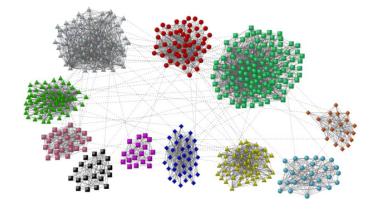
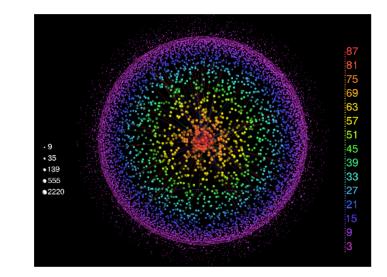
Motif-driven Dense Subgraph Discovery in Directed and Labeled Networks

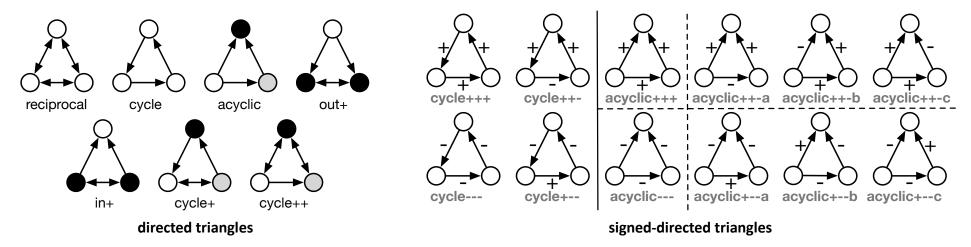
A. Erdem Sarıyüce


Assistant Professor



University at Buffalo The State University of New York

Dense subgraph discovery

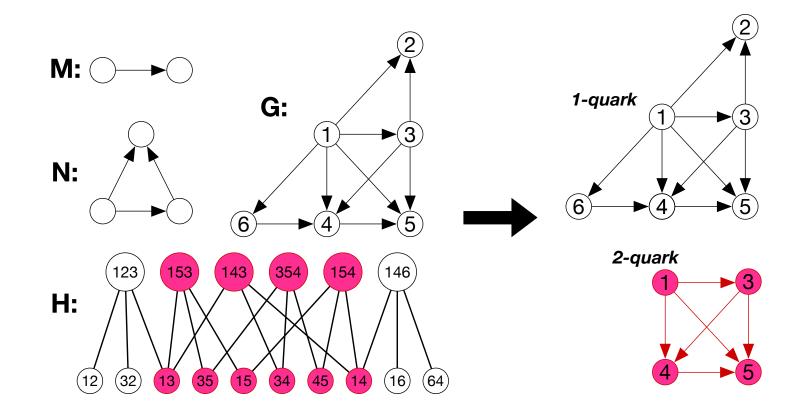

- Dense regions are unusual and interesting
 - Anomaly detection, community detection, visualization
- A good proxy for graph clustering
 - Exhibit good cuts [Gleich and C. Seshadhri, 2012]
- Literature is rich for simple, undirected networks
- What about heterogeneous networks?
 - Directed edges
 - Labeled nodes/edges
 - Categorical
 - Numerical
 - How to even define the density?

Motifs for help

- Fundamental building blocks in the organization and dynamics of real-world networks
- Captures higher-order relationships among multiple nodes
- Density is the avg. motif degree
 - Number-of-motifs / number-of-nodes

- Extendible for heterogeneous networks
 - Pros: Customizable; dense subgraphs w.r.t. motif of interest
 - Cons: Spectrum is wide; hard to unify all in a framework

Idea: Participations of small motifs in larger motifs

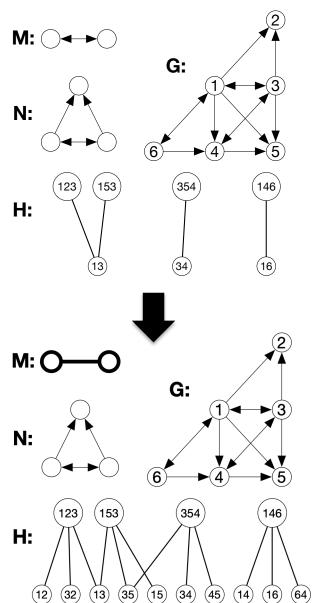

- Given a pair of motifs M and N s.t. $M \subset N$, find the subgraphs where each M participates in many Ns
 - Inspired by core and truss decompositions
- *M* and *N* can have directed edges and categorical labels on nodes/edges
 No numerical labels future work
- Motif hypergraph:
 - Ms are the nodes
 - Ns are the hyperedges
 - An *M* is connected to an *N* iff $M \subset N$
- Motif of interest is **N**

Quark decomposition

- Given a graph G and motifs M, N $(M \subset N)$, let H be motif hypergraph,
 - A k -quark is a connected and maximal sub-hypergraph where each M instance participates in at least k number of N instances.
 - Quark number of an *M* is the largest value of *k* s.t. *M* belongs to a *k*-quark.

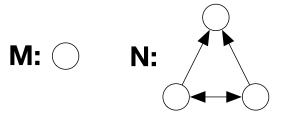
Quark decomposition

- Given a graph G and motifs M, N $(M \subset N)$, let H be motif hypergraph,
 - A k -quark is a connected and maximal sub-hypergraph where each M instance participates in at least k number of N instances.
 - Quark number of an *M* is the largest value of *k* s.t. *M* belongs to a *k*-quark.



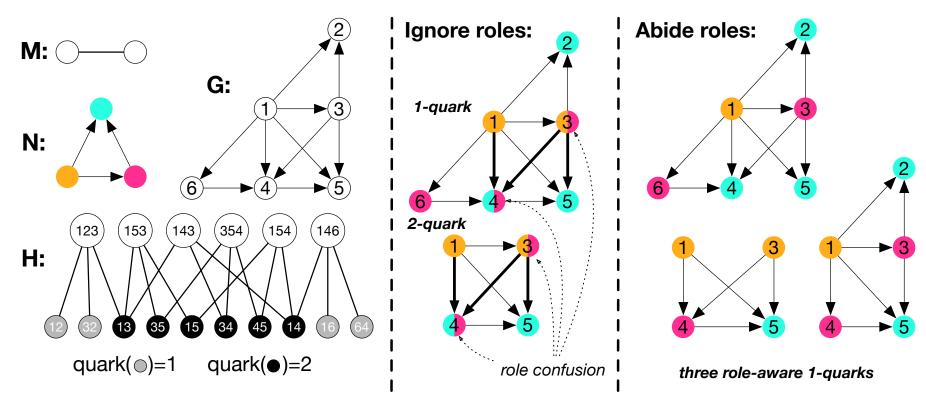
Limitations and practical instantiations

- What if there is only one **M** in **N**?
 - Size of each N in the motif hypergraph becomes one!
 - How to avoid?


- Consider **M** as vanilla
 - Labelless nodes/edges, directionless edges

- **M** is better to be an edge (or larger)
 - Overlapping subgraphs!

Role confusion problem


- What if **M** has different "roles" in **N**s it's part of?
 - Orbits! [Pržulj, 2007]

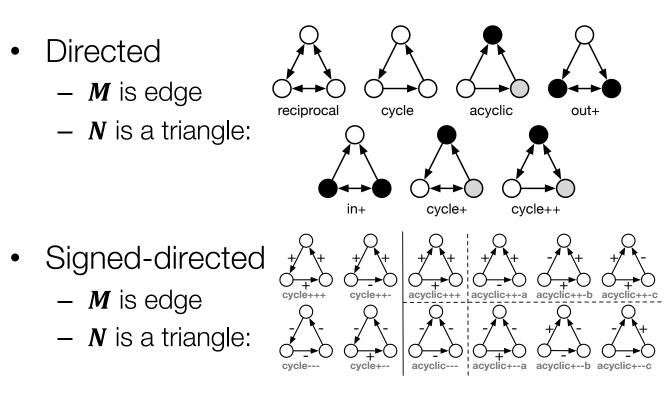
- How to distinguish the participations where **M** is in different orbits?
 - Orbit degrees: Number of Ns that contain M s.t. M is in a specific orbit

- Role-aware k-quark: M's orbit is the same in all the participations.
 - I.e., orbit degree of each **M** is at least **k**

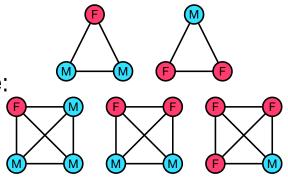
Role confusion problem

- Role-aware k-quark: M's orbit is the same in all the participations.
 - I.e., orbit degree of each M is at least k

Peeling algorithm works for quark decomposition!


- Both quark and role-aware quark decompositions
- Subgraph and hierarchy construction included
- When *M* is a node or edge, time complexity is

$$O(\sum_{\upsilon \in V} d(\upsilon)^{|V_N|-1})$$



- Existing optimizations for peeling algorithms are applicable
 - Constructing subgraphs during the peeling
 - Parallel, local computations

Experimental evaluation on heterogeneous networks

- Node-labeled (genders)
 - M is edge or triangle
 - N is triangle or four-clique:

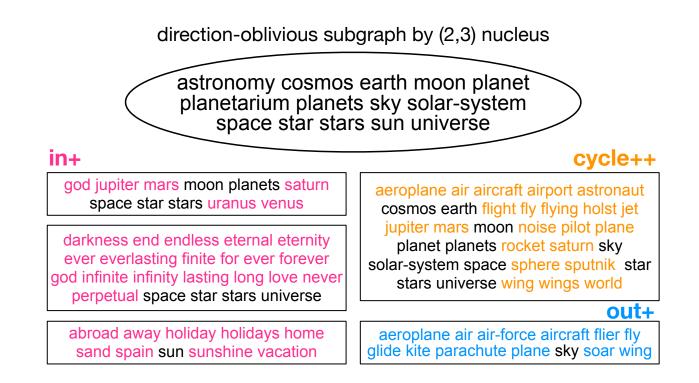
- Baselines:
 - Motif clustering
 - [Benson et al., 2016]
 - Cycle-truss and flow-truss
 - [Takaguchi and Yoshida, 2016]
 - Nucleus decomposition
 - [Sariyuce et al., 2015]

- Metrics
 - Motif conductance
 - Avg. motif degree
 - Edge density
 - For node-labeled

Quark decomposition vs. Motif clustering

- Motif clustering optimizes motif conductance, thus better
- Quark decomposition gives higher avg. motif degrees
- Motif clusters are big due to partitioning, quarks are smaller thanks to bottom-up dec.

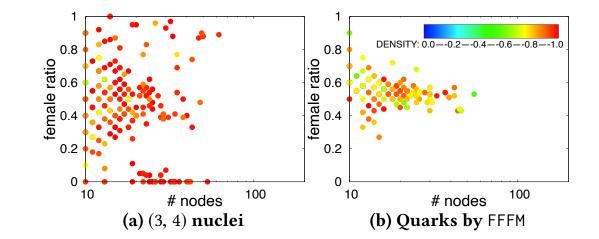
Food-web analysis


- Analysis with out+
- Quarks give consistently better classifications than motif clustering

out+		Quarks	MC-k-means	MC-k-means		
	- Metric	(7 subgraphs)	w/ 4 clusters	w/ 7 clusters		
Class 1	ARI	0.3627	0.3005	0.1485		
	F1	0.4869	0.4574	0.3794		
	NMI	0.5415	0.5040	0.4843		
	Purity	0.5968	0.5645	0.5161		
	ARI	0.3816	0.3265	0.1871		
Class 2	F1	0.5675	0.5380	0.4601		
	NMI	0.5206	0.4822	0.4309		
	Purity	0.6452	0.6129	0.5645		

- Role-aware quark numbers find the preys, predators, and balancers with acyclic \bigwedge
 - Predators: Birds (ducks, herons, greeb)
 - Preys: Clown goby, herbivorous shrimps, zooplankton
 - Balancer: Fishes (anchovy, sardines, mojarra)

Word-associations


- Diverse subgraphs obtained with different motifs
 - Not possible when directions ignored

Finding gender-balanced subgraphs

- Facebook100 dataset with genders as node-labels
- How to find gender-balanced dense subgraphs even when the graph is imbalanced?
 - Compared to label-oblivious nucleus dec.
- *M* is edge, *N* is triangle
- *M* is triangle, *N* is four-clique

		V E	$\frac{ V_f }{ V }$	edge, triangle			triangle, 4-clique				
	V			(2,3)n	Quarks		(3.1)n	Quarks			
					FMM	FFM	(3,4)n	FMMM	FFMM	FFFM	
Mich67	3.7K	81.9K	25%	23.0%	45.0%	50.0%	24.5%	40.0%	45.0%	51.6%	
Caltech36	769	16.7K	30%	39.4%	46.0%	52.0%	38.5%	43.1%	50.2%	52.8%	
Carnegie49	6.6K	250.0K	37%	32.6%	49.0%	52.5%	38.5%	43.5%	49.5%	54.9%	
MIT8	6.4K	251.3K	37%	38.8%	48.0%	52.1%	42.0%	44.3%	50.3%	53.9%	
Stanford3	11.6K	568.3K	40%	46.8%	48.1%	49.0%	44.1%	45.4%	49.2%	55.4%	
Cornell5	18.7K	790.8K	44%	44.3%	47.6%	51.8%	45.6%	43.7%	48.7%	54.9%	
Penn94	41.6K	1.4M	44%	49.7%	48.4%	51.4%	52.1%	44.0%	49.8%	55.8%	
UPenn7	14.9K	686.5K	44%	37.3%	48.8%	51.1%	46.4%	45.1%	50.4%	55.4%	
Average of 18 networks: 4			40%	42.5%	48.2%	51.5%	44.1%	44.4%	49.7%	54.7%	

Density vs. female ratio for UPenn7

Female ratios

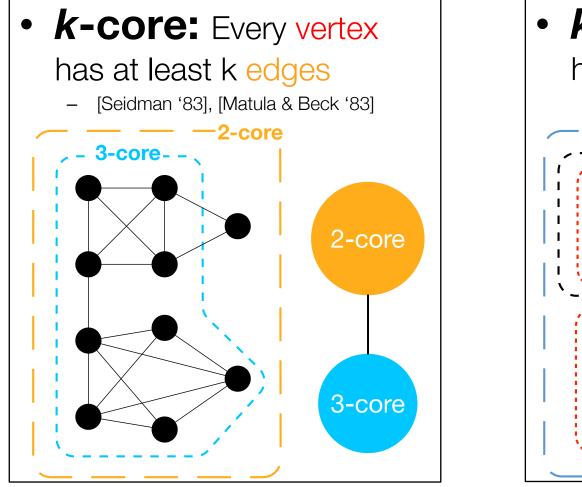
Conclusion & Future Work

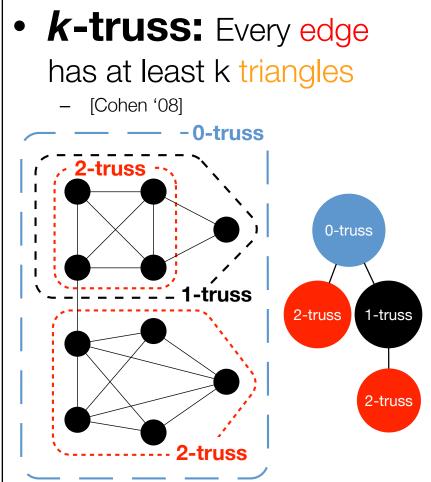
- Principled approach for motif-driven dense subgraph discovery in directed and categorical-labeled networks
 - Successfully regularizes the motif degrees to quark numbers
- Role-aware variant considers the orbits and quantifies the roles systematically
- Versatile, efficient, and extendible
 - Code is available with detailed instructions for reproducibility!

- Hierarchy structure had limited success
 - Further analysis of hierarchy w.r.t a given motif
- Extension for networks with numerical node/edge labels
 - While incorporating the ordering

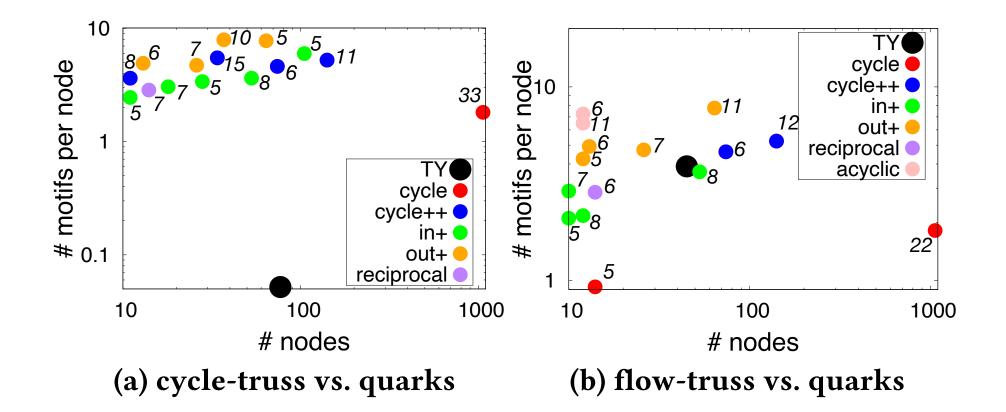
Paper, slides, talk, code: <u>http://sariyuce.com/WWW21</u>

Questions: erdem@buffalo.edu





How to model dense subgraphs?


- Two effective models for simple, undirected networks
 - With hierarchical relations

Quarks vs. Cycle- & Flow-truss

- Higher avg. motif degrees with quarks
- Almost all the nodes in cycle- & flow-trusses are found, in various types
 - Considering each bidirectional edge atomically (instead of two unidirectional edges) highlights the diversity

Runtime comparison with motif clustering

- Motif clustering with a single optimal cluster
 - Quark decomposition finds all the *k*-quarks
- Quark decomposition is mostly faster, for all motifs; up to 10x speedups
- Motif clustering is mostly faster for en-Wikipedia and wiki-Talk
 - Spectral clustering is heavy, cost increases when multiple clusters found

	cycle		acyclic		out+		in+		cycle+		cycle++	
	Q	Μ	Q	М	Q	Μ	Q	Μ	Q	Μ	Q	M
web-ND	0.34	3.31	4.26	16.8	0.62	6.3	2.11	8.54	0.53	10.01	0.78	9.86
amzn	0.74	3.54	3.29 ₁	79	2.25	132	1.92	105	1.18	5.29	3.23	107
wiki	28.9	14.0	112	18.2	10.9	16.4	21.1	17.7	20.5	20.2	47.8	16.8
soc-p	23.6	79	66.9	99	37.0	119	34.2	139	48.9	129	98.1	128
live-j	37.4	200	180	943	118	1135	126	1438	112	828	289	2248
en-w	900	501	7746	864	1511	799	1709	677	398	724	2223	677