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Dense subgraph discovery
• Dense regions are unusual and interesting

– Anomaly detection, community detection, visualization

• A good proxy for graph clustering
– Exhibit good cuts [Gleich and C. Seshadhri, 2012]

• Literature is rich for simple, undirected networks

• What about heterogeneous networks?
– Directed edges
– Labeled nodes/edges

• Categorical
• Numerical

– How to even define the density?
2



Motifs for help
• Fundamental building blocks in the organization and dynamics of real-world networks

• Captures higher-order relationships among multiple nodes

• Density is the avg. motif degree
• Number-of-motifs / number-of-nodes

• Extendible for heterogeneous networks
• Pros: Customizable; dense subgraphs w.r.t. motif of interest

• Cons: Spectrum is wide; hard to unify all in a framework
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Figure 1: Directed trianglemotifs with three nodes and three edges,
as named in [53]. Automorphism orbit (or just orbit) of a node in a
given motif is the set of other nodes that have the same topological
connectivity patterns. In each triangle, orbits of the nodes are de-
noted with colors (i.e., nodes in the same color have the same orbit).

k-means clustering on the motif adjacency matrix obtains a pre-
speci�ed number of clusters. Concurrently, Tsourakakis et al. [61]
proposed the same framework for motif-aware clustering and also
introduced a random walk interpretation of the graph reweighting
scheme which gives a principled approach to de�ne the notion of
conductance for other motifs. More recently, Li et al. improved the
motif-based clustering approach to handle the clustering of discon-
nected nodes [36]. Our framework di�ers from those approaches:
we do not partition the graph but �nd dense subgraphs around
nodes/edges. We give an extensive comparison against the motif
clustering [8] in our experiments.

3 PRELIMINARIES
Motifs and hypergraphs. We de�ne motif M = (VM ,EM ) as an
induced directed subgraph with node and edge sets VM , EM . Each
� 2 VM and e 2 EM can have categorical (non-numeric) attributes,
de�ned by f : VM ,EM ! N . A motifM is a subset of motif N i�
• VM ✓ VN where there is one and only one � 0 2 VN for each
� 2 VM such that f (�) = f (� 0).
• EM ✓ EN where there is one and only one e 0 2 EN for each
e 2 EM such that f (e) = f (e 0).
We use the language of hypergraphs to de�ne the involvements of
small motifs in the larger motifs. A hypergraph H = (V ,E) consists
of the node set V and hyperedge set E, where a hyperedge e 2 E is
simply a subset of V (in standard graphs, each hyperedge has two
nodes). Consider a hypergraph H = (V ,E);
• u,� 2 V are neighbors if there is a hyperedge e 2 E that contains
u and � .
• The degree of a node � 2 V , denoted by d(�), is the number of
hyperedges that contain � .
• The size of a hyperedge e 2 E, denoted by s(e), is the number of
nodes in it.
• Two nodes u and � are connected if there exists a sequence of
hyperedges e1, e2, . . . , e` 2 E such that u 2 e1, � 2 e` , and 8i < `,
ei \ ei+1 , ;.
• H is connected if all pairs of nodes are connected.

D��������� 1. Let S ✓ V . The induced hypergraph H |S has
node set S and contains every hyperedge of H completely contained
in S , i.e., 8e 2 H |S , i� � 2 e then � 2 S .
• The degree of node� 2H |S is denoted by dS (�) (or d(�) when clear).
• The minimum degree in H |S is denoted by �S .

Induced hypergraph is also known as section hypergraph.
Dense subgraphs.We call a subgraph dense if it has many motifs
(also calledmotif-based or -driven dense subgraph). Formally,
we use averagemotif degree to quantify the density of a subgraph
with respect to a given motif.

D��������� 2. For a subgraph S and a motif N , the average
motif degree of S is the number of instances of N in S divided by
the number of nodes in S .

4 QUARK DECOMPOSITION FRAMEWORK
We �rst de�ne themotif hypergraph.

D��������� 3. Given a graph G and template motifs M and N
s.t.M ⇢ N . Let {M} and {N } be the set of instances ofM and N in
G, respectively, and f ,� be bijective functions.Motif hypergraph
HG (M,N ) = (VG ,EG ) is a hypergraph constructed as follows:
• Each instance ofM 2 G forms a node u 2 VG by f :{M} ! VG .
• Each instance of N 2 G forms a hyperedge e 2 EG by�:{N } ! EG .
• I�M ⇢ N in G, then f (M) 2 �(N ) in HG .

Note that HG (M,N ) is a t-uniform hypergraph (i.e., s(e) = t 8e 2
EG ) where t is the number of occurrences ofM in N . We also refer
to the degree of each node u 2 HG as the motif degree, denoted
by dHG (u) (or d(u) when HG is obvious).
We now introduce the notion of k-quark subgraph.

D��������� 4. Given a graph G and template motifsM , N such
thatM ⇢ N , sayHG (M,N ) is the motif hypergraph de�ned as above.
• For any k 2 N, a k -quark of HG (M,N ) is a connected and maxi-
mal induced sub-hypergraph H |S such that �S � k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
inG), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

D��������� 5. k-quarks form a hierarchy by containment.
• Let S be a k-quark andT be a k 0-quark such that k 0 < k and S ⇢ T .
S is the child of T (and T is the parent of S) if there is no k̄-quark
U such that k 0 < k̄ < k and S ⇢ U ⇢ T .
• A k-quark is leaf (childless) if there is no k+-quark in it s.t. k+ > k .
• Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
• Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of �nding the quark numbers
and k-quarks for a given pair of motifs M,N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded
by less dense quarks (with lower k values) and hence often contain
the most interesting information.

IfG is a simple undirected graph whereM is r -clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r , s) nucleus [50, 51].
If G is a simple undirected bipartite graph whereM is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the
quark decomposition, each M instance is given a quark number
and the k-quarks along with the hierarchical relationships among
them can be constructed accordingly. Note that, N is the motif
of interest for which dense regions are to be found. Motif M
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Figure 6: Signed directed triangle motifs.

and reddit-title consider the positive and negative interactions
among users who belong to di�erent subreddits [31]. We considered
the last interactions in the datasets. We also consider epinions, a
who-trust-whom social network [21], and slashdotwhich contains
the self-tagged friend/foe relationships [32]. All are obtained from
SNAP [34]. Table 4 gives the number of positive and negative edges,
motif counts, and maximum quark numbers.
Motifs.We use edge and triangle motifs, corresponding to theM
and N in De�nition 4, respectively. This also ensures that quarks
can overlap with each other. There is no bidirectional edge and there
are twelve possible triangle motifs in total, as shown in Figure 6;
four cyclemotifs since there is a single orbit and eight acyclicmotifs
where each ++- and +-- appears in three di�erent ways.We use the
vanilla edge asM and each of the twelve triangles (Figure 6) as N .

5.2.1 Motif counts and quark numbers. Acyclic variants are
signi�cantly more common than the cycles in all networks. Among
the cycle variants, +++ is the most prevalent in reddit networks
and --- is the least common in all. This is also coherent with the
structural balance theory [14], which states that the triangles with
an odd number of negative links are rare. However, cycle++- is
more common than the other cycles in the epinions network. This
might be due to hierarchical status among the nodes; the lower
status nodes are likely to trust the ones with higher status but the
reverse is not true. The ratio of balanced triangles is 0.8 for reddit
networks but 0.42 for epinions. Per the maximum quark numbers,
we observe a correlation with the motif counts. Among all, only
acyclic+++ yields non-trivial subgraphs with large quark numbers.
Cycle variants fail to give signi�cant quarks.

5.2.2 Comparison withMC. We compare the k-quarks with the
MC�S����� andMC�R���B�������� for acyclic+++motif in Figure 7.
Some quarks are able to obtain very low conductance scores, close
toMC results. For the average motif degrees, quarks signi�cantly

 1

 10

 100

 10  100

# 
m

ot
ifs

 p
er

 n
od

e

# nodes
(a) Average motif degree

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100

m
ot

if 
co

nd
uc

ta
nc

e

# nodes

MC-REC-BI
MC-SINGLE

Quarks

(b) Motif conductance
Figure 7: Comparison of quarks and MC [8] for acyclic+++ in
reddit-body networkwith respect to the number ofmotifs per node
(left, higher is better) and motif conductance (right, lower is better).
Subgraphs with at least 10 nodes are shown. Each subgraph is de-
noted by a point; size is on the x-axis and metric is on the y-axis.

Table 4: Signed datasets. |V |, |E |, |E+ |, and |E� | are the number
of nodes, edges, positive, and negative edges. Motif counts (see Fig-
ure 6) and correspondingmaximumquark numbers are also shown.

red-body red-title epinions slashdot
|V | 34.7K 52.9K 125.8K 74.3K
|E | 110.8K 205.5K 581.6K 420.5K
|E+ | 102.5K 188.7K 465.4K 311.3K
|E� | 8.3K 16.8K 116.3K 109.2K

+ + + 4.9K 7.8K 14.1K 1.2K
+ + � 1.3K 1.9K 34.2K 1.3K

cycle + � � 166 233 10.9K 702
� � � 9 13 745 86
+ + + 145.7K 592.9K 1.1M 125.0K

motif + + �a 20.0K 88.8K 37.1K 15.3K
counts + + �b 22.1K 88.8K 14.1K 9.0K

acylic + + �c 18.0K 59.3K 115.0K 15.7K
+ � �a 3.4K 10.8K 88.5K 11.8K
+ � �b 3.1K 10.8K 8.3K 7.8K
+ � �c 6.2K 26.6K 92.1K 30.4K
� � � 1.1K 3.5K 39.7K 9.0K

max. cycle all 1 1-2 1-2 1
quark acyclic + + + 15 20 15 6

numbers others 2-3 2-4 2-5 2-5

outperform MC�R���B��������. In particular, one quark has 284
nodes with average motif degree of 185.2.

One of the quarks by acyclic+++ has 21 subreddits about rap-
pers/singers, such as kanye and kendricklamar. The ones which
praised the others but have not received much praise (the white
node in acyclic in Figure 1) are boogalized, runthejewels, and char-
lieputh. The last two are a young rapper duo and a new Canadian
singer, respectively, with 6.6K and 279 members. On the other hand,
the subreddits that got praised by the others but have not recip-
rocated (the black node in acyclic) are theweeknd, frankocean, and
kidcudi. Those are experienced ones (active since 2010, 2005, and
2003) with tens of thousands of members in their subreddits.

5.3 Node-labeled networks
Datasets. Here we consider node-labeled undirected networks. We
use the Facebok100 dataset that contains the complete Facebook
networks of 100 American colleges from a single-day snapshot in
September 2005 [59]. Each node has multiple labels, here we only
consider the genders of the nodes (there are only two available
in the dataset; female and male) and use quark decomposition to
�nd subgraphs that have balanced gender ratios, i.e., close number
of females and males. Excluding the female-only institutions, the
overall average female ratio is %48.5 and there are 57 networks
with less than 50% female. We choose 18 networks with the lowest
female ratio (all have < 45%), Table 5 gives a partial list.
Motifs.We instantiate the quark decomposition in �veways, where
F/M denotes the female/male nodes: (1) M is vanilla edge and N
is triangle in the following two forms: FMM and FFM; and (2) M is
vanilla triangle, N is four-clique in the following three forms: FMMM,
FFMM, and FFFM. Also, there is no role confusion for any variant
since the graph is undirected and node labels ensure that an edge
cannot serve in di�erent roles in its triangles in (1) (likewise for
(2)).

5.3.1 Finding gender balanced subgraphs. Algorithmic fair-
ness is one of the most important problems in today’s automated

directed triangles signed-directed triangles



Idea: Participations of small motifs in larger motifs

• Given a pair of motifs ! and " s.t. ! ⊂ ", find the subgraphs where each !
participates in many "s
– Inspired by core and truss decompositions

• ! and " can have directed edges and categorical labels on nodes/edges
– No numerical labels – future work

• Motif hypergraph:
– !s are the nodes

– "s are the hyperedges

– An ! is connected to an " iff ! ⊂ "

• Motif of interest is "
4



Quark decomposition
• Given a graph ! and motifs ", $ (" ⊂ $), let ( be motif hypergraph,

– A ) -quark is a connected and maximal sub-hypergraph where each " instance participates in at 
least ) number of $ instances.

– Quark number of an " is the largest value of ) s.t. " belongs to a )-quark.

5



Quark decomposition
• Given a graph ! and motifs ", $ (" ⊂ $), let ( be motif hypergraph,

– A ) -quark is a connected and maximal sub-hypergraph where each " instance participates in at 
least ) number of $ instances.
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Limitations and practical instantiations
• What if there is only one ! in "?

– Size of each " in the motif hypergraph becomes one!
– How to avoid?

• Consider ! as vanilla
– Labelless nodes/edges, directionless edges

• ! is better to be an edge (or larger)
– Overlapping subgraphs!
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Role confusion problem
• What if ! has different “roles” in "s it’s part of?

– Orbits! [Pržulj, 2007]

• How to distinguish the participations where ! is in different orbits?
– Orbit degrees: Number of "s that contain ! s.t. ! is in a specific orbit

• Role-aware #-quark: !’s orbit is the same in all the participations.
– I.e., orbit degree of each ! is at least #

8
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Peeling algorithm works for quark decomposition!

• Both quark and role-aware quark decompositions

• Subgraph and hierarchy construction included

• When ! is a node or edge, time complexity is 

• Existing optimizations for peeling algorithms are applicable
– Constructing subgraphs during the peeling

– Parallel, local computations

10
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Algorithm 1:���� D������������ (G (V ,E), motif N )
1 Compute d (u) (motif deg.) 8 u 2 V // or d (e) 8 e 2 E
2 Mark every u (or e ) as unprocessed
3 for each unprocessed u (or e ) with minimum degree d do
4 K(u) d (u) // or K(e) d (e)
5 for each motif N s.t. u ⇢ N (or e ⇢ N ) do
6 if any node � 2 N is processed (or edge) then continue

// can also find subgraphs & hierarchy

7 for each node � (, u) ⇢ N (or edge f (, e)) do
8 if d (�) > d (u) (or d (f ) > d (e)) then
9 d (�) d (�) � 1 // or d(f ) d (f ) � 1
10 Mark u (or e ) as processed

// Optional post-processing to build the hierarchy

11 return array K(·)

� s.t. K(�) � K(u). This is enforced by the lines 8-9, where the
motif degree a neighbor node is decreased if it is larger than the
quark number assigned at that step. In other words, any neighbor
node with a smaller quark number does not contribute to the quark
number of the node of interest. If Algorithm 1 �nds K(u) = k for
a node u 2 V , then by De�nition 4, we need to show that (i) 9 a
k-quark G 0 3 u, (ii) ö a k+-quark G 0 3 u (k+ > k).
(i) Once K(u) = k is found in Algorithm 1, we stop and construct
an induced subgraph G 0 ⇢ G by traversal as follows. Initially, G 0
has only u. In each step, we visit a node � 2 V s.t. � co-participates
in some N instance with a node from G 0. If K(�) = k or if it is
unassigned but its current motif degree is equal to k , we add � to
G 0. We continue the traversal until no such node � can be found.
At the end, G 0 is a k-quark since (1) each node participates in � k
motifs, because the nodes are processed in the non-decreasing order
of their motif degrees, (2) all the nodes are connected to each other
with motifs due to the motif-based traversal, and (3)G 0 is maximal
since it is the largest subgraph that can be found by the traversal.
(ii) u cannot be in a k+-quark. Assume it is. Then it should take
part in at least k+ motifs and each motif contains a neighbor node
with motif degree of at least k+. But, this implies that K(u) = k+

(by De�nition 4), contradiction. ⇤

Time and space complexity.Algorithm 1 hasO(Õ� 2V d(�) |VN |�1)
complexity when M is node or edge (VN is the node set of N ).
The space complexity is O(|E |) when M is node/edge. Instead of
explicitly building the hypergraph of Ms and N s in G, we only
build the adjacency lists when required. Since N s are not stored,
space complexity is bounded by O(|E |). We �nd all motifs con-
taining the node/edge of interest only when that node/edge is
processed. Each node/edge is processed at most once. When M
is node, we can �nd all the N s containing a node by looking at
all (|VN | � 1)-tuples in each of the neighborhoods of the node.
This takes at most

Õ
� 2V d(�) |VN |�1. Likewise, whenM is edge, we

consider |VN |�2 tuples in each edge neighborhood and total time isÕ
e 2E

Õ
� 2e d(�) |VN |�2 =

Õ
� 2V

Õ
e 3� d(�) |VN |�2 =

Õ
� d(�) |VN |�1.

4.2.2 Role-aware quark decomposition. Algorithm 2 outlines
the role-aware quark decomposition; again, for simplicity, we as-
sume the motif M in De�nition 6 is node or edge (larger M can
be considered as well). The only di�erence with respect to Algo-
rithm 1 is the way we compute and keep the degrees and process
the node/edge in the inner loop. We �rst �nd the set of orbits, B,

Algorithm 2: R������������� D��. (G (V ,E), motif N )
1 Let B be the set of orbits that a node/edge has in N
2 Compute do (u) (orbit deg.) 8 orbits o=1, ..., |B |, 8 u 2V // or do (e)
3 Mark every tuple (u, o) as unprocessed for o=1, ..., |B | // or (e, o)
4 for each unprocessed (u, a) (or (e, a)) with min. orbit degree da do
5 Ka (u) da (u) // or Ka (e) da (e)
6 for each motif N s.t. u ⇢ N (or e ⇢ N ) do
7 Let � (, u) be a node in N , b be its orbit (or f (, e ) is an edge)
8 if any tuple (�, b) 2 N is processed (or (e, b)) then continue
9 for each node � (, u) ⇢ N (or edge f (, e)) do

10 Let b be the orbit of � (or f ) in N
11 if db (�) > da (u) (or db (f ) > da (e)) then
12 db (�) db (�) � 1 // or db (f ) db (f ) � 1
13 Mark (u, a) (or (e, a)) as processed
14 return arrays K1(·), ..., K|B | (·)

that a node/edge has in N (line 1). In line 2, we count the orbit
degrees for each node/edge and for all orbits 1, ..., |B |. Orbit degree
do of a node u (or edge e) is the number of N instances that contain
the node u (edge e) such that the orbit of u (e) is o (De�nition 6).
Each orbit degree of a node/edge is processed separately. We also
keep |B | arrays to keep track of the processed (u,o) (or (e,o)) tu-
ples (o is the orbit of node u, or edge e) (line 3). In lines 4-13, we
process all the orbit degrees in non-decreasing order. Role-aware
quark number is assigned for the chosen node/edge (line 5) and
we �nd the neighbors of the node/edge in each N to adjust their
orbit degrees (lines 6 to 12). At the end, we return role-aware quark
numbers for each node; Ki (·) for 1  i  |B |.

5 EXPERIMENTS
We evaluate our framework on three types of networks and motifs
therein; directed (Section 5.1), signed-directed (Section 5.2), and
node-labeled (Section 5.3) networks. We implement quark decom-
positions for various motifs in each type and evaluate the resulting
subgraphs. All experiments are performed on a Linux operating sys-
tem (v. 4.12.14-150.52) running on a machine with Intel(R) Xeon(R)
CPU E5-2698 v3 processor at 2.30GHz with 64 GB DDR3 1866 MHz
memory. Algorithms are implemented in C++ and compiled using
gcc 6.1.0 at the -O2 level.The code is available at http://sariyuce.
com/quark_decomposition.tar. For each network type, we dis-
cuss the set of motifs used and present the results. We compare
quark decomposition to the state-of-the-art methods and highlight
anecdotal examples to stress the contrast between our method and
others. We also present the runtime performance of quark decom-
positions and other state-of-the-art methods.
Baselines.We consider three baselines in our comparisons.
•Motif clustering (MC) [8]. Set of higher-order clustering algo-
rithms by Benson et al. (see Section 2 for details). We consider three
versions; (1) MC�S�����: Algorithm that gives a single subgraph
with near-optimal motif conductance, (2)MC�R���B��������: Re-
cursive bisection algorithm that iteratively �nds multiple clusters
(starting with the optimal) until the cluster size gets too small (less
than 10 nodes) or quality degrades too much (conductance goes
above 0.5), (3) MC��������: k-means algorithm that is run on the
motif adjacency matrix – number of clusters (k) must be speci�ed
for this version.



Experimental evaluation on heterogeneous networks

• Directed
– ! is edge

– " is a triangle:

• Signed-directed
– ! is edge

– " is a triangle:

• Node-labeled (genders)
– ! is edge or triangle

– " is triangle or four-clique:
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• Baselines:
– Motif clustering

• [Benson et al., 2016]

– Cycle-truss and flow-truss
• [Takaguchi and Yoshida, 2016]

– Nucleus decomposition
• [Sariyuce et al., 2015]

• Metrics
– Motif conductance

– Avg. motif degree

– Edge density

• For node-labeled

Motif-driven Dense Subgraph Discovery
in Directed and Labeled Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

  

 

  

 

  

 

  

 

  

 

  

 

  

 

cycle

cycle+in+

acyclic out+

cycle++

reciprocal

Figure 1: Directed trianglemotifs with three nodes and three edges,
as named in [53]. Automorphism orbit (or just orbit) of a node in a
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k-means clustering on the motif adjacency matrix obtains a pre-
speci�ed number of clusters. Concurrently, Tsourakakis et al. [61]
proposed the same framework for motif-aware clustering and also
introduced a random walk interpretation of the graph reweighting
scheme which gives a principled approach to de�ne the notion of
conductance for other motifs. More recently, Li et al. improved the
motif-based clustering approach to handle the clustering of discon-
nected nodes [36]. Our framework di�ers from those approaches:
we do not partition the graph but �nd dense subgraphs around
nodes/edges. We give an extensive comparison against the motif
clustering [8] in our experiments.

3 PRELIMINARIES
Motifs and hypergraphs. We de�ne motif M = (VM ,EM ) as an
induced directed subgraph with node and edge sets VM , EM . Each
� 2 VM and e 2 EM can have categorical (non-numeric) attributes,
de�ned by f : VM ,EM ! N . A motifM is a subset of motif N i�
• VM ✓ VN where there is one and only one � 0 2 VN for each
� 2 VM such that f (�) = f (� 0).
• EM ✓ EN where there is one and only one e 0 2 EN for each
e 2 EM such that f (e) = f (e 0).
We use the language of hypergraphs to de�ne the involvements of
small motifs in the larger motifs. A hypergraph H = (V ,E) consists
of the node set V and hyperedge set E, where a hyperedge e 2 E is
simply a subset of V (in standard graphs, each hyperedge has two
nodes). Consider a hypergraph H = (V ,E);
• u,� 2 V are neighbors if there is a hyperedge e 2 E that contains
u and � .
• The degree of a node � 2 V , denoted by d(�), is the number of
hyperedges that contain � .
• The size of a hyperedge e 2 E, denoted by s(e), is the number of
nodes in it.
• Two nodes u and � are connected if there exists a sequence of
hyperedges e1, e2, . . . , e` 2 E such that u 2 e1, � 2 e` , and 8i < `,
ei \ ei+1 , ;.
• H is connected if all pairs of nodes are connected.

D��������� 1. Let S ✓ V . The induced hypergraph H |S has
node set S and contains every hyperedge of H completely contained
in S , i.e., 8e 2 H |S , i� � 2 e then � 2 S .
• The degree of node� 2H |S is denoted by dS (�) (or d(�) when clear).
• The minimum degree in H |S is denoted by �S .

Induced hypergraph is also known as section hypergraph.
Dense subgraphs.We call a subgraph dense if it has many motifs
(also calledmotif-based or -driven dense subgraph). Formally,
we use averagemotif degree to quantify the density of a subgraph
with respect to a given motif.

D��������� 2. For a subgraph S and a motif N , the average
motif degree of S is the number of instances of N in S divided by
the number of nodes in S .

4 QUARK DECOMPOSITION FRAMEWORK
We �rst de�ne themotif hypergraph.

D��������� 3. Given a graph G and template motifs M and N
s.t.M ⇢ N . Let {M} and {N } be the set of instances ofM and N in
G, respectively, and f ,� be bijective functions.Motif hypergraph
HG (M,N ) = (VG ,EG ) is a hypergraph constructed as follows:
• Each instance ofM 2 G forms a node u 2 VG by f :{M} ! VG .
• Each instance of N 2 G forms a hyperedge e 2 EG by�:{N } ! EG .
• I�M ⇢ N in G, then f (M) 2 �(N ) in HG .

Note that HG (M,N ) is a t-uniform hypergraph (i.e., s(e) = t 8e 2
EG ) where t is the number of occurrences ofM in N . We also refer
to the degree of each node u 2 HG as the motif degree, denoted
by dHG (u) (or d(u) when HG is obvious).
We now introduce the notion of k-quark subgraph.

D��������� 4. Given a graph G and template motifsM , N such
thatM ⇢ N , sayHG (M,N ) is the motif hypergraph de�ned as above.
• For any k 2 N, a k -quark of HG (M,N ) is a connected and maxi-
mal induced sub-hypergraph H |S such that �S � k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
inG), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

D��������� 5. k-quarks form a hierarchy by containment.
• Let S be a k-quark andT be a k 0-quark such that k 0 < k and S ⇢ T .
S is the child of T (and T is the parent of S) if there is no k̄-quark
U such that k 0 < k̄ < k and S ⇢ U ⇢ T .
• A k-quark is leaf (childless) if there is no k+-quark in it s.t. k+ > k .
• Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
• Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of �nding the quark numbers
and k-quarks for a given pair of motifs M,N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded
by less dense quarks (with lower k values) and hence often contain
the most interesting information.

IfG is a simple undirected graph whereM is r -clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r , s) nucleus [50, 51].
If G is a simple undirected bipartite graph whereM is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the
quark decomposition, each M instance is given a quark number
and the k-quarks along with the hierarchical relationships among
them can be constructed accordingly. Note that, N is the motif
of interest for which dense regions are to be found. Motif M
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Figure 6: Signed directed triangle motifs.

and reddit-title consider the positive and negative interactions
among users who belong to di�erent subreddits [31]. We considered
the last interactions in the datasets. We also consider epinions, a
who-trust-whom social network [21], and slashdotwhich contains
the self-tagged friend/foe relationships [32]. All are obtained from
SNAP [34]. Table 4 gives the number of positive and negative edges,
motif counts, and maximum quark numbers.
Motifs.We use edge and triangle motifs, corresponding to theM
and N in De�nition 4, respectively. This also ensures that quarks
can overlap with each other. There is no bidirectional edge and there
are twelve possible triangle motifs in total, as shown in Figure 6;
four cyclemotifs since there is a single orbit and eight acyclicmotifs
where each ++- and +-- appears in three di�erent ways.We use the
vanilla edge asM and each of the twelve triangles (Figure 6) as N .

5.2.1 Motif counts and quark numbers. Acyclic variants are
signi�cantly more common than the cycles in all networks. Among
the cycle variants, +++ is the most prevalent in reddit networks
and --- is the least common in all. This is also coherent with the
structural balance theory [14], which states that the triangles with
an odd number of negative links are rare. However, cycle++- is
more common than the other cycles in the epinions network. This
might be due to hierarchical status among the nodes; the lower
status nodes are likely to trust the ones with higher status but the
reverse is not true. The ratio of balanced triangles is 0.8 for reddit
networks but 0.42 for epinions. Per the maximum quark numbers,
we observe a correlation with the motif counts. Among all, only
acyclic+++ yields non-trivial subgraphs with large quark numbers.
Cycle variants fail to give signi�cant quarks.

5.2.2 Comparison withMC. We compare the k-quarks with the
MC�S����� andMC�R���B�������� for acyclic+++motif in Figure 7.
Some quarks are able to obtain very low conductance scores, close
toMC results. For the average motif degrees, quarks signi�cantly
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Figure 7: Comparison of quarks and MC [8] for acyclic+++ in
reddit-body networkwith respect to the number ofmotifs per node
(left, higher is better) and motif conductance (right, lower is better).
Subgraphs with at least 10 nodes are shown. Each subgraph is de-
noted by a point; size is on the x-axis and metric is on the y-axis.

Table 4: Signed datasets. |V |, |E |, |E+ |, and |E� | are the number
of nodes, edges, positive, and negative edges. Motif counts (see Fig-
ure 6) and correspondingmaximumquark numbers are also shown.

red-body red-title epinions slashdot
|V | 34.7K 52.9K 125.8K 74.3K
|E | 110.8K 205.5K 581.6K 420.5K
|E+ | 102.5K 188.7K 465.4K 311.3K
|E� | 8.3K 16.8K 116.3K 109.2K

+ + + 4.9K 7.8K 14.1K 1.2K
+ + � 1.3K 1.9K 34.2K 1.3K

cycle + � � 166 233 10.9K 702
� � � 9 13 745 86
+ + + 145.7K 592.9K 1.1M 125.0K

motif + + �a 20.0K 88.8K 37.1K 15.3K
counts + + �b 22.1K 88.8K 14.1K 9.0K

acylic + + �c 18.0K 59.3K 115.0K 15.7K
+ � �a 3.4K 10.8K 88.5K 11.8K
+ � �b 3.1K 10.8K 8.3K 7.8K
+ � �c 6.2K 26.6K 92.1K 30.4K
� � � 1.1K 3.5K 39.7K 9.0K

max. cycle all 1 1-2 1-2 1
quark acyclic + + + 15 20 15 6

numbers others 2-3 2-4 2-5 2-5

outperform MC�R���B��������. In particular, one quark has 284
nodes with average motif degree of 185.2.

One of the quarks by acyclic+++ has 21 subreddits about rap-
pers/singers, such as kanye and kendricklamar. The ones which
praised the others but have not received much praise (the white
node in acyclic in Figure 1) are boogalized, runthejewels, and char-
lieputh. The last two are a young rapper duo and a new Canadian
singer, respectively, with 6.6K and 279 members. On the other hand,
the subreddits that got praised by the others but have not recip-
rocated (the black node in acyclic) are theweeknd, frankocean, and
kidcudi. Those are experienced ones (active since 2010, 2005, and
2003) with tens of thousands of members in their subreddits.

5.3 Node-labeled networks
Datasets. Here we consider node-labeled undirected networks. We
use the Facebok100 dataset that contains the complete Facebook
networks of 100 American colleges from a single-day snapshot in
September 2005 [59]. Each node has multiple labels, here we only
consider the genders of the nodes (there are only two available
in the dataset; female and male) and use quark decomposition to
�nd subgraphs that have balanced gender ratios, i.e., close number
of females and males. Excluding the female-only institutions, the
overall average female ratio is %48.5 and there are 57 networks
with less than 50% female. We choose 18 networks with the lowest
female ratio (all have < 45%), Table 5 gives a partial list.
Motifs.We instantiate the quark decomposition in �veways, where
F/M denotes the female/male nodes: (1) M is vanilla edge and N
is triangle in the following two forms: FMM and FFM; and (2) M is
vanilla triangle, N is four-clique in the following three forms: FMMM,
FFMM, and FFFM. Also, there is no role confusion for any variant
since the graph is undirected and node labels ensure that an edge
cannot serve in di�erent roles in its triangles in (1) (likewise for
(2)).

5.3.1 Finding gender balanced subgraphs. Algorithmic fair-
ness is one of the most important problems in today’s automated

M M
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Quark decomposition vs. Motif clustering
• Motif clustering optimizes motif conductance, thus better

• Quark decomposition gives higher avg. motif degrees

• Motif clusters are big due to partitioning, quarks are smaller thanks to bottom-up dec.
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Figure 3: Comparison of the quark decomposition andMC [8] in EAT network. Top row shows the results for number of motifs per node, i.e.,
averagemotif degree, (higher is better) and the bottom rowhas themotif conductance (lower is better).We considerMC�S�����, which obtains
near-optimal motif conductance, andMC�R���B��������, which is applied until the resulting cluster gets too small (less than 10 vertices) or
high conductance (more than 0.5). For quark decomposition, we only show the k-quarks with at least 10 nodes. Each subgraph is denoted by a
point; the size is shown on the x -axis and the metric is given on the �-axis. The large quarks for which the conductance computation requires
the rest of the graph (since the size is more than the half) are denoted by red circles for completeness (conductances for those are not real).

motif conductance in the bottom row. MC variants often give large
subgraphs, always with very low conductance, as expected. MC�
S����� (optimal cluster) has more than 1000 nodes for out+, in+,
acyclic, and cycle++. For cycle+, however, it has only �ve nodes.
Quarks are often small, most in the range of 10-100 nodes, and
have higher conductance scores. For out+ and cycle++, some quarks
yield comparable conductance scores with MC�R���B��������. We
also observe that a quark for acylic has a better conductance than
MC�S����� (which is the near-optimal as shown in [8]). Regarding
the average motif degrees (top row), quarks perform signi�cantly
better in all the motifs (note that y-axis is in log-scale). By de�nition
of the quark (the connectivity constraint in particular), if the size
is n, the number of motifs is at least n � 2 (for k = 1, a single
motif is a valid subgraph and can be extended by a new node that
creates a new motif, keeping the motif count n � 2). This ensures a
lower bound, n�2n (close to 1), for average motif degree in quarks.
In general, quarks tend to be smaller in size when compared to
MC results, have consistently higher average motif degrees, and
comparable conductance scores for some motifs. Overall, the top-
down partitioning approach in the motif clustering is likely to
result in larger subgraphs in varying quality whereas the bottom-
up computation in quark decomposition yields smaller subgraphs
with larger average motif degrees.

Next we compare quark decomposition with TY [58]. For EAT net-
work, TY reports maximum cycle-truss number of 3 and maximum
�ow-truss number of 10. For each maximum truss subgraph, we
checked the quarks that are the most similar. Figure 4 presents the
results for cycle-truss, �ow-truss, and their corresponding quarks
with size and average motif degree information. For cycle- and
�ow-truss, we calculate the induced cycle and acyclic motif degrees
(i.e., bidirectional edges are not included). Next to each quark, we
denote the size of its intersection with the truss. Various types of

quarks are able to obtain almost all the nodes in those trusses. 70 of
77 nodes in cycle-truss are obtained with 15 quarks and all of the
45 nodes in �ow-truss are given in 15 other quarks. This veri�es
the arti�cial over-representation of cycle- and �ow-trusses due to
the non-induced nature. Overall, treating the bidirectional edges
as atomic units enables �nding diverse subgraphs while correctly
capturing the semantics of pairwise relationships.

Lastly, we compare quarkswith (2, 3) nucleus decomposition [50],
which ignores edge directions. We observe that incorporating the
edge directions results in more diverse subgraphs. The number of
subgraphs (of any quality) obtained by each quark decomposition
is signi�cantly larger than what nucleus decomposition yields. As
an anecdotal example, we show a subgraph found by the nucleus
decomposition in Figure 5. The direction-oblivious subgraph con-
tains words related to astronomy and space. Quark decompositions
capture several diverse contexts related to those words. Thanks
to the overlapping quarks, in+ �nds two subgraphs that contain
space and stars: one in astronomy theme (uranus, venus, ...) and
another in the religious context (god, eternity, ...). It also �nds an-
other subgraph in the vacation theme (sun, holiday, sand, ...). Out+
yields a subgraph in the air-�ight context (sky, aircraft, wing, ...).
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• Analysis with out+

• Quarks give consistently better classifications than motif clustering

• Role-aware quark numbers find the preys, predators, and balancers with acyclic
– Predators: Birds (ducks, herons, greeb)

– Preys: Clown goby, herbivorous shrimps, zooplankton

– Balancer: Fishes (anchovy, sardines, mojarra)

Motif-driven Dense Subgraph Discovery
in Directed and Labeled Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

astronomy cosmos earth moon planet 
planetarium planets sky solar-system 

space star stars sun universe

aeroplane air aircraft airport astronaut 
cosmos earth flight fly flying holst jet 
jupiter mars moon noise pilot plane 

planet planets rocket saturn sky           
solar-system space sphere sputnik  star 

stars universe wing wings world 

cycle++

darkness end endless eternal eternity 
ever everlasting finite for ever forever 

god infinite infinity lasting long love never 
perpetual space star stars universe

god jupiter mars moon planets saturn 
space star stars uranus venus

in+

abroad away holiday holidays home 
sand spain sun sunshine vacation

aeroplane air air-force aircraft flier fly 
glide kite parachute plane sky soar wing

out+

direction-oblivious subgraph by (2,3) nucleus

Figure 5: Comparison of a direction-oblivious (2, 3) nucleus and
various quarks in EAT network. The common words in quarks and
the nucleus is shown in black. Quarks by di�erent motifs capture
di�erent contexts for those words. in+ provides multiple contexts
for space, stars thanks to the fact that quarks are overlapping.

We also recognize that multiple meanings of the homonym words
are re�ected in various k-quarks. For instance, lie is reported in
two subgraphs by cycle++: one is about incorrectness (falsehood,
untruth, ...) and the other is about staying at rest in the horizontal
position (couch, rest, ...). Overall, quark decompositions by various
motifs can locate diverse contexts for a given word thanks to the
motif-aware approach and overlapping nature of quarks.

5.1.3 Analysis of Florida Bay food web. Here we analyze the
structure of Florida Bay food web network (foodweb) where the
nodes are the compartments (i.e., organisms, species) and the edges
are the directed carbon exchanges (i.e., u ! � if � eats u). Benson
et al. showed that high-quality clusters (i.e., with low conductance)
by MC only exist for out+, which implies that the organization
of compartments is better described with out+ (as opposed to the
common belief that acyclic is the key motif) [8]. They also show
that the 4 clusters byMC�������� for out+ re�ect the ground-truth
subgroup classi�cations better than the state-of-the-art clustering
algorithms such as spectral edge clustering (with k-means and
recursive bisection) [63], InfoMap [45], and Louvain method [9].

We �rst compare the quarks for out+ withMC��������. We �nd
7 quarks for out+, so we considerMC�������� with 7 clusters as
well as with 4 clusters. The nodes that appear in multiple quarks are
only considered to be part of their largest quark (other choices give
similar results). Table 2 presents the results for two ground-truth
classi�cations given in [8, 62] by four metrics: Adjusted Rand Index
(ARI), F1 score, Normalized Mutual Information (NMI), Purity [38].
Quarks clearly outperforms MC�������� variants in both
classi�cations by all the metrics. One particular di�erence is
thatMC�������� considers some macroinvertebrates like preda-
tory crabs among the benthic predators of eels and toad�sh whereas
quark decomposition �nds all macroinvertebrates in the same sub-
graph. We believe the main reason is thatMC�������� considers
motif counts from the node-perspective while quark decomposition
is based on the edges and their motif counts.

We also consider acyclic and use role-aware quark decomposition
(Algorithm 2) to determine the roles of the compartments in the
resulting quarks. For an acyclic formed by u!� , u!w , and �!w ,
we de�ne u as the prey orbit, � as the balancer orbit, andw as the
predator orbit. The maximum quark obtained by ����D�� (Algo-
rithm 1) and RA�����D�� (Algorithm 2) is the same and contains
48 compartments. RA�����D�� assigns three quark numbers for

Table 2: foodweb classi�cation results. Best in each row is in bold.

out+ Metric Quarks MC�������� MC��������
(7 subgraphs) w/ 4 clusters w/ 7 clusters

Cl
as
s1

ARI 0.3627 0.3005 0.1485
F1 0.4869 0.4574 0.3794
NMI 0.5415 0.5040 0.4843
Purity 0.5968 0.5645 0.5161

Cl
as
s2

ARI 0.3816 0.3265 0.1871
F1 0.5675 0.5380 0.4601
NMI 0.5206 0.4822 0.4309
Purity 0.6452 0.6129 0.5645

each edge, corresponding to the three edge orbits in acyclic (each is
a union of its nodes’ orbits). We determine the role pro�le for each
node based on the quark numbers of its outgoing and incoming
edges. The compartments that are dominantly predator are the birds
including predatory ducks, big herons & egrets, greeb, and more.
Dominantly prey compartments include clown goby, four types of
zooplankton microfauna, and seven macroinvertebrates (includ-
ing pink and herbivorous shrimps). Lastly, the ones that have the
balancer role are the �shes, such as (bay) anchovy, sardines, and
mojarra. Note that it is not possible to understand the roles of the
compartments by ����D�� since each edge has a single quark
number. For instance, the average quark numbers of incoming and
outgoing edges for predatory ducks and code goby are very close,
which tells nothing about their roles.

5.1.4 Runtimeperformance. Wemeasure the runtime for quark
decomposition and MC�S����� on all directed networks, Table 3
lists the results for large networks.MC�S����� (denoted M) gives
only one near-optimal cluster and quark decomposition (denoted
Q) �nds all the quark numbers. Quark decomposition is faster
than MC�S����� for all motifs in web-ND, amazon, soc-pokec, and
liveJournal. For some con�gurations, such as in+ in liveJournal,
we observe up to 10x speedup. For en-wiki, however, MC�S�����
is faster for all motifs. Note thatMC�S����� runtime includes motif
adjacency construction and spectral clustering to �nd one cluster.
In order to �nd more clusters, spectral clustering needs to be run
again. However, the spectral clustering takes 36% of the total time
for en-wiki (on avg.), hence obtaining 10 clusters will increase the
runtime by 4x. All in all, althoughMC�S����� �nds only one cluster,
quark decomposition is faster for most networks and motifs, and a
better choice especially when multiple subgraphs are targeted.

5.2 Signed-directed networks
Datasets.We use signed-directed networks that have categorical
labels on edges to denote one-sided positive/negative relationships
(no bidirectional edges). We have two Reddit hyperlink networks
that have directed connections among the subreddits. reddit-body
Table 3: Runtimes for large directed networks (sec). Best result in
each motif column is shown in bold.

cycle acyclic out+ in+ cycle+ cycle++
Q M Q M Q M Q M Q M Q M

web-ND 0.34 3.31 4.26 16.8 0.62 6.3 2.11 8.54 0.53 10.01 0.78 9.86
amzn 0.74 3.54 3.29 79 2.25 132 1.92 105 1.18 5.29 3.23 107
wiki 28.9 14.0 112 18.2 10.9 16.4 21.1 17.7 20.5 20.2 47.8 16.8
soc-p 23.6 79 66.9 99 37.0 119 34.2 139 48.9 129 98.1 128
live-j 37.4 200 180 943 118 1135 126 1438 112 828 289 2248
en-w 900 501 7746 864 1511 799 1709 677 398 724 2223 677
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Figure 1: Directed trianglemotifs with three nodes and three edges,
as named in [53]. Automorphism orbit (or just orbit) of a node in a
given motif is the set of other nodes that have the same topological
connectivity patterns. In each triangle, orbits of the nodes are de-
noted with colors (i.e., nodes in the same color have the same orbit).

k-means clustering on the motif adjacency matrix obtains a pre-
speci�ed number of clusters. Concurrently, Tsourakakis et al. [61]
proposed the same framework for motif-aware clustering and also
introduced a random walk interpretation of the graph reweighting
scheme which gives a principled approach to de�ne the notion of
conductance for other motifs. More recently, Li et al. improved the
motif-based clustering approach to handle the clustering of discon-
nected nodes [36]. Our framework di�ers from those approaches:
we do not partition the graph but �nd dense subgraphs around
nodes/edges. We give an extensive comparison against the motif
clustering [8] in our experiments.

3 PRELIMINARIES
Motifs and hypergraphs. We de�ne motif M = (VM ,EM ) as an
induced directed subgraph with node and edge sets VM , EM . Each
� 2 VM and e 2 EM can have categorical (non-numeric) attributes,
de�ned by f : VM ,EM ! N . A motifM is a subset of motif N i�
• VM ✓ VN where there is one and only one � 0 2 VN for each
� 2 VM such that f (�) = f (� 0).
• EM ✓ EN where there is one and only one e 0 2 EN for each
e 2 EM such that f (e) = f (e 0).
We use the language of hypergraphs to de�ne the involvements of
small motifs in the larger motifs. A hypergraph H = (V ,E) consists
of the node set V and hyperedge set E, where a hyperedge e 2 E is
simply a subset of V (in standard graphs, each hyperedge has two
nodes). Consider a hypergraph H = (V ,E);
• u,� 2 V are neighbors if there is a hyperedge e 2 E that contains
u and � .
• The degree of a node � 2 V , denoted by d(�), is the number of
hyperedges that contain � .
• The size of a hyperedge e 2 E, denoted by s(e), is the number of
nodes in it.
• Two nodes u and � are connected if there exists a sequence of
hyperedges e1, e2, . . . , e` 2 E such that u 2 e1, � 2 e` , and 8i < `,
ei \ ei+1 , ;.
• H is connected if all pairs of nodes are connected.

D��������� 1. Let S ✓ V . The induced hypergraph H |S has
node set S and contains every hyperedge of H completely contained
in S , i.e., 8e 2 H |S , i� � 2 e then � 2 S .
• The degree of node� 2H |S is denoted by dS (�) (or d(�) when clear).
• The minimum degree in H |S is denoted by �S .

Induced hypergraph is also known as section hypergraph.
Dense subgraphs.We call a subgraph dense if it has many motifs
(also calledmotif-based or -driven dense subgraph). Formally,
we use averagemotif degree to quantify the density of a subgraph
with respect to a given motif.

D��������� 2. For a subgraph S and a motif N , the average
motif degree of S is the number of instances of N in S divided by
the number of nodes in S .

4 QUARK DECOMPOSITION FRAMEWORK
We �rst de�ne themotif hypergraph.

D��������� 3. Given a graph G and template motifs M and N
s.t.M ⇢ N . Let {M} and {N } be the set of instances ofM and N in
G, respectively, and f ,� be bijective functions.Motif hypergraph
HG (M,N ) = (VG ,EG ) is a hypergraph constructed as follows:
• Each instance ofM 2 G forms a node u 2 VG by f :{M} ! VG .
• Each instance of N 2 G forms a hyperedge e 2 EG by�:{N } ! EG .
• I�M ⇢ N in G, then f (M) 2 �(N ) in HG .

Note that HG (M,N ) is a t-uniform hypergraph (i.e., s(e) = t 8e 2
EG ) where t is the number of occurrences ofM in N . We also refer
to the degree of each node u 2 HG as the motif degree, denoted
by dHG (u) (or d(u) when HG is obvious).
We now introduce the notion of k-quark subgraph.

D��������� 4. Given a graph G and template motifsM , N such
thatM ⇢ N , sayHG (M,N ) is the motif hypergraph de�ned as above.
• For any k 2 N, a k -quark of HG (M,N ) is a connected and maxi-
mal induced sub-hypergraph H |S such that �S � k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
inG), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

D��������� 5. k-quarks form a hierarchy by containment.
• Let S be a k-quark andT be a k 0-quark such that k 0 < k and S ⇢ T .
S is the child of T (and T is the parent of S) if there is no k̄-quark
U such that k 0 < k̄ < k and S ⇢ U ⇢ T .
• A k-quark is leaf (childless) if there is no k+-quark in it s.t. k+ > k .
• Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
• Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of �nding the quark numbers
and k-quarks for a given pair of motifs M,N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded
by less dense quarks (with lower k values) and hence often contain
the most interesting information.

IfG is a simple undirected graph whereM is r -clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r , s) nucleus [50, 51].
If G is a simple undirected bipartite graph whereM is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the
quark decomposition, each M instance is given a quark number
and the k-quarks along with the hierarchical relationships among
them can be constructed accordingly. Note that, N is the motif
of interest for which dense regions are to be found. Motif M
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Figure 1: Directed trianglemotifs with three nodes and three edges,
as named in [53]. Automorphism orbit (or just orbit) of a node in a
given motif is the set of other nodes that have the same topological
connectivity patterns. In each triangle, orbits of the nodes are de-
noted with colors (i.e., nodes in the same color have the same orbit).

k-means clustering on the motif adjacency matrix obtains a pre-
speci�ed number of clusters. Concurrently, Tsourakakis et al. [61]
proposed the same framework for motif-aware clustering and also
introduced a random walk interpretation of the graph reweighting
scheme which gives a principled approach to de�ne the notion of
conductance for other motifs. More recently, Li et al. improved the
motif-based clustering approach to handle the clustering of discon-
nected nodes [36]. Our framework di�ers from those approaches:
we do not partition the graph but �nd dense subgraphs around
nodes/edges. We give an extensive comparison against the motif
clustering [8] in our experiments.

3 PRELIMINARIES
Motifs and hypergraphs. We de�ne motif M = (VM ,EM ) as an
induced directed subgraph with node and edge sets VM , EM . Each
� 2 VM and e 2 EM can have categorical (non-numeric) attributes,
de�ned by f : VM ,EM ! N . A motifM is a subset of motif N i�
• VM ✓ VN where there is one and only one � 0 2 VN for each
� 2 VM such that f (�) = f (� 0).
• EM ✓ EN where there is one and only one e 0 2 EN for each
e 2 EM such that f (e) = f (e 0).
We use the language of hypergraphs to de�ne the involvements of
small motifs in the larger motifs. A hypergraph H = (V ,E) consists
of the node set V and hyperedge set E, where a hyperedge e 2 E is
simply a subset of V (in standard graphs, each hyperedge has two
nodes). Consider a hypergraph H = (V ,E);
• u,� 2 V are neighbors if there is a hyperedge e 2 E that contains
u and � .
• The degree of a node � 2 V , denoted by d(�), is the number of
hyperedges that contain � .
• The size of a hyperedge e 2 E, denoted by s(e), is the number of
nodes in it.
• Two nodes u and � are connected if there exists a sequence of
hyperedges e1, e2, . . . , e` 2 E such that u 2 e1, � 2 e` , and 8i < `,
ei \ ei+1 , ;.
• H is connected if all pairs of nodes are connected.

D��������� 1. Let S ✓ V . The induced hypergraph H |S has
node set S and contains every hyperedge of H completely contained
in S , i.e., 8e 2 H |S , i� � 2 e then � 2 S .
• The degree of node� 2H |S is denoted by dS (�) (or d(�) when clear).
• The minimum degree in H |S is denoted by �S .

Induced hypergraph is also known as section hypergraph.
Dense subgraphs.We call a subgraph dense if it has many motifs
(also calledmotif-based or -driven dense subgraph). Formally,
we use averagemotif degree to quantify the density of a subgraph
with respect to a given motif.

D��������� 2. For a subgraph S and a motif N , the average
motif degree of S is the number of instances of N in S divided by
the number of nodes in S .

4 QUARK DECOMPOSITION FRAMEWORK
We �rst de�ne themotif hypergraph.

D��������� 3. Given a graph G and template motifs M and N
s.t.M ⇢ N . Let {M} and {N } be the set of instances ofM and N in
G, respectively, and f ,� be bijective functions.Motif hypergraph
HG (M,N ) = (VG ,EG ) is a hypergraph constructed as follows:
• Each instance ofM 2 G forms a node u 2 VG by f :{M} ! VG .
• Each instance of N 2 G forms a hyperedge e 2 EG by�:{N } ! EG .
• I�M ⇢ N in G, then f (M) 2 �(N ) in HG .

Note that HG (M,N ) is a t-uniform hypergraph (i.e., s(e) = t 8e 2
EG ) where t is the number of occurrences ofM in N . We also refer
to the degree of each node u 2 HG as the motif degree, denoted
by dHG (u) (or d(u) when HG is obvious).
We now introduce the notion of k-quark subgraph.

D��������� 4. Given a graph G and template motifsM , N such
thatM ⇢ N , sayHG (M,N ) is the motif hypergraph de�ned as above.
• For any k 2 N, a k -quark of HG (M,N ) is a connected and maxi-
mal induced sub-hypergraph H |S such that �S � k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
inG), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

D��������� 5. k-quarks form a hierarchy by containment.
• Let S be a k-quark andT be a k 0-quark such that k 0 < k and S ⇢ T .
S is the child of T (and T is the parent of S) if there is no k̄-quark
U such that k 0 < k̄ < k and S ⇢ U ⇢ T .
• A k-quark is leaf (childless) if there is no k+-quark in it s.t. k+ > k .
• Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
• Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of �nding the quark numbers
and k-quarks for a given pair of motifs M,N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded
by less dense quarks (with lower k values) and hence often contain
the most interesting information.

IfG is a simple undirected graph whereM is r -clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r , s) nucleus [50, 51].
If G is a simple undirected bipartite graph whereM is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the
quark decomposition, each M instance is given a quark number
and the k-quarks along with the hierarchical relationships among
them can be constructed accordingly. Note that, N is the motif
of interest for which dense regions are to be found. Motif M
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Word-associations
• Diverse subgraphs obtained with different motifs

– Not possible when directions ignored
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direction-oblivious subgraph by (2,3) nucleus

Figure 5: Comparison of a direction-oblivious (2, 3) nucleus and
various quarks in EAT network. The common words in quarks and
the nucleus is shown in black. Quarks by di�erent motifs capture
di�erent contexts for those words. in+ provides multiple contexts
for space, stars thanks to the fact that quarks are overlapping.

We also recognize that multiple meanings of the homonym words
are re�ected in various k-quarks. For instance, lie is reported in
two subgraphs by cycle++: one is about incorrectness (falsehood,
untruth, ...) and the other is about staying at rest in the horizontal
position (couch, rest, ...). Overall, quark decompositions by various
motifs can locate diverse contexts for a given word thanks to the
motif-aware approach and overlapping nature of quarks.

5.1.3 Analysis of Florida Bay food web. Here we analyze the
structure of Florida Bay food web network (foodweb) where the
nodes are the compartments (i.e., organisms, species) and the edges
are the directed carbon exchanges (i.e., u ! � if � eats u). Benson
et al. showed that high-quality clusters (i.e., with low conductance)
by MC only exist for out+, which implies that the organization
of compartments is better described with out+ (as opposed to the
common belief that acyclic is the key motif) [8]. They also show
that the 4 clusters byMC�������� for out+ re�ect the ground-truth
subgroup classi�cations better than the state-of-the-art clustering
algorithms such as spectral edge clustering (with k-means and
recursive bisection) [63], InfoMap [45], and Louvain method [9].

We �rst compare the quarks for out+ withMC��������. We �nd
7 quarks for out+, so we considerMC�������� with 7 clusters as
well as with 4 clusters. The nodes that appear in multiple quarks are
only considered to be part of their largest quark (other choices give
similar results). Table 2 presents the results for two ground-truth
classi�cations given in [8, 62] by four metrics: Adjusted Rand Index
(ARI), F1 score, Normalized Mutual Information (NMI), Purity [38].
Quarks clearly outperforms MC�������� variants in both
classi�cations by all the metrics. One particular di�erence is
thatMC�������� considers some macroinvertebrates like preda-
tory crabs among the benthic predators of eels and toad�sh whereas
quark decomposition �nds all macroinvertebrates in the same sub-
graph. We believe the main reason is thatMC�������� considers
motif counts from the node-perspective while quark decomposition
is based on the edges and their motif counts.

We also consider acyclic and use role-aware quark decomposition
(Algorithm 2) to determine the roles of the compartments in the
resulting quarks. For an acyclic formed by u!� , u!w , and �!w ,
we de�ne u as the prey orbit, � as the balancer orbit, andw as the
predator orbit. The maximum quark obtained by ����D�� (Algo-
rithm 1) and RA�����D�� (Algorithm 2) is the same and contains
48 compartments. RA�����D�� assigns three quark numbers for

Table 2: foodweb classi�cation results. Best in each row is in bold.

out+ Metric Quarks MC�������� MC��������
(7 subgraphs) w/ 4 clusters w/ 7 clusters

Cl
as
s1

ARI 0.3627 0.3005 0.1485
F1 0.4869 0.4574 0.3794
NMI 0.5415 0.5040 0.4843
Purity 0.5968 0.5645 0.5161

Cl
as
s2

ARI 0.3816 0.3265 0.1871
F1 0.5675 0.5380 0.4601
NMI 0.5206 0.4822 0.4309
Purity 0.6452 0.6129 0.5645

each edge, corresponding to the three edge orbits in acyclic (each is
a union of its nodes’ orbits). We determine the role pro�le for each
node based on the quark numbers of its outgoing and incoming
edges. The compartments that are dominantly predator are the birds
including predatory ducks, big herons & egrets, greeb, and more.
Dominantly prey compartments include clown goby, four types of
zooplankton microfauna, and seven macroinvertebrates (includ-
ing pink and herbivorous shrimps). Lastly, the ones that have the
balancer role are the �shes, such as (bay) anchovy, sardines, and
mojarra. Note that it is not possible to understand the roles of the
compartments by ����D�� since each edge has a single quark
number. For instance, the average quark numbers of incoming and
outgoing edges for predatory ducks and code goby are very close,
which tells nothing about their roles.

5.1.4 Runtimeperformance. Wemeasure the runtime for quark
decomposition and MC�S����� on all directed networks, Table 3
lists the results for large networks.MC�S����� (denoted M) gives
only one near-optimal cluster and quark decomposition (denoted
Q) �nds all the quark numbers. Quark decomposition is faster
than MC�S����� for all motifs in web-ND, amazon, soc-pokec, and
liveJournal. For some con�gurations, such as in+ in liveJournal,
we observe up to 10x speedup. For en-wiki, however, MC�S�����
is faster for all motifs. Note thatMC�S����� runtime includes motif
adjacency construction and spectral clustering to �nd one cluster.
In order to �nd more clusters, spectral clustering needs to be run
again. However, the spectral clustering takes 36% of the total time
for en-wiki (on avg.), hence obtaining 10 clusters will increase the
runtime by 4x. All in all, althoughMC�S����� �nds only one cluster,
quark decomposition is faster for most networks and motifs, and a
better choice especially when multiple subgraphs are targeted.

5.2 Signed-directed networks
Datasets.We use signed-directed networks that have categorical
labels on edges to denote one-sided positive/negative relationships
(no bidirectional edges). We have two Reddit hyperlink networks
that have directed connections among the subreddits. reddit-body
Table 3: Runtimes for large directed networks (sec). Best result in
each motif column is shown in bold.

cycle acyclic out+ in+ cycle+ cycle++
Q M Q M Q M Q M Q M Q M

web-ND 0.34 3.31 4.26 16.8 0.62 6.3 2.11 8.54 0.53 10.01 0.78 9.86
amzn 0.74 3.54 3.29 79 2.25 132 1.92 105 1.18 5.29 3.23 107
wiki 28.9 14.0 112 18.2 10.9 16.4 21.1 17.7 20.5 20.2 47.8 16.8
soc-p 23.6 79 66.9 99 37.0 119 34.2 139 48.9 129 98.1 128
live-j 37.4 200 180 943 118 1135 126 1438 112 828 289 2248
en-w 900 501 7746 864 1511 799 1709 677 398 724 2223 677



Finding gender-balanced subgraphs
• Facebook100 dataset with genders as node-labels
• How to find gender-balanced dense subgraphs even when the graph is imbalanced?

– Compared to label-oblivious nucleus dec.

• ! is edge, " is triangle
• ! is triangle, " is four-clique
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Table 5: Node-labeled graphs. Statistics and avg. of the female ra-
tios in nuclei and quarks are given. Vf denotes the set of female
nodes. (2,3)n and (3,4)n are the nucleus decompositions.

|V | |E | |Vf |
|V |

edge, triangle triangle, 4-clique

(2,3)n Quarks (3,4)n Quarks
FMM FFM FMMM FFMM FFFM

Mich67 3.7K 81.9K 25% 23.0%45.0%50.0%24.5%40.0%45.0%51.6%
Caltech36 769 16.7K 30% 39.4%46.0%52.0%38.5%43.1%50.2%52.8%
Carnegie49 6.6K 250.0K 37% 32.6%49.0%52.5%38.5%43.5%49.5%54.9%
MIT8 6.4K 251.3K 37% 38.8%48.0%52.1%42.0%44.3%50.3%53.9%
Stanford3 11.6K 568.3K 40% 46.8%48.1%49.0%44.1%45.4%49.2%55.4%
Cornell5 18.7K 790.8K 44% 44.3%47.6%51.8%45.6%43.7%48.7%54.9%
Penn94 41.6K 1.4M 44% 49.7%48.4%51.4%52.1%44.0%49.8%55.8%
UPenn7 14.9K 686.5K 44% 37.3%48.8%51.1%46.4%45.1%50.4%55.4%
Average of 18 networks: 40% 42.5%48.2%51.5%44.1%44.4%49.7%54.7%

world [27]. Algorithms can amplify the implicit bias in the data,
particularly based on the protected attributes like gender, race, eth-
nicity, and this can lead to unwanted consequences in criminal
justice system, hiring, credit scoring, and more [6]. The bias in the
network data is more complicated; regarding the gender attribute,
for example, the problem is not only the imbalanced gender distri-
bution but also how each gender category is connected to the other
categories. There are a few studies that analyze the implications on
information di�usion [25, 55]. In this context, the community struc-
ture in the network plays an important role and algorithms that
do not actively consider the protected attributes are likely to fail
getting fair results. Algorithms that can �nd balanced communities
even when there is an imbalance in the input network are essential.
Here we use quark decomposition to �nd subgraphs with balanced
gender ratios. As explained above, we set the input motif N in ways
to re�ect the characteristics of gender balanced subgraphs.

Table 5 gives the female ratios in quarks in comparison to the
label-oblivious nucleus decomposition algorithms [50]. For each
network, we �nd the leaf quarks (De�nition 5) and nuclei with at
least 10 nodes, calculate the female ratio in each quark or nucleus,
and then take the average of those ratios. We also show the average
ratios across all the 18 datasets at the bottom. The average female
ratio of all the networks is 40.3%. (2, 3)-nuclei have a bit better
number, 42.5%. Quarks for FMM get 48.2% and the ratios are con-
sistently good for all the networks, varying between 45% � 51.3%.
This signi�cant jump from (2, 3)-nuclei is due to the fact that each
edge has to participate in a number of FMM triangles. Quarks for FFM
give an even better ratio, 51.5%. (3, 4)-nuclei are larger in number
and also denser than (2, 3). Its average female ratio (44.1%) is also
a bit better than (2, 3)-nuclei. Quarks for FMMM are very close to
(3, 4)-nuclei but more consistent. FFMM achieves 49.7% and FFFM
gets the best: 54.7%. Note that results get better for the motifs with
larger female ratio: FMMM < FMM < FFMM < FFM < FFFM.

Quarks cannot provide a good theoretical lower bound for the
female ratio since there is no size constraint in the quark de�nition.
For instance, a 1-quark for FFM can possibly be formed by a pair
of connected female nodes and n male nodes that are connected
to both females; the female ratio would be 2/(n + 2) in this case.
But in practice, quarks with female-dominant motifs yield dense
subgraphs with high female ratios. Even with FMM, which implies
a 1/3 ratio (smaller than the average female ratio of the datasets),
quarks can obtain better results than the label-oblivious (2,3)-nuclei.
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Figure 8: Comparison of the female ratios in subgraphs obtained
by quark (FFFM) and (3, 4)-nucleus decompositions for UPenn7. For
each subgraph, size is given on the x-axis, female ratio is shown on
the y-axis, and the edge density is color-coded.

We also show all the subgraphs with size, edge density, and
female ratio information obtained by quark and nucleus decomposi-
tions in UPenn7 network. Figure 8 gives (3, 4)-nuclei and quarks for
FFFM on UPenn7 network. Quarks are consistently gender balanced
when compared to the nuclei; no quark with less than 25% female
ratio exists. Note that there is a bit degradation in the number and
density of the quarks for FFFM: 216 subgraphs with 0.88 avg. edge
density, compared to the 230 (3, 4) nuclei with avg. density 0.94.
Given the consistently high female ratios, we believe that this is an
a�ordable loss in quality.

6 DISCUSSION
Quark decomposition o�ers a principled approach for motif-driven
dense subgraph discovery in heterogeneous networks by success-
fully regularizing the motif degrees to quark numbers. Our evalua-
tion shows that the k-quarks can �nd dense subgraphs according
to a given motif. Role-aware variant solves the role confusion prob-
lem by creating multiple quark numbers for each motifM . Overall,
quark decomposition is versatile, e�cient, and extendible.

For future work, it would be interesting to investigate the other
byproducts of the quark decomposition, such as hierarchy structure.
Our initial results show limited success; detailed and meaningful
hierarchies are rare for the most motifs. Theoretical and empirical
analysis of the impact of the input motifs,M,N , on the hierarchy
structure would be interesting . Also, adapting the quark decompo-
sition for numerical attributes on nodes/edges would be promising.
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Table 5: Node-labeled graphs. Statistics and avg. of the female ra-
tios in nuclei and quarks are given. Vf denotes the set of female
nodes. (2,3)n and (3,4)n are the nucleus decompositions.

|V | |E | |Vf |
|V |

edge, triangle triangle, 4-clique

(2,3)n Quarks (3,4)n Quarks
FMM FFM FMMM FFMM FFFM

Mich67 3.7K 81.9K 25% 23.0%45.0%50.0%24.5%40.0%45.0%51.6%
Caltech36 769 16.7K 30% 39.4%46.0%52.0%38.5%43.1%50.2%52.8%
Carnegie49 6.6K 250.0K 37% 32.6%49.0%52.5%38.5%43.5%49.5%54.9%
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Stanford3 11.6K 568.3K 40% 46.8%48.1%49.0%44.1%45.4%49.2%55.4%
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UPenn7 14.9K 686.5K 44% 37.3%48.8%51.1%46.4%45.1%50.4%55.4%
Average of 18 networks: 40% 42.5%48.2%51.5%44.1%44.4%49.7%54.7%

world [27]. Algorithms can amplify the implicit bias in the data,
particularly based on the protected attributes like gender, race, eth-
nicity, and this can lead to unwanted consequences in criminal
justice system, hiring, credit scoring, and more [6]. The bias in the
network data is more complicated; regarding the gender attribute,
for example, the problem is not only the imbalanced gender distri-
bution but also how each gender category is connected to the other
categories. There are a few studies that analyze the implications on
information di�usion [25, 55]. In this context, the community struc-
ture in the network plays an important role and algorithms that
do not actively consider the protected attributes are likely to fail
getting fair results. Algorithms that can �nd balanced communities
even when there is an imbalance in the input network are essential.
Here we use quark decomposition to �nd subgraphs with balanced
gender ratios. As explained above, we set the input motif N in ways
to re�ect the characteristics of gender balanced subgraphs.

Table 5 gives the female ratios in quarks in comparison to the
label-oblivious nucleus decomposition algorithms [50]. For each
network, we �nd the leaf quarks (De�nition 5) and nuclei with at
least 10 nodes, calculate the female ratio in each quark or nucleus,
and then take the average of those ratios. We also show the average
ratios across all the 18 datasets at the bottom. The average female
ratio of all the networks is 40.3%. (2, 3)-nuclei have a bit better
number, 42.5%. Quarks for FMM get 48.2% and the ratios are con-
sistently good for all the networks, varying between 45% � 51.3%.
This signi�cant jump from (2, 3)-nuclei is due to the fact that each
edge has to participate in a number of FMM triangles. Quarks for FFM
give an even better ratio, 51.5%. (3, 4)-nuclei are larger in number
and also denser than (2, 3). Its average female ratio (44.1%) is also
a bit better than (2, 3)-nuclei. Quarks for FMMM are very close to
(3, 4)-nuclei but more consistent. FFMM achieves 49.7% and FFFM
gets the best: 54.7%. Note that results get better for the motifs with
larger female ratio: FMMM < FMM < FFMM < FFM < FFFM.

Quarks cannot provide a good theoretical lower bound for the
female ratio since there is no size constraint in the quark de�nition.
For instance, a 1-quark for FFM can possibly be formed by a pair
of connected female nodes and n male nodes that are connected
to both females; the female ratio would be 2/(n + 2) in this case.
But in practice, quarks with female-dominant motifs yield dense
subgraphs with high female ratios. Even with FMM, which implies
a 1/3 ratio (smaller than the average female ratio of the datasets),
quarks can obtain better results than the label-oblivious (2,3)-nuclei.
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Figure 8: Comparison of the female ratios in subgraphs obtained
by quark (FFFM) and (3, 4)-nucleus decompositions for UPenn7. For
each subgraph, size is given on the x-axis, female ratio is shown on
the y-axis, and the edge density is color-coded.

We also show all the subgraphs with size, edge density, and
female ratio information obtained by quark and nucleus decomposi-
tions in UPenn7 network. Figure 8 gives (3, 4)-nuclei and quarks for
FFFM on UPenn7 network. Quarks are consistently gender balanced
when compared to the nuclei; no quark with less than 25% female
ratio exists. Note that there is a bit degradation in the number and
density of the quarks for FFFM: 216 subgraphs with 0.88 avg. edge
density, compared to the 230 (3, 4) nuclei with avg. density 0.94.
Given the consistently high female ratios, we believe that this is an
a�ordable loss in quality.

6 DISCUSSION
Quark decomposition o�ers a principled approach for motif-driven
dense subgraph discovery in heterogeneous networks by success-
fully regularizing the motif degrees to quark numbers. Our evalua-
tion shows that the k-quarks can �nd dense subgraphs according
to a given motif. Role-aware variant solves the role confusion prob-
lem by creating multiple quark numbers for each motifM . Overall,
quark decomposition is versatile, e�cient, and extendible.

For future work, it would be interesting to investigate the other
byproducts of the quark decomposition, such as hierarchy structure.
Our initial results show limited success; detailed and meaningful
hierarchies are rare for the most motifs. Theoretical and empirical
analysis of the impact of the input motifs,M,N , on the hierarchy
structure would be interesting . Also, adapting the quark decompo-
sition for numerical attributes on nodes/edges would be promising.

ACKNOWLEDGMENTS
This research was supported by NSF-1910063 award, JP Morgan
Chase and Company Faculty Research Award, and used resources
of the Center for Computational Research at the University at
Bu�alo [1] and the National Energy Research Scienti�c Computing
Center, a DOE O�ce of Science User Facility supported by the
O�ce of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES
[1] 2021. Center for Computational Research, University at Bu�alo. http://hdl.

handle.net/10477/79221.
[2] N. K. Ahmed, J. Neville, R. A. Rossi, N. Du�eld, and T. L. Willke. 2016. Graphlet

Decomposition: Framework, Algorithms, and Applications. KAIS (2016), 1–32.
[3] S. Aksoy, T. G. Kolda, and A. Pinar. 2017. Measuring and Modeling Bipartite

Graphs with Community Structure. Journal of Complex Networks 5, 4 (2017),
581–603.

Density vs. female ratio for UPenn7



Conclusion & Future Work
• Principled approach for motif-driven dense subgraph discovery in directed and 

categorical-labeled networks
– Successfully regularizes the motif degrees to quark numbers

• Role-aware variant considers the orbits and quantifies the roles systematically
• Versatile, efficient, and extendible

– Code is available with detailed instructions for reproducibility!

• Hierarchy structure had limited success
– Further analysis of hierarchy w.r.t a given motif

• Extension for networks with numerical node/edge labels
– While incorporating the ordering

16



Paper, slides, talk, code: http://sariyuce.com/WWW21

Questions: erdem@buffalo.edu

Thanks!



• Two effective models for simple, undirected networks
– With hierarchical relations

How to model dense subgraphs?
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Quarks vs. Cycle- & Flow-truss
• Higher avg. motif degrees with quarks
• Almost all the nodes in cycle- & flow-trusses are found, in various types  

– Considering each bidirectional edge atomically (instead of two unidirectional edges) highlights the 
diversity
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Figure 3: Comparison of the quark decomposition andMC [8] in EAT network. Top row shows the results for number of motifs per node, i.e.,
averagemotif degree, (higher is better) and the bottom rowhas themotif conductance (lower is better).We considerMC�S�����, which obtains
near-optimal motif conductance, andMC�R���B��������, which is applied until the resulting cluster gets too small (less than 10 vertices) or
high conductance (more than 0.5). For quark decomposition, we only show the k-quarks with at least 10 nodes. Each subgraph is denoted by a
point; the size is shown on the x -axis and the metric is given on the �-axis. The large quarks for which the conductance computation requires
the rest of the graph (since the size is more than the half) are denoted by red circles for completeness (conductances for those are not real).

motif conductance in the bottom row. MC variants often give large
subgraphs, always with very low conductance, as expected. MC�
S����� (optimal cluster) has more than 1000 nodes for out+, in+,
acyclic, and cycle++. For cycle+, however, it has only �ve nodes.
Quarks are often small, most in the range of 10-100 nodes, and
have higher conductance scores. For out+ and cycle++, some quarks
yield comparable conductance scores with MC�R���B��������. We
also observe that a quark for acylic has a better conductance than
MC�S����� (which is the near-optimal as shown in [8]). Regarding
the average motif degrees (top row), quarks perform signi�cantly
better in all the motifs (note that y-axis is in log-scale). By de�nition
of the quark (the connectivity constraint in particular), if the size
is n, the number of motifs is at least n � 2 (for k = 1, a single
motif is a valid subgraph and can be extended by a new node that
creates a new motif, keeping the motif count n � 2). This ensures a
lower bound, n�2n (close to 1), for average motif degree in quarks.
In general, quarks tend to be smaller in size when compared to
MC results, have consistently higher average motif degrees, and
comparable conductance scores for some motifs. Overall, the top-
down partitioning approach in the motif clustering is likely to
result in larger subgraphs in varying quality whereas the bottom-
up computation in quark decomposition yields smaller subgraphs
with larger average motif degrees.

Next we compare quark decomposition with TY [58]. For EAT net-
work, TY reports maximum cycle-truss number of 3 and maximum
�ow-truss number of 10. For each maximum truss subgraph, we
checked the quarks that are the most similar. Figure 4 presents the
results for cycle-truss, �ow-truss, and their corresponding quarks
with size and average motif degree information. For cycle- and
�ow-truss, we calculate the induced cycle and acyclic motif degrees
(i.e., bidirectional edges are not included). Next to each quark, we
denote the size of its intersection with the truss. Various types of

quarks are able to obtain almost all the nodes in those trusses. 70 of
77 nodes in cycle-truss are obtained with 15 quarks and all of the
45 nodes in �ow-truss are given in 15 other quarks. This veri�es
the arti�cial over-representation of cycle- and �ow-trusses due to
the non-induced nature. Overall, treating the bidirectional edges
as atomic units enables �nding diverse subgraphs while correctly
capturing the semantics of pairwise relationships.

Lastly, we compare quarkswith (2, 3) nucleus decomposition [50],
which ignores edge directions. We observe that incorporating the
edge directions results in more diverse subgraphs. The number of
subgraphs (of any quality) obtained by each quark decomposition
is signi�cantly larger than what nucleus decomposition yields. As
an anecdotal example, we show a subgraph found by the nucleus
decomposition in Figure 5. The direction-oblivious subgraph con-
tains words related to astronomy and space. Quark decompositions
capture several diverse contexts related to those words. Thanks
to the overlapping quarks, in+ �nds two subgraphs that contain
space and stars: one in astronomy theme (uranus, venus, ...) and
another in the religious context (god, eternity, ...). It also �nds an-
other subgraph in the vacation theme (sun, holiday, sand, ...). Out+
yields a subgraph in the air-�ight context (sky, aircraft, wing, ...).
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Runtime comparison with motif clustering
• Motif clustering with a single optimal cluster

– Quark decomposition finds all the !-quarks

• Quark decomposition is mostly faster, for all motifs; up to 10x speedups

• Motif clustering is mostly faster for en-Wikipedia and wiki-Talk
– Spectral clustering is heavy, cost increases when multiple clusters found
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astronomy cosmos earth moon planet 
planetarium planets sky solar-system 

space star stars sun universe

aeroplane air aircraft airport astronaut 
cosmos earth flight fly flying holst jet 
jupiter mars moon noise pilot plane 

planet planets rocket saturn sky           
solar-system space sphere sputnik  star 

stars universe wing wings world 

cycle++

darkness end endless eternal eternity 
ever everlasting finite for ever forever 

god infinite infinity lasting long love never 
perpetual space star stars universe

god jupiter mars moon planets saturn 
space star stars uranus venus

in+

abroad away holiday holidays home 
sand spain sun sunshine vacation

aeroplane air air-force aircraft flier fly 
glide kite parachute plane sky soar wing

out+

direction-oblivious subgraph by (2,3) nucleus

Figure 5: Comparison of a direction-oblivious (2, 3) nucleus and
various quarks in EAT network. The common words in quarks and
the nucleus is shown in black. Quarks by di�erent motifs capture
di�erent contexts for those words. in+ provides multiple contexts
for space, stars thanks to the fact that quarks are overlapping.

We also recognize that multiple meanings of the homonym words
are re�ected in various k-quarks. For instance, lie is reported in
two subgraphs by cycle++: one is about incorrectness (falsehood,
untruth, ...) and the other is about staying at rest in the horizontal
position (couch, rest, ...). Overall, quark decompositions by various
motifs can locate diverse contexts for a given word thanks to the
motif-aware approach and overlapping nature of quarks.

5.1.3 Analysis of Florida Bay food web. Here we analyze the
structure of Florida Bay food web network (foodweb) where the
nodes are the compartments (i.e., organisms, species) and the edges
are the directed carbon exchanges (i.e., u ! � if � eats u). Benson
et al. showed that high-quality clusters (i.e., with low conductance)
by MC only exist for out+, which implies that the organization
of compartments is better described with out+ (as opposed to the
common belief that acyclic is the key motif) [8]. They also show
that the 4 clusters byMC�������� for out+ re�ect the ground-truth
subgroup classi�cations better than the state-of-the-art clustering
algorithms such as spectral edge clustering (with k-means and
recursive bisection) [63], InfoMap [45], and Louvain method [9].

We �rst compare the quarks for out+ withMC��������. We �nd
7 quarks for out+, so we considerMC�������� with 7 clusters as
well as with 4 clusters. The nodes that appear in multiple quarks are
only considered to be part of their largest quark (other choices give
similar results). Table 2 presents the results for two ground-truth
classi�cations given in [8, 62] by four metrics: Adjusted Rand Index
(ARI), F1 score, Normalized Mutual Information (NMI), Purity [38].
Quarks clearly outperforms MC�������� variants in both
classi�cations by all the metrics. One particular di�erence is
thatMC�������� considers some macroinvertebrates like preda-
tory crabs among the benthic predators of eels and toad�sh whereas
quark decomposition �nds all macroinvertebrates in the same sub-
graph. We believe the main reason is thatMC�������� considers
motif counts from the node-perspective while quark decomposition
is based on the edges and their motif counts.

We also consider acyclic and use role-aware quark decomposition
(Algorithm 2) to determine the roles of the compartments in the
resulting quarks. For an acyclic formed by u!� , u!w , and �!w ,
we de�ne u as the prey orbit, � as the balancer orbit, andw as the
predator orbit. The maximum quark obtained by ����D�� (Algo-
rithm 1) and RA�����D�� (Algorithm 2) is the same and contains
48 compartments. RA�����D�� assigns three quark numbers for

Table 2: foodweb classi�cation results. Best in each row is in bold.

out+ Metric Quarks MC�������� MC��������
(7 subgraphs) w/ 4 clusters w/ 7 clusters

Cl
as
s1

ARI 0.3627 0.3005 0.1485
F1 0.4869 0.4574 0.3794
NMI 0.5415 0.5040 0.4843
Purity 0.5968 0.5645 0.5161

Cl
as
s2

ARI 0.3816 0.3265 0.1871
F1 0.5675 0.5380 0.4601
NMI 0.5206 0.4822 0.4309
Purity 0.6452 0.6129 0.5645

each edge, corresponding to the three edge orbits in acyclic (each is
a union of its nodes’ orbits). We determine the role pro�le for each
node based on the quark numbers of its outgoing and incoming
edges. The compartments that are dominantly predator are the birds
including predatory ducks, big herons & egrets, greeb, and more.
Dominantly prey compartments include clown goby, four types of
zooplankton microfauna, and seven macroinvertebrates (includ-
ing pink and herbivorous shrimps). Lastly, the ones that have the
balancer role are the �shes, such as (bay) anchovy, sardines, and
mojarra. Note that it is not possible to understand the roles of the
compartments by ����D�� since each edge has a single quark
number. For instance, the average quark numbers of incoming and
outgoing edges for predatory ducks and code goby are very close,
which tells nothing about their roles.

5.1.4 Runtimeperformance. Wemeasure the runtime for quark
decomposition and MC�S����� on all directed networks, Table 3
lists the results for large networks.MC�S����� (denoted M) gives
only one near-optimal cluster and quark decomposition (denoted
Q) �nds all the quark numbers. Quark decomposition is faster
than MC�S����� for all motifs in web-ND, amazon, soc-pokec, and
liveJournal. For some con�gurations, such as in+ in liveJournal,
we observe up to 10x speedup. For en-wiki, however, MC�S�����
is faster for all motifs. Note thatMC�S����� runtime includes motif
adjacency construction and spectral clustering to �nd one cluster.
In order to �nd more clusters, spectral clustering needs to be run
again. However, the spectral clustering takes 36% of the total time
for en-wiki (on avg.), hence obtaining 10 clusters will increase the
runtime by 4x. All in all, althoughMC�S����� �nds only one cluster,
quark decomposition is faster for most networks and motifs, and a
better choice especially when multiple subgraphs are targeted.

5.2 Signed-directed networks
Datasets.We use signed-directed networks that have categorical
labels on edges to denote one-sided positive/negative relationships
(no bidirectional edges). We have two Reddit hyperlink networks
that have directed connections among the subreddits. reddit-body
Table 3: Runtimes for large directed networks (sec). Best result in
each motif column is shown in bold.

cycle acyclic out+ in+ cycle+ cycle++
Q M Q M Q M Q M Q M Q M

web-ND 0.34 3.31 4.26 16.8 0.62 6.3 2.11 8.54 0.53 10.01 0.78 9.86
amzn 0.74 3.54 3.29 79 2.25 132 1.92 105 1.18 5.29 3.23 107
wiki 28.9 14.0 112 18.2 10.9 16.4 21.1 17.7 20.5 20.2 47.8 16.8
soc-p 23.6 79 66.9 99 37.0 119 34.2 139 48.9 129 98.1 128
live-j 37.4 200 180 943 118 1135 126 1438 112 828 289 2248
en-w 900 501 7746 864 1511 799 1709 677 398 724 2223 677


