approach, are defined as follows:

Definition 2. A connected subgraph, H , ofG is a k-core if every
vertex in H has at least degree k and no other subgraph of G that

subsumes H is a k-core. Core number of a vertex u is the maximum

k such that there is a k-core subgraph that contains u.

To find k-cores, vertices with degree < k and their edges are

removed from the graph, until no such vertex remains. For a full

decomposition, we increment k at each step, and assign k as the

core number the removed vertex. This process is called as ‘peeling’,

and it works in O(|E |) time [6].

A B C D

A B

C

1/3+1/2

1/3 1/3
D1/2

(a) The bipartite graph on the

left is projected to the weighted

unipartite graph on the right.

A, B , and C form a triangle

since they are all affiliated with

the same vertex. Vertex D only

connects to C in the projec-

tion since it is the only one

with which it shares an affil-

iation. The edge between ver-

tices A and B is assigned 1/3 +
1/2, because one of the affilia-

tions they share in the bipar-

tite graph has 3 neighbors and

the other affiliation has 2 neigh-

bors.

4-path(3,3)-biclique

3-path

butterfly

(b)Graphmotifs tomodel cohe-

sion in bipartite networks.

1-truss

1-truss

2-core

(c) The entire graph is a 2-core since

each vertex have ≥ degree 2. Each trian-

gle is a 1-truss, denoted in dashed lines,

since each edge takes part in one triangle.

Two 1-trusses are not merged, because

the edge in the middle has no triangle.

1-truss

1-(2,3) nuc. 1-(2,3) nuc.
(d) The entire graph is a 1-truss since

each edge has 1 triangle. There are two 1-
(2,3) nucleus subgraphs, overlapping on

the middle vertex. These two nuclei are

not merged, because no triangle exists

that contains an edge from each nucleus.

Figure 3: Examples for projections, andk -core,k -truss andk -(2,3) nucleus

Definition 3. A connected subgraph, H , ofG is a k-truss if each
edge in H takes part in ≥ k triangles and no other subgraph ofG that

subsumes H is a k-truss.

Nucleus decomposition is a generalization of k-core and k-truss
decompositions. Instead of vertex-edge or edge-triangle relations,

nucleus decomposition works on any clique relations. The idea is

described in [41], but we restrict presentation to a specific case

for brevity. Here we only define k-(2,3) nucleus to highlight its

stronger connectedness than the k-truss. It is also referred to as

‘k-truss community’ in [23].

Definition 4.A subgraph H =(V ,E) ofG is a k-(2,3)-nucleus, iff
• each edge takes part in at least k triangles;

• any pair of edges in E is connected by series of triangles;

• no other subgraph of G that subsumes H is a k-(2,3)-nucleus.

Here (2, 3) refers to the 2-clique (edge) and 3-clique (triangle)

relations. Two edges e and f are connected by series of triangles if

there exists a sequence of edges e = e1, e2, . . . , ek = f such that for

each i , some triangle contains ei and ei+1. In Fig. 3c, entire graph is

a 2-core. Two separate 1-trusses appear since the middle edge has

no triangle. In Fig. 3d, each edge takes part in 1 triangle, making

the entire graph 1-truss. However, two separate 1-(2, 3) nuclei exist,

because there is no triangle that connect edges from each nucleus.

3 RELATEDWORK

Literature on bipartite network analysis has two main thrusts: ex-

tending unipartite graph concepts to bipartite graphs and defining

new projection methods to get unipartite representations. Central-

ity and the density metrics [9], clustering coefficients [37], matrix

partitioning [10] and clustering [47] algorithms are adapted for bi-

partite graphs. Regarding the projections, Newman introduced the

weighted projection for scientific collaboration networks [33, 34]

and Everett and Borgatti proposed to use dual projections [17]. We

focus on using the actual bipartite graph (without projection) to

find many dense subgraphs and their relations to each other, which

have not been explored thoroughly.

Bipartite graph motifs: Capturing the smallest unit of cohe-

sion provides a structural way to find the dense regions. Various

locality patterns [9, 36, 37] and density measures [26] have been

proposed for bipartite graphs (see Fig. 3b). Borgatti and Everett

considered the (3, 3)-biclique to define cohesiveness [9]. Opsahl
proposed the closed 4-path, which is also a (3, 3)-biclique [36].

Robins and Alexander used the (2, 2)-biclique to model the cohe-

sion [37], and looked for 3-paths, which consists of three edges

with two vertices from each set. This approach is also adopted in a

recent work by Aksoy et al. [3] to generate bipartite graphs with

community structure, where (2, 2)-biclique is called a butterfly.

Bipartite dense subgraphs: Fake likes, ratings and reviews are

prevalent in online social networks and can be modeled by the

dense regions in the underlying bipartite network [8]. Regarding

quantifying the dense regions, Borgatti and Everett proposed the

biclique as a dense subgraph [9]. Kumar et al. used bicliques of

various sizes to analyze web graphs [24]. Enumerating all the max-

imal bicliques and quasi-cliques is studied by Sim et al. [43], and

Mukherjee and Tirthapura [32]. However, biclique definition is

regarded as too strict, not tolerating even a single missing edge,

and is also expensive to compute. More recently, Tsourakakis et

al. [31] used sampling to find (P ,Q)-biclique densest subgraph in

bipartite networks. Their algorithm results in a single subgraph

that has the most number of (P ,Q)-bicliques in the entire network.

Butterfly ((2, 2)-biclique) densest subgraph serves as a baseline and

we check how our results compare in Sec. 6. However, we do not

focus on finding a single, densest subgraph, but aim to find many

dense subgraphs with hierarchical relations.

Peeling bipartite networks: There have been some attempts

to adapt peeling algorithms or k-core [42] like subgraphs to bi-

partite graphs. Cerinsek and Batagelj [11] adapted the generalized

core idea [5] to bipartite networks. However, their definition is not

suitable to construct a hierarchy since it is not clear how to define

a comparison function for (p,q) pairs. Giatsidis et al. [20] worked
on the scientific collaboration networks to find dense regions. They

used the weighted projections and adapted the k-core decomposi-

tion for weighted networks to detect the hierarchy. They defined

the fractional k-core as a maximal subgraph where every vertex

has at least weight k (vertex weight is the sum of edge weights that

are connected). Li et al. [29] introduced a k-truss like definition for

bipartite networks. They insert artificial edges between vertex pairs

that share a neighbor and apply the peeling algorithm on those

artificial edges and their triangle counts. This is actually identical

to creating the projection, and applying the k-truss decomposition

using the triangle counts [15]. In addition, Chen and Saad [13] pro-

posed algorithms to find many dense structures in bipartite graphs

by constructing a dendrogram of the vertices, where the subgraphs

are not overlapping. Unlike the previous work, we introduce peeling

algorithms that work directly on the bipartite network and identify

possible overlapping dense regions in a hierarchy.

4 DENSE BIPARTITE SUBGRAPHS

In many real-world networks, the underlying structure that yields

cohesive and close-knit subgraphs is the triangle. Triangle is the

smallest unit of cohesion in uni-partite networks and butterfly can

be considered as the triangle of bipartite networks in the sense

that it is the smallest cohesive bipartite unit. Conversely, a bipartite

2-tip
!()=2

a b c

2 31

d e f

5 64

g

(a) We check the vertices on the bottom to find k -tips. д
has no butterfly. Vertices a, b, e, and f take part in two

butterflies while c and d are involved in three. But c and

d cannot have a tip number of 3 since their induced sub-

graph has just one butterfly. Thus, vertices a to f forms a

2-tip. Each vertex gets the largest k -tip that they are part

of; θ (a − f)=2.

Ψ()=2
Ψ()=1

1-wing
a b c

2 31

d e f

5 64

g 2-wing

(b) k -wings on the same graph. Edge (д, 6), д6 in short,

has no butterfly. Each of the four edges in the middle,

c3, c4, d 3, d 4, participate in only one butterfly, thus each

edge has a wing number of 1 and they form a 1-wing.

There are also two (3, 2)-bicliques; abc12 and de f 56.
Each edge in those bicliques takes part in two butterflies.

So, each is a 2-wing, and all the edges in those have a wing

number of 2. Overall, k -wings can reveal denser regions

than the k -tips on the given toy graph.

Authors

Papers

(c) In an author-paper network,

the author shown in red cannot

be considered in a single research

community because she collabo-

rates with different researchers

on distinct sets of papers. Each af-

filiation of the author should be

considered independently to bet-

ter detect the communities she is

involved in.

Figure 4: Illustrations of the k -tip and k -wing subgraphs, and tip (θ) and wing (ψ) numbers.

graph does not have a community structure without butterflies.Mo-

tivated by that, we use the butterfly as the main higher-order struc-

ture in our bipartite subgraph models. It is the smallest structure

with multiple vertices at each side, and also cheaper to enumerate

than the larger bicliques. Our aim is to discover the bipartite sub-

graphs with many butterflies and construct relations among them.

k-core and k-truss decompositions reveal the hierarchical relations

among dense regions and we follow a similar methodology in our

models. We introduce two bipartite dense subgraph models that

have different trade-offs between the subgraph density and the

computation time to find.

4.1 Tip decomposition: the Definition

We introduce the k-tip to identify the vertex-induced subgraphs

with many butterflies. Our approach enables building hierarchical

relations among the subgraphs which results in a global tree struc-

ture that represents the significantly dense regions in the graph

with various sizes and densities. k-tip measures the intensity of

vertex participations in the butterfly structures. It is defined as

follows:

Definition 5. A bipartite subgraph H = (U ,V ,E) ⊆ G, induced
onU , is a k-tip iff

• each vertex u ∈ U takes part in at least k butterflies,

• each vertex pair (u,v) ∈ U is connected by series of butterflies,

• H is maximal, i.e., there is no other k-tip that subsumes H .

Two vertices a and b ∈ U are connected by a series of butter-

flies if there exists a sequence of vertices a = u1,u2, . . . ,uk = b
such that some butterfly contains ui and ui+1, for each i . This con-
nectivity condition helps to separate the dense regions that are

only connected by an edge, which are otherwise considered as a

single combined subgraph. Butterfly density of a k-tip is obtained

by ensuring a lower bound on the number of butterflies that each

vertex participates. Note that a vertex with many butterflies does

not imply a dense region by itself; it should also be surrounded by

other vertices incident to many butterflies.

Fig. 4a illustrates k-tip examples, whereU and V cover the ver-

tices on the bottom (a − д) and top (1 − 6), respectively. There

are seven butterflies in total: ab12,ac12,bc12, cd34,de56,d f 56, and
e f 56. Vertex д has no butterflies. Vertices c and d participate in

three butterflies while the others in U (but д) are involved in two.

Thus, vertices a − f forms a 2-tip, shown with the dashed orange

line. c and d cannot form a 3-tip by themselves or including any

other vertex.

Storing all the k-tips is not convenient since they are in a hierar-

chy and have full overlaps. Instead, we define the tip number of a

vertex, denoted as θ , in a similar spirit to the core number (Def. 2),

to find any k-tip with a traversal operation.

Definition 6. Tip number, θ(u), of vertex u, is the largest t
such that there exists a t-tip that contains u. Tip decomposition of

a graph G = (U ,V ,E) is finding the tip numbers of vertices inU .

Going back to Fig. 4a, we see that all the vertices except д has
tip number of 2 (in orange). A k-tip is found by starting at a vertex

with the tip number of k and doing BFS-like traversal on setU . At

each step, a vertex that resides in a common butterfly is visited if

its tip number is at least k . Traversal continues until no such vertex

appears. Set of visited vertices forms the k-tip.

4.2 Wing decomposition: the Definition

Consider the bipartite network of authors and their papers. When

an author collaborates with different groups on different topics

(as in Fig. 4c), k-tip cannot handle the situation since the dense

regions identified by the k-tip are defined to be disjoint. To allow

the vertex overlaps, which better captures the dense regions, we

introduce another generic subgraph model, k-wing. Its definition

is similar to the k-tip with one subtle difference: focus is on the

edges, not vertices. Distinguishing the edges that are connected to

the same vertex is the key to get overlaps on the vertices. We define

the k-wing bipartite subgraph as follows:

Definition 7. A bipartite subgraph H = (U ,V ,E) ⊆ G is a k-
wing if,
• every edge (u,v) ∈ E takes part in at least k butterflies,

• each edge pair (u1,v1), (u2,v2) ∈ E is connected by series of but-

terflies,

• H is maximal, i.e., there is no other k-wing that subsumes H .

Againwe use the butterfly connectedness condition that is stronger

than the traditional connectedness and helps to distinguish differ-

ent regions that are traditionally connected, as shown in Fig. 4c.

Two edges a and b ∈ E are connected by a series of butterflies if

there exists a sequence of edges a = e1, e2, . . . , ek = b such that

some butterfly contains ei and ei+1 for each i .
Fig. 4b presents the k-wings in the same toy graph that we

checked in the previous section. Edge (д, 6), д6 in short, does not

participate in any butterfly. Each of the four edges in the middle,

c3, c4,d3,d4, participate in only one butterfly, thus each edge has

a wing number of 1 and they form a 1-wing, marked by the green

region. There are also two (3, 2) bicliques: abc12 and de f 56. Each

Algorithm 1: Tip Decomposition (G = (U ,V ,E))

Function D2 (u,G)

D ←
⋃

v∈N (u)

©

­

«

⋃

d ∈N (v)
{d }ª

®

¬

// combine dist-2 neigs

c ←multiplicities of d ∈ D // counts of unique items
return c , D

// find the number of each vertex u ∈ U participates

1 D ← list, L ← list, β (·) ← 0, butterfly counts ∀ u ∈ U
2 for each u ∈ U do

3 c, D ← D2 (u, G) // dist-2 neigs (D), multiplicity (c)
4 β (u) ←

∑
d∈D

(cd
2

)
// update u

// find the tip numbers of vertices u ∈ U by peeling

5 θ (u) ← tip numbers ∀ u ∈ U
6 for each u with minimum β (u) s.t. θ (u) is unassigned do

7 θ (u) ← β (u) // assign the tip number

8 c, D ← D2 (u, G) // dist-2 neigs (D), multiplicity (c)
9 for each d ∈ D s.t. θ (d) is unassigned do

// decrease by the num. of common , if possible

10 if β (d) −
(cd
2

)
< β (u) then β (d) ← β (u)

11 else β (d) ← β (d) −
(cd
2

)
12 return array θ (·)

edge in those subgraphs participates in exactly two butterflies. So,

each is a 2-wing, shown in dashed red lines. Overall, k-wings can
extract denser regions that cannot be seen by the k-tips. Similar to

the tip numbers, we associate each edge with a number to index

the subgraphs. We define the wing number of an edge, denoted

byψ , as follows.

Definition 8. Wing number, ψ(e), of an edge e ∈ E is the

largestw such that there is aw-wing that contains e .Wing decom-
position is the problem of finding the wing numbers of edges in G.

In Fig. 4b, wing numbers of the edges are shown by the corre-

sponding colors. ψ (c3) = ψ (c4) = ψ (d3) = ψ (d4) = 1, the green

edges, which belong to the 1-wing, but not the 2-wing. All the

other edges, except д6, has wing number of 2, in red. A k-wing can

be found by a similar traversal operation explained for the k-tip.
This time we traverse on edges. We start at an edge with the wing

number of k and at each step we visit an edge that resides in a

common butterfly and has a wing number of at least k . Traversal
continues until no such edge remains and the set of visited edges

forms the k-tip.

5 PEELING BUTTERFLIES

In this section, we present algorithms to find the tip numbers of

vertices, θ (·), and the wing numbers of edges, ψ (·). k-tips and k-
wings with the hierarchical relations can be located by the θ (·) and
ψ (·) values, as explained above.

5.1 Tip decomposition: the Algorithm

We start by counting the number of butterflies that each vertex

participates in, and then apply the iterative peeling process where

the tip numbers are assigned in a non-decreasing order. At each

step, we find the vertex that has the minimum number of butterflies,

assign its current butterfly count as the tip number, say k , and
decrement the butterfly counts of the vertices (if > k) inU that has

a common butterfly.

Tip Decomposition, presented in Algorithm 1, finds the tip

numbers of the vertices inU . To locate the k-tips and construct the

hierarchy, we use the disjoint-set forest heuristic that is introduced

in a recent work [39]. We construct the subgraphs after finding

Algorithm 2:Wing Decomposition (G = (U ,V ,E))

// find the number of each edge e ∈ E participates

1 β (e) ← 0, butterfly counts ∀ e ∈ E
2 for each u ∈ U in order do

3 for each v1, v2 pair ∈ N (u) do
4 I ← N (v1) ∩ N (v2) s.t. i ≻ u ∀i ∈ I
5 for each i ∈ I do
6 β (e)++, ∀e ∈ (u, i, v1, v2) // each visited

// find the wing numbers of edges e ∈ E by peeling

7 ψ (e) ← wing numbers ∀ e ∈ E
8 for each e with minimum β (e) s.t.ψ (e) is unassigned do

9 ψ (e) ← β (e) // assign the wing number

10 B ← set of s containing e
11 for each ∈ B do

12 for each edge f in s.t. f , e do

13 if β (f) > β (e) then β (f)- - // neigs updated

14 E ← E \ e // edge is removed from the graph

15 return arrayψ (·)

the tip numbers of vertices, and adaptation of [39] for the tip de-

composition is straightforward – we do not give the details for

brevity.

Algorithm 1 has two phases. First, we determine the number of

butterflies that each u ∈ U participates, in lines 1 to 4. A simple

way to count the butterflies that a vertex participates is to collect

its distance-2 neighbors in a multiset by using a hashmap. If a

vertex d appears cd > 1 times in the multiset D (except u itself),

then u and d have c common neighbors, and the number of their

mutual butterflies will be

(cd
2

)
, which makes β(u) =

∑
d ∈D

(cd
2

)
.

This phase has O(
∑
v ∈V d(v)2) time complexity, since a vertex v ∈

V is accessed by each of its neighbors, and each time all the vertices

in N (v) are accessed. In the worst case, it is O(|U |2), where the

graph is a biclique. We also used an ordering heuristic which is

applied in the D2 and although it does not reduce the complexity,

it enables to keep the c and D smaller, in line 3, and results in less

work in the following line. We omit the details for brevity.

In the peeling process (lines 5 to 11), we assign the tip numbers of

the vertices, θ (·), in a non-decreasing order. We leverage a bucket

data structure to efficiently retrieve the vertex with the fewest

butterflies at each step. Main operation at each step is to first assign

the current butterfly number ofu as its tip number, find the vertices

that has a common butterfly with u, and decrement their butterfly

numbers, if larger than the last assigned tip number. Since two

vertices in U can have multiple mutual butterflies, we find those

counts and decrease them at once. This again requires to collect the

distance-2 neighbors in a multiset and we use D2 for that purpose
in line 8. For each vertex that is not assigned a tip number yet, we

decrease the butterfly number by

(c
2

)
, where c is the cardinality

of the common neighbors. However, the butterfly number cannot

be less than the last assigned tip number, and we check that in

line 10. Time complexity is again characterized by O(
∑
v ∈V d(v)2)

due to the D2 (O(|U |2)| in the worst case). All of the additional data

structures in both phases are in at most O(|U |) size.
Theorem 5.1. Given a bipartite graphG = (U ,V ,E), Algorithm 1

finds the tip numbers, θ (·), of all u ∈ U (Proof is omitted here, avail-

able in [40]).

5.2 Wing decomposition: the Algorithm

We apply a similar peeling approach to find the wing numbers

of the edges in E, ψ (·). Instead of looking at the vertex-butterfly

relations, we investigate the involvements of edges in butterflies.

There are again two phases; counting the butterflies for each edge

and the peeling process to find the wing numbers. Locating the

k-wings and building the hierarchy is again straightforward by the

disjoint-set data structures [39] and not included here for brevity.

Algorithm 2 outlines the Wing Decomposition. Butterfly count-

ing for each edge is done in lines 1 to 6. Note that it is different than

the first phase of Tip Decomposition, and also more expensive,

since we need to enumerate the butterflies to find the participating

edges. We compute intersections for each pair in the neighborhoods

of vertices in U . We utilize a total ordering of the vertices for effi-

cient computation. All the vertices u ∈ U are processed in order

(line 2), and in each intersection operation, we only take the vertices

that succeedu (line 4). This enables to visit each butterfly only once.

Total complexity is O(
∑
u ∈U

∑
v1,v2∈N (u)max(d(v1),d(v2))), and

it is O(|U | |V | |E |) in the worst case where the graph is a biclique.

In the peeling phase (lines 7 to 14), wing numbers are assigned

in a non-decreasing order. Bucket structure helps to get the edge

with the least number of butterflies at each step. Similar to the

Tip Decomposition, we assign the updated butterfly number of

the edge e as its wing number, say k , find the butterflies that

e participates, and decrement the butterfly counts of the other

edges in those butterflies, if greater than k . Note that there are

four edges in a butterfly, thus we need to check the other three

edges. Lastly, we remove the edge e from the graph. Peeling phase

has O(
∑
(u,v)∈E

∑
w ∈N (v)max(d(u),d(w))) time complexity, and

O(|U | |V | |E |) in theworst case. Additional space complexity isO(|E |),
since we store the butterfly and wing numbers for each edge.

Theorem 5.2. Given a bipartite graphG = (U ,V ,E), Algorithm 2

finds the wing numbers, ψ (·), of all e ∈ E (Proof is omitted here,

available in [40]).

6 EXPERIMENTS

We evaluate our algorithms on real-world unweighted simple bi-

partite networks from SNAP [27], ICON [14], and Konect [25].

Table 2 shows the important statistics for our dataset. condmat is
the author-paper network for the arXiv preprints about condensed

matter physics, published between 1995 and 1999 [35]. dbconf is
another author-paper network that we constructed with the pro-

ceedings in the three top database conferences; VLDB, SIGMOD,

and ICDE [28]. github is the network between the users and repos-

itories in the GitHub [12]. marvel is the occurrence relations be-

tween the Marvel characters and the comic books [4]. IMDb links
the actors and the movies they played in [1]. DBLP is the author

and paper network for all the papers in the DBLP website [28].

d-label and d-style networks are obtained from an online mu-

sic database [2] and the former consists of the relations between

artists and the production companies, whereas the latter is the net-

work of the artists and the styles of their albums. wiki-it is the

edit network of the Italian Wikipedia, having the users and the

pages they edit. kindle is the network between the Kindle books

and the users who rated those books. In Table 2, second to fourth

columns show the number of primary vertices, secondary vertices,

and edges in each network. We assume that the primary vertices

are the ones that drive the connections, which are authors, users,

characters, actors, and artists. In the fifth column, the number of

edges in the projected graphs (Ep) are given. We applied the pro-

jections as described in Def. 1. Last two columns are the butterfly

Table 2: Statistics for the real-world bipartite graphs (in black) and their

projections (in red). First three columns show the number of primary vertices,

secondary vertices, and edges for the bipartite graphs, and the fifth column

is the number of butterflies. Fourth and last columns (in red) are the number

of edges and triangles in the projections, which applied onU .

network |U | |V | |E | |Ep | | | |△p |

condmat 16.73 K 22.02 K 58.60 K 95.19 K 70.55 K 68.04 K
dbconf 11.19 K 8.92 K 30.72 K 84.79 K 34.55 K 95.66 K
github 56.56 K 123.35 K 440.24 K 44.56M 50.89M 962.55M
marvel 6.49 K 12.94 K 96.66 K 336.53 K 10.71M 3.26M
IMDb 1.23M 419.66 K 5.60M 157.56M 42.49M 312.08M
DBLP 4.00M 1.43M 8.65M 315.89M 21.04M 9.99 B
d-label 1.75M 270.77 K 5.30M > 7.20 B 3.26 B > 167.99 T
d-style 1.62M 0.38 K 5.74M > 2.56 T 77.38 B > 699.01 Q
wiki-it 2.26M 137.69 K 12.64M > 148.48 B 298.49 B > 17.50 Q
kindle 430.53 K 1.41M 3.21M 93.19M 15.51M 10.14 B

() counts in each bipartite network and the triangle (△p) counts

in the projected unipartite graph. For the d-label, d-style, and
wiki-itnetworks, projections cannot be computed in 36 hours, so

we give lower bounds for their edge and triangle counts, based on

the degrees of the secondary vertices. Our implementation is in

C++ and available
1
. We used gcc 5.2.0 at -O2 optimization level. All

experiments are performed on a Linux operating system running

on a machine with Intel Xeon Haswell E5-2698 2.30 GHz processor

with 128GB RAM.

We compared the TipDecomposition (Tip in short, Algorithm 1)

and the WingDecomposition (Wing in short, Algorithm 2) with

the previous studies that find dense subgraphs with (or without)

hierarchical relations in bipartite networks and or their projections.

• For the unweighted projection, we use two algorithms: k-core
decomposition (Def. 2) and (2, 3) nucleus decomposition (Def. 4).

(2, 3) nuclei subgraphs have been shown to be quite effective to

find dense regions with detailed hierarchical relations [23, 41].

• For theweighted projection, we use the fractional k-cores [20],
described in Sec. 3. To the best of our knowledge, it is the only

peeling adaptation that works on weighted networks. It is de-

signed to handle the bipartite author-paper networks by using

their weighted projections.

• Regarding the algorithms that directly focus on the bipartite

data, Li et al. [29] proposed a k-truss adaptation, as explained
at the end of Sec. 3. Although the focus is on the bipartite con-

nections, their algorithm relies on inserting edges between the

vertices in the same set, and computes the k-trusses on those

new edges and new triangles, which is essentially the same as

the (2, 3) nucleus decomposition.

• Apart from those, we also check the (P,Q)-biclique densest

subgraphs, proposed by Mitzenmacher et al. [31]. We obtain

the (2, 2)-biclique (butterfly) densest region for each bipartite

network in our dataset.

For each bipartite subgraph, we report the size of primary and

secondary vertex sets, and the edge density, i.e.
|E |
|U | · |V | . For the

k-core, fractional k-core, and (2, 3) nucleus decompositions, we find

the nuclei/cores in the projections (Gp), and then report the induced

bipartite subgraphs using the vertices in those nuclei/cores.

6.1 Dense subgraph profiles

We compare the size and density of the bipartite subgraphs found

by our algorithms and the previous works mentioned above. Fig. 6

(condmat), 7 (marvel), and also 2 (IMDb) (in Sec. 1) summarize the

1
http://sariyuce.com/bnd.tar

http://sariyuce.com/bnd.tar

CA DB

Anomalous Personal Finance

Apr 9-14, 2013
June 6-11, 2013

Figure 5: 10 books rated by 4 users, reported byWing. 6 books on the right are on personal finance whereas the 4 on the left are unrelated. Further investigation

reveals that those 4 users rated the books in the same days and always gave 5 stars, which are strong indicators for the fake reviews.

results. In all charts, each dot is a bipartite subgraph with at least

0.1 edge density. |U | and |V | are given on the x- and y-axes, and

the density is color coded.

Overall, we observe that many dense bipartite subgraphs with

nontrivial sizes (on both sides) can be obtained with Wing. For

IMDb and marvel networks, those subgraphs exhibit competitive

quality (high density and large size) with respect to the butterfly

densest subgraphs reported by [31]. Tip also performs well on some

instances with respect to other alternatives, but not as good as the

Wing. As we will show in Sec. 6.4, Tip is faster than the Wing, and

the fair quality of the Tip can be preferred for applications with

strict performance requirements. We omit the results for k-cores
since they consistently have lower densities and larger sizes than the

(2, 3) nucleus and we observe that the densest subgraphs reported

by the previous works are concentrated on the axes, meaning that

they have a single vertex in either side, which is trivial.

For condmat network, in Fig. 6, Wing yields 416 subgraphs with

at least 5 authors, 5 papers, and 0.5 density. However, it cannot find

a subgraph that is as good as the butterfly densest subgraph [31],

which has 11 and 13 vertices on each side withmore than 0.8 density.

Tip can find 59 such subgraphs, whereas the (2, 3) nucleus and

Fractional k-core can only detect 14 and 20, respectively. Tip

and Wing are also effective to find detailed hierarchical relations;

respectively, they report 77 and 164 subgraphs that contain multiple

other subgraphs. (2, 3) nucleus can yield only 30 such subgraphs

and the other decompositions perform worse.

marvel network, as seen in Fig. 7, shows more striking differ-

ences betweenWing and the others; 42 subgraphs appear withmore

than 0.7 density and at least 5 vertices on each side by using Wing,

while no such subgraphs can be obtained with other algorithms,

including Tip. Furthermore, Wing results in pretty competitive

subgraphs with respect to the butterfly densest subgraph.

6.2 Books in Amazon Kindle ratings

We analyze the ratings data for the Amazon Kindle books. The

unweighted user-item bipartite graph has users on one side, items

100

101

102

103

100 101 102

|V
'|

|U'|

Butterfly
densest
subgraph

(a) Wing

100

101

102

103

100 101 102

|V
'|

|U'|

(b) (2, 3) nucleus

100

101

102

103

100 101 102

|V
'|

|U'|

(c) Fractional k -core

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

Figure 6: Dense subgraphs in condmat. Each dot is a bipartite subgraph, the

density, |E ′ |/(|U ′ | |V ′ |), is color coded, and |U ′ | and |V ′ | are given on the

x- and y-axes.Wing results in 416 subgraphs with ≥ 0.5 density and at least 5
vertices in each side. Although it hasmany subgraphswith different qualities,

none is as good as the butterfly densest subgraph, reported by [31].

on the other side, and edges connect the users to the items they

rated. The first striking difference appears in the number of reported

subgraphs: Wing gives 169 distinct subgraphs that have at least 5

vertices on each side and more than 0.5 edge density. Tip reports

25 such structures whereas (2, 3) nucleus only gives 6.

One example group thatWing identifieswhile all the others
cannot is a set of 38 books that are mostly on the self-improvement

theme ("how to" books, guides on relationships, healthy diets and

personal finance) rated by 12 users. Furthermore, there are three

smaller groups within this group. The first has 6 books and all are

rated by 5 users. Those books are about the relationships between

spouses, like “Finding The Ins And Outs Of Relationships”. Second

group is a collection of 20 books on guides for healthy diets and

self-meditation. The third group, shown in Fig. 5, reveals a different

picture. There are 10 books that are rated by 4 users, and 6 of them

are about the personal finance. However, the other 4 are totally un-

related; 2 on dog training, 1 on the elementary-level algebra and 1 is

about creating more space at home. Checking the rating scores for

those shows that that almost all the ratings are 5 stars. Furthermore,

the dates those books are rated are very close: 2 books are rated

between April 9 and 14 in 2013, and the other 2 are between June 6

and 11 in the same year. Bursty reviews is an important indicator

for the fake reviews, as [19] notes that “Reviewers and reviews ap-

pearing in a burst are often related in the sense that spammers tend

to work with other spammers and genuine reviewers tend to appear

together with other genuine reviewers”. Overall, Wing can reveal the

sets of books on the same theme and also point to the anomalous

behaviors, like the fake reviews, in bipartite networks. It does this

by using only the graph topology without any metadata.

6.3 Authors in the top database conferences

Here we highlight some interesting subgraphs and hierarchical

structures found in the dbconf network. We report on what Wing

and Tip can find but others cannot, and also what we cannot find

which can be identified by other algorithms.

Fig. 8 shows the dense subgraph profiles for the dbconf network.
Trends are similar to the other graphs explained above. Wing finds

100

101

102

103

104

100 101 102

|V
'|

|U'|

Butterfly
densest
subgraph

(a) Wing

100

101

102

103

104

100 101 102

|V
'|

|U'|

(b) Tip

100

101

102

103

104

100 101 102

|V
'|

|U'|

(c) (2, 3) nucleus
Figure 7: Dense subgraphs for marvel network. Wing provides many sub-

graphs with ≥ 0.5 density. 57 of those have at least 5 vertices in each side and

11 have 10 vertices in each. No other algorithm can get such subgraphs.

100

101

102

103

100 101 102

|V
'|

|U'|

Butterfly
densest
subgraph

(a) Wing

100

101

102

103

100 101 102
|V
'|

|U'|
(b) Tip

100

101

102

103

100 101 102

|V
'|

|U'|
(c) (2, 3) nucleus

Figure 8: dbconf network. Most dense structures in (2, 3) nuclei and frac-

tional k -cores have only one vertex in either vertex set (the red dots along

x- and y- axes). Those subgraphs represent the collaborations of many au-

thors in a single paper. We observe that they are mostly papers on a software-

product authored by a large group in a company. In most cases those authors

do not have any other papers, which makes the subgraph less informative.

dense subgraphs with non-trivial sizes and also vying with the but-

terfly densest subgraph, Tip cannot perform as good as the Wing,

and other algorithms mainly result in dense regions with a single

vertex on either side, red dots along x- and y-axes. In (2, 3) nucleus

case, the red dots on the x-axis mostly correspond to the papers

about a software product of a company and authored by a large

group of researchers. In most cases those authors do not have any

other papers, thus no butterfly structures exist around them and

cannot be found by our Wing and Tip algorithms. One example

is the paper entitled “Comdb2: Bloomberg’s Highly Available Rela-

tional Database System” in ICDE’10 is written by a large group of

people in Bloomberg LP. On the other hand, in the Fractional

k-core case, there are also red dots appearing along the y-axis.

Those are the subgraphs with a single author and many papers.

However, they are isolated because the fractional k-core compu-

tation assigns a large weight to this vertex and there is no other

vertex around with a close weight. Divesh Srivastava
2
is one such

prolific researcher appearing on the y-axis with 144 papers. But,

there is no other dense subgraph in fractional k-cores that contains
him, showing the weakness of the projection-based approach. Note
that, none of those trivial subgraphs are reported by the Tip
or Wing algorithms, since no butterflies exist. We also identi-

fied some structures that can be only identified by the Tip and/or
Wing algorithms.

Philip Yu and IBM Research: We also checked the densest

subgraphs that contain a prolific researcher who is expected to

participate in multiple structures. We choose Philip Yu
3
for this

purpose. Tracing the hierarchical relations from his subgraph(s)

in the Tip and Wing results gives interesting information about

the Streams group at IBM Research, denoted in Fig. 9. The bottom

branch in the figure can be identified by both Tip andWingwhereas

all other projection-based methods fail. The densest subgraph on

2
http://dblp.uni-trier.de/pers/hd/s/Srivastava:Divesh

3
https://www.cs.uic.edu/PSYu

Table 3: Runtimes of all the algorithms in seconds. Wing is orders of mag-

nitude faster than the (2, 3) nucleus due to the increase in the number of

triangles in the projection. Core and Fractional core are pretty fast, but

not effective to report dense structures.

bipartite unipartite (projection) densest [31]

(in sec.) Tip Wing Core Fr. Core (2, 3) nuc. enum max flow

github 4.09 35.27 0.43 0.68 121,643 13.89 985

IMDb 11.97 72.42 3.35 3.74 8,831 21.78 668

DBLP 25.63 11.04 5.85 10.30 9,378 3.96 206

d-label 1,328 3,789 > 36hrs > 36hrs > 36hrs 1,266 1,146

d-style 22,488 25,758 > 36hrs > 36hrs > 36hrs 7,264 833

wiki-it 63,187 97,052 > 36hrs > 36hrs > 36hrs 23,564 859

kindle 7.19 33.09 1.80 2.02 29,057 10.06 165

K.#L.#Wu
Philip&Yu+B.Gedik+M.Chen+Ling#Liu+H.#Andr.+G.JSilva

C.#Aggar.
Philip&Yu

+#J.#Wolf
+#D.#Dias

+#A.#Dan
+#D.Corn.+Y.#Zhao

IBM
Streams
Group

Figure 9: The subgraphs reported byWing in the dbconf network that con-

tains Philip Yu. Densities are color coded. Two chains show the collaborations

in the IBM Research’s Streams group, where the parent subgraph (left-most)

contains 76 researchers that contains staff members and intern students.

the right-most is a biclique, including Kun-Lung Wu, manager at

IBM Research, and P. Yu, who used to work in the same group,

and 13 papers they co-authored. They are contained in another

subgraph which has 0.82 density and includes Buğra Gedik (ex-

staff member) in addition to K. L. Wu and P. Yu. Looking at another

parent subgraph in the chain, we find Ling Liu (B. Gedik’s Ph.D.

advisor) joins B. Gedik, K. L. Wu and P. Yu. The further parent

subgraphs in the chain reveals other researchers, H. Andrade and

G. Jacques-Silva, who used to work in the same group. Wing also

reports another branch that contains P. Yu. There is a biclique of

Charu Aggarwal (staff member), P. Yu and their 14 papers. Its parent

subgraph has two more authors, Joel Wolf and Daniel Dias (staff

members), and the further parent subgraphs in the chain include

other people at the same institution. This chain and the other chain

described above merges in a subgraph that has 76 authors, who are

the researchers and ex-interns in the Streams group.
4

One weakness observed in the Tip and Wing is that they
tend to identify pairs of authors first, and then enlarge those
pairs to larger subgraphs. This results in long chains in the hi-

erarchy which needs further filtering to extract large and dense

structures. Main reason for this behavior is the quadratic increase

in the number butterflies for author pairs with common papers, i.e.,

n common neighbors gives

(n
2

)
butterflies.

6.4 Runtime performances

Lastly we check the runtimes. Table 3 presents the results. As

pointed in Sec. 5, Wing does more work than Tip and it is also

verified by the experiments; Tip can be up to 6 times faster. (2, 3)

nucleus gives the most significant subgraphs among the projection

based algorithms, however it hasO(|△|) complexity on the projected

graph and suffers from the explosion in the number of triangles.

Note that, a k-clique is created for each secondary vertex with

degree k , and the number of triangles increases cubically, for in-

stance d-style network has less than 2M vertices and around 5.5M

edges, but its projection has more than 699 quadrillion triangles,

which is impossible to process in a reasonable time. Thus, Wing

is orders of magnitude faster than the (2, 3) nucleus. Regarding

the densest butterfly subgraph [31] runtimes, we run [31] without

sampling for all the graphs, except d-label, d-style, and wiki-it,
and show the runtimes for butterfly enumeration and maximum

flow computation phases. Runtimes are mostly dominated by the

maximum flow computation and significantly larger than the Wing

runtimes. For d-label, d-style, and wiki-it graphs, the ones

with the most butterflies, we set the sampling probabilities such

that the maximum flow operation is run on 50M butterflies (shown

in red in Table 3). We observe that the butterfly enumeration, which

does not depend on the sampling, takes the most time and it can be

4
All the information is obtained from the websites of the aforementioned people.

up to 33% of the total Wing time. For the wiki-it graph, it takes
more than 24K seconds to report a single densest butterfly subgraph

while 97K seconds is enough for the Wing to find many in a large

spectrum.

7 DISCUSSION

Our algorithms for bipartite networks can find many dense sub-

structureswith the hierarchical relations. Butterfly based definitions

enable us to extract the meaningful regions in the graph and the

use cases in Sec. 6.3 and 6.2 also verify this. One weakness that

we observed is that, number of butterflies per vertex or edge can

quadratically increase when there is a large biclique. This results in

dense but smaller subgraphs focusing around a few vertices. Han-

dling those regions is an interesting direction. Another promising

direction is to find efficient heuristics to count and enumerate the

butterflies and other small bicliques. There is a huge body of work

on triangle counting and enumeration, but studies are immature

for the bipartite structures. Indeed, butterflies can easily reach to

billions in a bipartite graph with a few million edges, whereas that

many triangles in unipartite networks can be observed for hundreds

of millions of edges.

Acknowledgements: Sandia National Laboratories is a multimission laboratory man-

aged and operated by National Technology and Engineering Solutions of Sandia, LLC.,

a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

This research used resources of the National Energy Research Scientific Computing

Center, a DOE Office of Science User Facility supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] 2016. IMDb. (2016). (www.imdb.com/interfaces).
[2] 2017. Konect network dataset. (2017). (http://www.discogs.com/).
[3] S. Aksoy, T. G. Kolda, and A. Pinar. 2017. Measuring and Modeling Bipartite

Graphs with Community Structure. Journal of Complex Networks 5, 4 (2017),

581–603.

[4] R. Alberich, J. Miro-Julia, and F Rosselló. 2002. Marvel Universe looks almost

like a real social network. CoRR abs/cond-mat/0202174 (2002).

[5] Vladimir Batagelj and Matjaz Zaversnik. 2002. Generalized Cores. CoRR

cs.DS/0202039 (2002).

[6] V. Batagelj and M. Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition

of Networks. CoRR cs/0310049 (2003).

[7] A. R. Benson, D. F. Gleich, and J. Leskovec. 2016. Higher-order organization of

complex networks. Science 353, 6295 (2016), 163–166.

[8] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. 2013. CopyCatch:

Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks. In

Proceedings of the 22nd International Conference on World Wide Web (WWW ’13).

119–130.

[9] S. P. Borgatti and M. G. Everett. 1997. Network analysis of 2-mode data. Social

Networks 19, 3 (1997), 243 – 269.

[10] Ü. V. Çatalyürek and C. Aykanat. 1999. Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication. IEEE Transactions on

Parallel and Distributed Systems 10, 7 (1999), 673–693.

[11] M. Cerinsek and V. Batagelj. 2015. Generalized two-mode cores. Social Networks

42 (2015), 80 – 87.

[12] S. Chacon. 2009. The 2009 GitHub Contest. (2009).

(github.com/blog/466-the-2009-github-contest).
[13] J. Chen and Y. Saad. 2012. Dense Subgraph Extraction with Application to

Community Detection. IEEE Transactions on Knowledge & Data Engineering 24, 7

(2012), 1216–1230.

[14] A. Clauset, E. Tucker, and M. Sainz. 2016. The Colorado Index of Complex

Networks. (2016). (icon.colorado.edu).
[15] J. Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis. National

Security Agency Technical Report (2008).

[16] I.S. Dhillon. 2001. Co-clustering Documents and Words Using Bipartite Spectral

Graph Partitioning. In Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’01). 269–274.

[17] M.G. Everett and S.P. Borgatti. 2013. The dual-projection approach for two-mode

networks. Social Networks 35, 2 (2013), 204 – 210.

[18] D. C. Fain and J. O. Pedersen. 2006. Sponsored search: A brief history. Bulletin of

the American Society for Information Science and Technology 32, 2 (2006), 12–13.

[19] G. Fei, A.Mukherjee, B. Liu, M. Hsu,M. Castellanos, and RGhosh. 2013. Exploiting

Burstiness in Reviews for Review Spammer Detection. In ICWSM. The AAAI

Press.

[20] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. 2011. Evaluating Cooperation

in Communities with the k -Core Structure. In ASONAM. 87–93.

[21] D. Gibson, R. Kumar, and A. Tomkins. 2005. Discovering Large Dense Subgraphs

in Massive Graphs. In VLDB. 721–732.

[22] E. Gregori, L. Lenzini, and C. Orsini. 2011. k-dense communities in the internet

AS-level topology. In International Conf. on Communication Systems and Networks

(COMSNETS). 1–10.

[23] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. 2014. Querying K-truss Com-

munity in Large and Dynamic Graphs. In Proc. of the ACM SIGMOD International

Conf. on Management of Data. 1311–1322.

[24] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. 1999. Trawling the Web

for Emerging Cyber-communities. In WWW. 1481–1493.

[25] Jerome Kunegis. 2017. Konect network dataset. (2017).

(http://konect.uni-koblenz.de).
[26] M. Latapy, C. Magnien, and N. Del Vecchio. 2008. Basic notions for the analysis

of large two-mode networks. Social Networks 30, 1 (2008), 31 – 48.

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. (June 2014). (snap.stanford.edu/data).
[28] Michael Ley. 2016. DBLP computer science bibliography. (Sept. 2016).

(dblp.uni-trier.de).
[29] Y. Li, T. Kuboyama, and H. Sakamoto. 2013. Truss Decomposition for Extract-

ing Communities in Bipartite Graph. In IMMM 2013 : The Third International

Conference on Advances in Information Mining and Management.

[30] D. Matula and L. Beck. 1983. Smallest-last ordering and clustering and graph

coloring algorithms. Journal of ACM 30, 3 (1983), 417–427.

[31] M.Mitzenmacher, J. Pachocki, R. Peng, C. Tsourakakis, and S. C. Xu. 2015. Scalable

Large Near-Clique Detection in Large-Scale Networks via Sampling. In Proceed-

ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD ’15). 815–824.

[32] A. P. Mukherjee and S. Tirthapura. 2014. Enumerating Maximal Bicliques from

a Large Graph Using MapReduce. In Proceedings of the 2014 IEEE International

Congress on Big Data (BIGDATACONGRESS ’14). 707–716.

[33] M. E. J. Newman. 2001. Scientific collaboration networks. I. Network construction

and fundamental results. Phys. Rev. E 64 (2001), 016131. Issue 1.

[34] M. E. J. Newman. 2001. Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality. Phys. Rev. E 64 (2001), 016132. Issue 1.

[35] M. E. J. Newman. 2001. The structure of scientific collaboration networks. Pro-

ceedings of the National Academy of Sciences 98, 2 (2001), 404–409.

[36] T. Opsahl. 2013. Triadic closure in two-mode networks: Redefining the global

and local clustering coefficients. Social Networks 35, 2 (2013), 159 – 167.

[37] G. Robins and M. Alexander. 2004. Small Worlds Among Interlocking Direc-

tors: Network Structure and Distance in Bipartite Graphs. Computational &

Mathematical Organization Theory 10, 1 (2004), 69–94.

[38] K. Saito and T. Yamada. 2006. Extracting Communities from Complex Networks

by the k-dense Method. In IEEE International Conf. on Data Mining Workshops,

ICDMW. 300–304.

[39] A. E. Sarıyüce and A. Pinar. 2016. Fast Hierarchy Construction for Dense Sub-

graphs. Proc. VLDB Endow. 10, 3 (Nov. 2016), 97–108.

[40] A. E. Sarıyüce and A. Pinar. 2017. Peeling Bipartite Networks for Dense Subgraph

Discovery. CoRR 1611.02756 (2017). (Extended version).

[41] A. E. Sarıyüce, C. Seshadhri, A. Pınar, and Ü. V. Çatalyürek. 2015. Finding the

Hierarchy of Dense Subgraphs Using Nucleus Decompositions. In Proc. of the

International Conf. on World Wide Web (WWW). 927–937.

[42] S. B. Seidman. 1983. Network structure and minimum degree. Social Networks 5,

3 (1983), 269–287.

[43] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. 2009. Mining maximal quasi-bicliques:

Novel algorithm and applications in the stock market and protein networks.

Statistical Analysis and Data Mining 2, 4 (2009), 255–273.

[44] C. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In Proc. of the

24th International Conf. on World Wide Web (WWW ’15). 1122–1132.

[45] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher. 2017. Scalable Motif-aware

Graph Clustering. In Proceedings of the 26th International Conference on World

Wide Web (WWW ’17). 1451–1460.

[46] A. Verma and S. Butenko. 2012. Network clustering via clique relaxations: A com-

munity based approach. In Graph Partitioning and Clustering, DIMACS Workshop.

129–140.

[47] M. M. Wolf, A. M. Klinvex, and D. M. Dunlavy. 2016. Advantages to Modeling

Relational Data using Hypergraphs versus Graphs. In IEEE High Performance

Extreme Computing Conference, HPEC.

[48] Y. Zhang and S. Parthasarathy. 2012. Extracting Analyzing and Visualizing

Triangle K-Core Motifs Within Networks. In Proc. of the IEEE International Conf.

on Data Engineering (ICDE). 1049–1060.

	Abstract
	1 Introduction
	1.1 Problem and Challenges
	1.2 Contributions

	2 Background
	3 Related Work
	4 Dense bipartite subgraphs
	4.1 Tip decomposition: the Definition
	4.2 Wing decomposition: the Definition

	5 Peeling Butterflies
	5.1 Tip decomposition: the Algorithm
	5.2 Wing decomposition: the Algorithm

	6 Experiments
	6.1 Dense subgraph profiles
	6.2 Books in Amazon Kindle ratings
	6.3 Authors in the top database conferences
	6.4 Runtime performances

	7 Discussion
	References

