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ABSTRACT

Dense regions in networks are an indicator of interesting and un-

usual information. However, most existing methods only consider

simple, undirected, unweighted networks. Complex networks in

the real-world often have rich information though: edges are asym-

metrical and nodes/edges have categorical and numerical attributes.

Finding dense subgraphs in such networks in accordance with this

rich information is an important problem with many applications.

Furthermore, most existing algorithms ignore the higher-order re-

lationships (i.e., motifs) among the nodes. Motifs are shown to be

helpful for dense subgraph discovery but their wide spectrum in

heterogeneous networks makes it challenging to utilize them effec-

tively. In this work, we propose quark decomposition framework

to locate dense subgraphs that are rich with a given motif. We fo-

cus on networks with directed edges and categorical attributes on

nodes/edges. For a given motif, our framework builds subgraphs,

called quarks, in varying quality and with hierarchical relations.

Our framework is versatile, efficient, and extendible. We discuss the

limitations and practical instantiations of our framework as well as

the role confusion problem that needs to be considered in directed

networks. We give an extensive evaluation of our framework in

directed, signed-directed, and node-labeled networks. We consider

various motifs and evaluate the quark decomposition using several

real-world networks. Results show that quark decomposition per-

forms better than the state-of-the-art techniques. Our framework

is also practical and scalable to networks with up to 101M edges.
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1 INTRODUCTION

Dense regions in networks contain unusual and interesting in-

formation [19]. Dense subgraph discovery is shown to be an ef-

fective analysis method in many applications across various do-

mains [5, 13, 17, 18, 26, 30, 33]. It is often a good and cheaper proxy
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for graph clustering because cohesive subgraphs in real-world net-

works exhibit good cuts [19, 33]. However, most algorithms to find

dense subgraphs are designed for simple, undirected, unweighted

graphs. In reality, a common characteristic of natural and engi-

neered systems from various domains is that the nodes (entities)

and edges (relationships) have rich information associated with

them; i.e., networks are heterogeneous [56]. Relationships can be

asymmetrical (one-way) and entities/relationships can be associ-

ated with categorical and numerical attributes; e.g., length of a

road or gender of a person. Finding the dense subgraphs while ac-

tively considering the rich information on nodes/edges has various

applications, such as entity resolution [64] and link prediction [11].

Furthermore, most dense subgraph discovery algorithms are de-

signed to capture only the first-order relationships. Higher-order

structures (i.e., motifs/graphlets) are shown to be the fundamental

building blocks in the organization and dynamics of real-world net-

works such as social and neural networks [2, 24, 40, 43, 44, 54]. Dis-

covering dense subgraphs that have a higher-order structure is im-

perative in the analysis of those networks. In simple networks, mo-

tifs are used to find subgraphs with higher-order structure, which

cannot be detected with edge-centric methods [50, 60]. However,

it is not clear how to find dense subgraphs with motifs in hetero-

geneous networks. The spectrum of motifs in heterogeneous net-

works is wide due to the edge directions and node/edge attributes.

Although this variety is particularly effective for the analysis as the

structure and dynamics can vary with respect to the type of motif

considered [8, 57, 61], handling the diverse nature of heterogeneous

networks while watching for the motifs is a challenging problem.

In this work, we introduce the quark decomposition frame-

work to find motif-driven subgraphs in networks with directed

edges and categorical attributes on nodes/edges. Our framework

builds subgraphs, called quarks, in varying quality and with hier-

archical relations. A k-quark is a motif-parameterized subgraph

where each node/edge (or small motif) participates in a number

of (larger) motifs. The parameter k denotes the extent of partic-

ipation and not an input: quark decomposition finds non-empty

k-quarks for all k values. Our framework is inspired by the peeling

approach in simple graphs, namely core, truss, and nucleus decom-

positions [12, 50, 52], which first locate the outer sparse parts of the

graph and then find the inner dense regions. Given the practicality

and effectiveness of the peeling techniques, we adapt them to the

directed networks with categorical attributes in a principled way.

Note that it is beyond nontrivial to consider a generalization since

edge directions and node/edge attributes create a wide and diverse

spectrum of motifs (see Figure 1 and Figure 6 for examples).

Quark decomposition takes two motifs as parameters,M and N
whereM ⊂ N , and builds subgraphs whereMs participate in many

https://doi.org/10.1145/3442381.3450055
https://doi.org/10.1145/3442381.3450055


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Ahmet Erdem Sarıyüce

N s. The parameterized formulation enables the discovery of diverse

subgraphs and lets a trade-off between quality and practicality. We

assign density indicators for each motif M , called quark numbers,

to denote how wellM is connected to its neighborhood, which are

then used to build the k-quarks. Quark numbers also relate the

k-quarks with each other using containment relations; the quarks

with larger k are contained in the ones with smaller k .
We use quark decomposition in two broad classes of applica-

tions: (1) When the motif of interest is unknown and higher-order

organization of the network is asked; (2) When the motif of in-

terest is known and guides the quark decomposition. For (1), we

compare quarks obtained with various motifs and analyze the num-

ber and quality of resulting quarks in directed and signed-directed

networks. In a word-association network, we show that overlap-

ping quarks by the same motif as well as the quarks by different

motifs capture diverse contexts of the words. We also analyze the

Florida Bay food web and show that quarks obtain consistently bet-

ter results than the state-of-the-art algorithm for finding groups of

compartments with respect to the ground-truth classifications. For

(2), we consider the task of finding gender-balanced communities

in networks where genders are used as node labels. We focus on

the college friendship networks that have low female ratios. We

consider clique-based instantiations of the quark decomposition

and choose gender-balanced triangles and four-cliques as the motif

N . We observe consistently high female ratios when compared to

the label-oblivious state-of-the-art methods.

Key contributions in this paper are summarized as follows:

• Quark decomposition.We propose a framework to find dense

subgraphs according to a given motif in networks with directed

edges and categorical attributes on nodes/edges. Quark decomposi-

tion is versatile, efficient, and extendible.

• Limitations and role confusion problem.We characterize the

limitations and practical instantiations of quark decomposition to

guide the selection of parameter motifsM and N . Presence of mul-

tiple orbits in some directed motifs results in subgraphs where a

node/edge serves in multiple orbits. We call this role confusion and

devise role-aware quark numbers as a remedy.

• Generic peeling algorithm for any motif. We introduce a

generic peeling algorithm that works for any motif pair M,N to

find the quark decomposition. Our algorithm is similar in spirit to

the core/truss/nucleus decompositions and can enjoy the optimiza-

tions applicable for the peeling algorithms.

• Extensive evaluation on real-world networks. We evaluate

quark decomposition on three types of heterogeneous networks;

directed, signed-directed, and node-labeled. We consider various

motifs using several real-world networks. Results show that quark

decomposition outperforms the state-of-the-art techniques and is

also practically scalable to networks with up to 101M edges.

2 RELATEDWORK

Here we summarize the related works on motif-driven dense sub-

graphs in heterogeneous networks. Note that there are too many

clustering, community detection/search works on heterogeneous

networks [15], but our focus is limited to motif-based approaches

that find dense subgraphs in directed and labeled networks.

Peeling approaches on simple networks. Core decomposition

is a simple but effective model to locate the seed regions where

dense subgraphs can be found [52]. It makes use of degrees to

assign core numbers to nodes. Regularizing the node degrees, that

span to a large range, to the core numbers in a smaller range is

the key and makes the peeling a fundamental building block in

an array of applications [5, 10, 29, 37, 42]. Higher-order variants

of the peeling are introduced to take advantage of the triangles

and small subgraphs. Truss decomposition leverages triangles [12,

23, 46], nucleus decomposition makes use of small cliques [50, 51],

and tip/wing decomposition utilizes butterflies (2, 2-bicliques) in

bipartite networks [3, 49] to find dense regions in a principled way.

Nucleus decomposition generalizes core and truss decompositions.

It finds k-(r , s) nucleus, defined as a subgraph where each r -clique
is a part of k number of s-cliques where r < s . Those peeling

approaches work on undirected simple networks. Here we work

on directed networks with attributes on nodes/edges. We compare

our methods with nucleus decomposition to highlight the benefit

of considering edge directions and node labels.

Cycle-, flow-trusses. Regarding the adaptations of core and truss

decompositions for directed graphs, Takaguchi and Yoshida [58] in-

troduced cycle- and flow-trusses. Their algorithms work on directed

networks with respect to cycle and flow (acyclic) motifs (see Fig-

ure 1) and rely on the occurrences of the cycle and flow motifs for

each edge. However, they do not consider the bidirectional edges

and handle each such edge as two separate unidirectional edges.

We compare our work with cycle-flow trusses in Section 5.1.

Motif-based densest subgraph and clique finding. There are a

few works in the literature that studies the motif-driven densest

subgraph problem. For constant size cliques, which can be thought

of as motifs in simple undirected graphs, Tsourakakis introduced

the k-clique densest subgraph problem [60] to generalize the classi-

cal densest subgraph discovery [20] for k-cliques (k > 2). Analo-

gous to finding the subgraph with the maximum average degree,

Tsourakakis proposed to find the subgraphs that have a maximum

average triangle (or k-clique) count per node. More recently, Fang

et al. proposed exact and approximate algorithms for the same

problem [16] and Hu et al. considered heterogeneous information

networks with specific schemas to find maximal motif-cliques [22].

Note that our problem setup is more general and we aim to find mul-

tiple subgraphs that are not necessarily perfect cliques but always

significantly dense.

Higher-order motif clustering. The motif-based graph cluster-

ing problem is studied from a spectral perspective in heterogeneous

networks. Benson et al. [8] introduced a nice generalized framework

for clustering the networks based on the higher-order connectiv-

ity patterns. They defined the motif conductance as the ratio of

the number of motifs cutting the border between two regions to

the number of motif instance endpoints (i.e., nodes) in the sub-

graph or its complement, whichever is smaller. Since getting the

optimal solution for motif conductance is NP-Hard, they proposed

an approximate algorithm that finds the near-optimal cluster in

a given network. Their method relies on the spectral clustering

of motif adjacency matrix whose entry i, j is the number of mo-

tifs where nodes i and j co-occur. The set of nodes in the spectral

ordering that has the minimum conductance is reported as the op-

timal higher-order cluster. Recursive bisection method iteratively

finds the near-optimal clusters in the complement of the graph and
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Figure 1:Directed trianglemotifs with three nodes and three edges,

as named in [53]. Automorphism orbit (or just orbit) of a node in a

given motif is the set of other nodes that have the same topological

connectivity patterns. In each triangle, orbits of the nodes are de-

noted with colors (i.e., nodes in the same color have the same orbit).

k-means clustering on the motif adjacency matrix obtains a pre-

specified number of clusters. Concurrently, Tsourakakis et al. [61]

proposed the same framework for motif-aware clustering and also

introduced a random walk interpretation of the graph reweighting

scheme which gives a principled approach to define the notion of

conductance for other motifs. More recently, Li et al. improved the

motif-based clustering approach to handle the clustering of discon-

nected nodes [36]. Our framework differs from those approaches:

we do not partition the graph but find dense subgraphs around

nodes/edges. We give an extensive comparison against the motif

clustering [8] in our experiments.

3 PRELIMINARIES

Motifs and hypergraphs. We define motif M = (VM ,EM ) as an
induced directed subgraph with node and edge sets VM , EM . Each

v ∈ VM and e ∈ EM can have categorical (non-numeric) attributes,

defined by f : VM ,EM → N . A motifM is a subset of motif N iff

• VM ⊆ VN where there is one and only one v ′ ∈ VN for each

v ∈ VM such that f (v) = f (v ′).
• EM ⊆ EN where there is one and only one e ′ ∈ EN for each

e ∈ EM such that f (e) = f (e ′).
We use the language of hypergraphs to define the involvements of

small motifs in the larger motifs. A hypergraph H = (V ,E) consists
of the node set V and hyperedge set E, where a hyperedge e ∈ E is

simply a subset of V (in standard graphs, each hyperedge has two

nodes). Consider a hypergraph H = (V ,E);
• u,v ∈ V are neighbors if there is a hyperedge e ∈ E that contains

u and v .
• The degree of a node v ∈ V , denoted by d(v), is the number of

hyperedges that contain v .
• The size of a hyperedge e ∈ E, denoted by s(e), is the number of

nodes in it.

• Two nodes u and v are connected if there exists a sequence of

hyperedges e1, e2, . . . , eℓ ∈ E such that u ∈ e1, v ∈ eℓ , and ∀i < ℓ,
ei ∩ ei+1 , ∅.
• H is connected if all pairs of nodes are connected.

Definition 1. Let S ⊆ V . The induced hypergraph H |S has
node set S and contains every hyperedge of H completely contained
in S , i.e., ∀e ∈ H |S , iff v ∈ e then v ∈ S .
• The degree of nodev ∈H |S is denoted by dS (v) (or d(v) when clear).
• The minimum degree in H |S is denoted by δS .

Induced hypergraph is also known as section hypergraph.

Dense subgraphs.We call a subgraph dense if it has many motifs

(also calledmotif-based or -driven dense subgraph). Formally,

we use averagemotif degree to quantify the density of a subgraph

with respect to a given motif.

Definition 2. For a subgraph S and a motif N , the average

motif degree of S is the number of instances of N in S divided by
the number of nodes in S .

4 QUARK DECOMPOSITION FRAMEWORK

We first define themotif hypergraph.

Definition 3. Given a graph G and template motifs M and N
s.t.M ⊂ N . Let {M} and {N } be the set of instances ofM and N in
G, respectively, and f ,д be bijective functions.Motif hypergraph

HG (M,N ) = (VG ,EG ) is a hypergraph constructed as follows:
• Each instance ofM ∈ G forms a node u ∈ VG by f :{M} → VG .
• Each instance of N ∈ G forms a hyperedge e ∈ EG byд:{N } → EG .
• IffM ⊂ N in G, then f (M) ∈ д(N ) in HG .

Note that HG (M,N ) is a t-uniform hypergraph (i.e., s(e) = t ∀e ∈
EG ) where t is the number of occurrences ofM in N . We also refer

to the degree of each node u ∈ HG as the motif degree, denoted

by dHG (u) (or d(u) when HG is obvious).

We now introduce the notion of k-quark subgraph.

Definition 4. Given a graph G and template motifsM , N such
thatM ⊂ N , sayHG (M,N ) is the motif hypergraph defined as above.
• For any k ∈ N, a k -quark of HG (M,N ) is a connected and maxi-

mal induced sub-hypergraph H |S such that δS ≥ k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
inG), the quark number of u, denoted by K(u), is the largest value
of k such that u belongs to a non-empty k-quark.

We also refer to k-quark as quark when k is irrelevant or clear.

Definition 5. k-quarks form a hierarchy by containment.
• Let S be a k-quark andT be a k ′-quark such that k ′ < k and S ⊂ T .
S is the child of T (and T is the parent of S) if there is no ¯k-quark
U such that k ′ < ¯k < k and S ⊂ U ⊂ T .
• A k-quark is leaf (childless) if there is no k+-quark in it s.t. k+ > k .
•Maximum quark number of a graph is the largest k for which
there is a non-empty k-quark.
• Maximum k-quark is a quark where k is the maximum quark
number in the graph.

Quark decomposition is the process of finding the quark numbers

and k-quarks for a given pair of motifs M,N in a graph G. Leaf
k-quarks are the locally optimal subgraphs; they are surrounded

by less dense quarks (with lower k values) and hence often contain

the most interesting information.

IfG is a simple undirected graph whereM is r -clique and N is s-
clique (r < s), then k-quark is nothing but a k-(r , s) nucleus [50, 51].
If G is a simple undirected bipartite graph whereM is edge and N
is 2, 2-biclique, then k-quark reduces to be a k-wing [49]. In the

quark decomposition, each M instance is given a quark number

and the k-quarks along with the hierarchical relationships among

them can be constructed accordingly. Note that, N is the motif

of interest for which dense regions are to be found. Motif M
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Figure 2:We construct the motif hypergraphH with respect to the

motifsM (edge) and N (acyclic) on a toy graph G (in top-left). Each

orbit in N is shown by a different color. We create a node for each

motif M and a hyperedge for each motif N to get the motif hyper-

graph H . Ids of triangles and edges are the union of the nodes in

each. Quark numbers are denoted with gray for 1 and black for 2.

1-quark and 2-quark are shown in top-right. Role confusion occurs

for nodes 3 and 4 in both quarks. Role-aware quarks andquarknum-

bers are shown at the bottom (See Section 4.1.2 for more details).

can be any subset of N but it should satisfy some requirements

such that non-trivial k-quarks can be obtained (more details given

in Section 4.1). When M is edge or a larger motif, the resulting

k-quarks may overlap with each other because quarks are defined

as a group ofMs. This is useful since the overlapping communities

can better capture the network organization [65].

4.1 Limitations & practical instantiations

It is important to consider the necessary and sufficient conditions

for theM and N in Definition 4 so that the k-quarks are non-trivial.
For instance, if M has only one occurrence in N , the size of each

hyperedge in the motif hypergraph becomes one, thus it is not

possible to consider any connectivity among Ms. This is related

to the automorphism orbits [44, 47]. Automorphism orbit (or just

orbit) of a node in a given motif is the set of other nodes that have

the same topological connectivity patterns. For directed triangle

motifs, shown in Figure 1, orbits of the nodes are denoted with

colors. For instance, in+ has two orbits; the first has one node with

two incoming edges (white node) and the second has two nodes

where each has one outgoing and one bidirectional edge (black

nodes). Note that automorphism orbits are defined only for the

nodes. In our framework, we can also consider an edge or a larger

structure asM in Definition 4, thus automorphism orbits of such

structures need to be taken into account. To define the orbits of

anyM , we consider the ordered list of node orbits in it.

Enforcing the automorphism orbits restricts the use of any motif

since Definition 4 requires that at least one orbit should have multi-

ple instances in N . E.g., whenM is node or edge; acyclic, cycle+, and
cycle++ motifs have three different orbits, i.e., no orbit has multiple

members. Thus those cannot be considered as N . To remedy this

problem, we use a vanilla motifM , which has only one orbit.

A vanilla motif has no node/edge labels and its edges are direction-

less
1
. Any motif N ⊃ M will contain multiple instances ofM , thus

the size of hyperedges will be greater than one. Figure 2 gives an

example whenM is a vanilla edge and N is acyclic.

4.1.1 Role confusion problem. Another problem in k-quarks is
the conflation of the orbits forMs. An instance ofM can be a part

of multiple instances of N . Furthermore, orbit of anM instance in

one N instance can be different than its orbit in another N instance.

E.g., ifM is node and N is out+, a node may appear as white node in

one out+ instance while being black node in another out+ instance

(see Figure 1). We call this the role confusion problem. Note that

choosingM as a vanilla motif does not help with the role confusion

problem. For example, consider cycle+ with nodesA,B,C and edges

A→B, B→C , A↔C . This can be a structure in Twitter network;

e.g., A is a grad student, C is her advisor (a professor), and B is a

junior faculty working in the same field—B is an interesting person

for A but not for C, professor C is a well-known person followed

by many and she follows A since she is A’s advisor. In the motif-

driven subgraphs for cycle+, each node has ideally a single role;

i.e., a grad student is better characterized as the node A in all the

cycle+ instances she participates in. The solution is to construct

the subgraphs in a way that abide by the orbits. To do that, we de-

fine role-aware quark numbers for eachM . IfM has b orbits in

N , eachM will haveb role-aware quark numbers, one for each orbit.

Definition 6. Given a graphG and motifs (vanilla)M and N (s.t.
M ⊂ N ), let HG (M,N ) be the motif hypergraph as defined in Defini-
tion 3. Let b be the number of orbits ofM in N .
• Orbit degree of anM instance is the number of instances of N that
contain it such that the orbit of theM instance in each N instance is
the same. EachM instance has b orbit degrees.
• For anyk ∈ N, a role-aware k -quark ofHG (M,N ) is a connected
and maximal induced sub-hypergraphH |S such that eachM instance
has one orbit degree of at least k .
• For a node u in HG (M,N ) (corresponding to an instance of motifM
in G), the role-aware quark numbers of u are b numbers, denoted
by Ki (u) for 1 ≤ i ≤ b. Ki (u) is the largest value of k such that the
node u belongs to a non-empty role-aware k-quark where its orbit is i .

In a role-aware k-quark, eachM instance participates in at least

k N instances and the orbit of the M instance in each of those

participations is the same (note that differentM instances can have

different orbits in the quark). Role-aware quark numbers describe

the extent of participation as a particular orbit while the quark

number indicates the extent of participation as any orbit. WhenM
is node and N is cycle or reciprocal (in Figure 1), there is no role

1
we do not say bidirectional to avoid any confusion
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confusion since there is only one node orbit in each. For all the

other directed triangles, there is a role confusion. WhenM is edge,

we always consider the orbits of the two nodes in it. In the context

of directed triangles, one important point is the distinction between

unidirectional and bidirectional edges. In this work, we consider

the bidirectional edge as an atomic entity; i.e., not combination

of two unidirectional edges, due to the fact that a symmetrical

relation has a different semantic than two asymmetrical ones—in

a sense we only consider the induced edges. For instance, in+ and

out+ do not create any role confusion when M is edge, because

the unidirectional edge between the white and black nodes in in+
(or out+) cannot serve as a bidirectional edge (between two black

nodes) in an adjacent in+ (or out+) motif (see Figure 1).

4.1.2 Example. Figure 2 illustrates an example on a toy graph.

We choose the vanilla edge as the motif M and acyclic triangle
as the motif N , shown in the top-left. We denote the node orbits

in acyclic with different colors; orange shows the node with two

outgoing edges, blue is for the node with two incoming edges, and

red denotes the node with one incoming and one outgoing edge.

Motif hypergraph, H , with respect to G,M,N is shown next. As

described in Definition 3, we create a node for each vanilla edge

(bottom set in H ) and a hyperedge for each acyclic (top set in H ).

Id of each acyclic and edge in H is formed by the concatenation

of the node ids in it, e.g., 12 denotes the edge from 1 to 2. Each

hyperedge is connected to three nodes since there are three edges

in an acyclic—making H a 3-uniform hypergraph. The degree of

each node in H is called the motif degree, e.g., it is 2 for edge 4-5.

Quark numbers of the edges are denoted by gray (K = 1) and black

(K = 2) in the bottom set of H ; e.g., quark number of edge 4-5 is

2. Based on those quark numbers, we construct the quarks in the

top-right. Two quarks are created; a 1-quark, corresponding to the

entire graph G , and a 2-quark with nodes 1, 3, 4, and 5. We observe

role confusions for the thick edges in those quarks, which in turn

implies the role confusions on nodes. Regarding the edges, 1-4, 3-4,

and 3-5 have role confusion in both quarks; e.g., in 1-quark, 1-4

connects orange to blue in 1-4-6 acyclic but it links orange to red

in 1-5-4 acyclic. For the nodes, 3 and 4 in both quarks have role

confusions, e.g., node 3 is red in the 1-3-5 acyclic (and in 1-3-4) while

being orange in the 3-4-5 acyclic. We give the role-aware quarks

and quark numbers of the edges at the bottom. If we construct the

role-aware quarks by abiding the orbits, we get three role-aware

1-quarks. Note that the only edges that have multiple non-zero Ki
are the ones that have role confusion in the top-right.

4.2 Algorithms

Here we discuss our peeling algorithms, first for quark decomposi-

tion (Definition 4) and then for role-aware quarks (Definition 6).

4.2.1 Quark decomposition. Algorithm 1 outlines the quark de-

composition. Here we assume the motif M in Definition 4 to be

node or edge for simplicity. Note that larger structures can be con-

sidered as well. Also, we avoid constructing the actual hypergraph

of motifs since it requires enumerating all the N s which will have

a significant space cost. Instead, we discover those motifs for each

node/edge as needed, similar to the space-efficient approach in

nucleus decomposition [50]. There are three different phases in the

quark decomposition; motif degree counting, peeling to find quark

numbers, and constructing the subgraphs and the hierarchy.

Motif degree counting. Line 1 corresponds to counting the oc-

currences of N instances per each node or edge. There are some

studies [39, 43, 66] that leverage certain commonalities among mo-

tifs to avoid redundant computations. Adapting those studies for

per node/edge motif counting to improve runtime is possible but

out of scope for this work. Also, simultaneously counting the motif

degrees for multiple motifs would speed up the workflow when the

motif of interest is unknown to the user and multiple options need

to be investigated. Note that if the label set of the input motif N
is smaller than the label set of the input graph G, we can filter the

graph to only keep the label set of N , e.g., if a triangle of female

students is N for an undirected graph where genders are the node

labels, only the induced graph of female nodes can be considered.

Peeling to find quark numbers. Lines 3 to 10 assigns a quark

number for each node/edge. The classical core decomposition im-

plementation [7] makes use of the bucket data structure to keep

track of the nodes with the minimum degree. We also use this ap-

proach to watch the nodes/edges with the minimum motif degree.

Initially, all the nodes/edges are marked as unprocessed (line 2),

which will come handy to ensure each N instance is processed

only once. In each iteration, an unprocessed node/edge with the

minimum motif degree is chosen (line 3). The motif degree of the

chosen node/edge is set to be its quark number (K) (line 4). Then,

the N instances that contain the chosen node/edge are found and

processed in lines 5 to 9. In each such instance of N , we make sure

that the other nodes/edges (the neighbors of the chosen node/edge)

are unprocessed (line 6); this is done to ensure that each N instance

is examined only once. Then, the neighbor nodes/edges in each N
instance are checked (line 7) and their motif degree is decremented

if larger than the motif degree of the chosen node/edge (lines 8

and 9). At the end of the iteration, the chosen node/edge is marked

as processed (line 10). For anyM,N motif pair, two basic procedures

are necessary and sufficient to instantiate the quark decomposition;

• Finding the N instances that contain a givenM instance (line 5),

• Finding theM instances in a given N instance (lines 6 and 7).

Constructing the subgraphs and the hierarchy. It is also possi-

ble to construct the subgraphs and build hierarchy among k-quarks
during the peeling operation, as noted in magenta lines after lines 6

and 10. Subgraph and hierarchy construction during the peeling

process is introduced in [48] and can be adapted to the quark decom-

position. In line 6, the nodes/edges that are in the same N instance

with the chosen node/edge are checked. If those nodes/edges are

already processed (i.e., assigned a quark number), we can build non-

maximal k-quarks during the peeling process. At the end, those

non-maximal k-quarks are converted to the real (maximal) k-quarks
with a light-weight post-processing that uses the union-find data

structure (following line 10).

Theorem 1. Given a graph G = (V ,E) and motif N , Algorithm 1
finds the quark numbers, K(·), of all u ∈ V (or e ∈ E).

Proof. We give the proof for the node case without loss of

generality (i.e., it is similar for the edge). As noted in Section 3,

nodes u,v ∈ V are neighbors if they participate in a common

motif N . K(u) = k indicates that there are at least k instances of

N which contain u and in each such N , u has a neighbor node
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Algorithm 1:Quark Decomposition (G (V ,E), motif N )

1 Compute d (u) (motif deg.) ∀ u ∈ V // or d (e) ∀ e ∈ E
2 Mark every u (or e ) as unprocessed
3 for each unprocessed u (or e ) with minimum degree d do

4 K(u) ← d (u) // or K(e) ← d (e)
5 for each motif N s.t. u ⊂ N (or e ⊂ N ) do
6 if any node v ∈ N is processed (or edge) then continue

// can also find subgraphs & hierarchy

7 for each node v (, u) ⊂ N (or edge f (, e)) do
8 if d (v) > d (u) (or d (f ) > d (e)) then
9 d (v) ← d (v) − 1 // or d(f ) ← d (f ) − 1

10 Mark u (or e ) as processed
// Optional post-processing to build the hierarchy

11 return array K(·)

v s.t. K(v) ≥ K(u). This is enforced by the lines 8-9, where the

motif degree a neighbor node is decreased if it is larger than the

quark number assigned at that step. In other words, any neighbor

node with a smaller quark number does not contribute to the quark

number of the node of interest. If Algorithm 1 finds K(u) = k for

a node u ∈ V , then by Definition 4, we need to show that (i) ∃ a

k-quark G ′ ∋ u, (ii) � a k+-quark G ′ ∋ u (k+ > k).
(i) Once K(u) = k is found in Algorithm 1, we stop and construct

an induced subgraph G ′ ⊂ G by traversal as follows. Initially, G ′

has only u. In each step, we visit a node v ∈ V s.t. v co-participates

in some N instance with a node from G ′. If K(v) = k or if it is

unassigned but its current motif degree is equal to k , we add v to

G ′. We continue the traversal until no such node v can be found.

At the end, G ′ is a k-quark since (1) each node participates in ≥ k
motifs, because the nodes are processed in the non-decreasing order

of their motif degrees, (2) all the nodes are connected to each other

with motifs due to the motif-based traversal, and (3)G ′ is maximal

since it is the largest subgraph that can be found by the traversal.

(ii) u cannot be in a k+-quark. Assume it is. Then it should take

part in at least k+ motifs and each motif contains a neighbor node

with motif degree of at least k+. But, this implies that K(u) = k+

(by Definition 4), contradiction. □

Time and space complexity.Algorithm 1 hasO(
∑
v ∈V d(v) |VN |−1)

complexity when M is node or edge (VN is the node set of N ).

The space complexity is O(|E |) when M is node/edge. Instead of

explicitly building the hypergraph of Ms and N s in G, we only

build the adjacency lists when required. Since N s are not stored,

space complexity is bounded by O(|E |). We find all motifs con-

taining the node/edge of interest only when that node/edge is

processed. Each node/edge is processed at most once. When M
is node, we can find all the N s containing a node by looking at

all (|VN | − 1)-tuples in each of the neighborhoods of the node.

This takes at most

∑
v ∈V d(v) |VN |−1

. Likewise, whenM is edge, we

consider |VN | −2 tuples in each edge neighborhood and total time is∑
e ∈E

∑
v ∈e d(v)

|VN |−2 =
∑
v ∈V

∑
e ∋v d(v) |VN |−2 =

∑
v d(v) |VN |−1

.

4.2.2 Role-aware quark decomposition. Algorithm 2 outlines

the role-aware quark decomposition; again, for simplicity, we as-

sume the motif M in Definition 6 is node or edge (larger M can

be considered as well). The only difference with respect to Algo-

rithm 1 is the way we compute and keep the degrees and process

the node/edge in the inner loop. We first find the set of orbits, B,

Algorithm 2: Role-awareQuark Dec. (G (V ,E), motif N )

1 Let B be the set of orbits that a node/edge has in N
2 Compute do (u) (orbit deg.) ∀ orbits o=1, ..., |B |, ∀ u ∈V // or do (e)
3 Mark every tuple (u, o) as unprocessed for o=1, ..., |B | // or (e, o)
4 for each unprocessed (u, a) (or (e, a)) with min. orbit degree da do

5 Ka (u) ← da (u) // or Ka (e) ← da (e)
6 for each motif N s.t. u ⊂ N (or e ⊂ N ) do
7 Let v (, u) be a node in N , b be its orbit (or f (, e ) is an edge)

8 if any tuple (v, b) ∈ N is processed (or (e, b)) then continue

9 for each node v (, u) ⊂ N (or edge f (, e)) do
10 Let b be the orbit of v (or f ) in N
11 if db (v) > da (u) (or db (f ) > da (e)) then
12 db (v) ← db (v) − 1 // or db (f ) ← db (f ) − 1

13 Mark (u, a) (or (e, a)) as processed
14 return arrays K1(·), ..., K|B |(·)

that a node/edge has in N (line 1). In line 2, we count the orbit

degrees for each node/edge and for all orbits 1, ..., |B |. Orbit degree
do of a node u (or edge e) is the number of N instances that contain

the node u (edge e) such that the orbit of u (e) is o (Definition 6).

Each orbit degree of a node/edge is processed separately. We also

keep |B | arrays to keep track of the processed (u,o) (or (e,o)) tu-
ples (o is the orbit of node u, or edge e) (line 3). In lines 4-13, we

process all the orbit degrees in non-decreasing order. Role-aware

quark number is assigned for the chosen node/edge (line 5) and

we find the neighbors of the node/edge in each N to adjust their

orbit degrees (lines 6 to 12). At the end, we return role-aware quark

numbers for each node; Ki (·) for 1 ≤ i ≤ |B |.

5 EXPERIMENTS

We evaluate our framework on three types of networks and motifs

therein; directed (Section 5.1), signed-directed (Section 5.2), and

node-labeled (Section 5.3) networks. We implement quark decom-

positions for various motifs in each type and evaluate the resulting

subgraphs. All experiments are performed on a Linux operating sys-

tem (v. 4.12.14-150.52) running on a machine with Intel(R) Xeon(R)

CPU E5-2698 v3 processor at 2.30GHz with 64 GB DDR3 1866 MHz

memory. Algorithms are implemented in C++ and compiled using

gcc 6.1.0 at the -O2 level.The code is available at http://sariyuce.

com/quark_decomposition.tar. For each network type, we dis-

cuss the set of motifs used and present the results. We compare

quark decomposition to the state-of-the-art methods and highlight

anecdotal examples to stress the contrast between our method and

others. We also present the runtime performance of quark decom-

positions and other state-of-the-art methods.

Baselines.We consider three baselines in our comparisons.

•Motif clustering (MC) [8]. Set of higher-order clustering algo-

rithms by Benson et al. (see Section 2 for details). We consider three

versions; (1) MC-Single: Algorithm that gives a single subgraph

with near-optimal motif conductance, (2)MC-Rec-Bisection: Re-

cursive bisection algorithm that iteratively finds multiple clusters

(starting with the optimal) until the cluster size gets too small (less

than 10 nodes) or quality degrades too much (conductance goes

above 0.5), (3) MC-k-means: k-means algorithm that is run on the

motif adjacency matrix – number of clusters (k) must be specified

for this version.

http://sariyuce.com/quark_decomposition.tar
http://sariyuce.com/quark_decomposition.tar
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Table 1:Directed datasets fromvarious domains. |V |, |E |, |Eu |, and |Ed | are the number of nodes, edges, bidirectional, andunidirectional edges.

We also list the number of motifs for each directed triangle (see Figure 1) andmaximum quark numbers in each quark decomposition. Largest

motif count and quark number for each network are shown in bold (for quark numbers, M is a vanilla edge, N is a triangle from Figure 1).

|V | |E | |Eu | |Ed |
# motifs maximum quark numbers

cycle acyclic out+ in+ cycle+ cycle++ reciprocal cycle acyclic out+ in+ cycle+ cycle++ reciprocal
foodweb 128 2.1K 31 2.0K 70 7.9K 91 80 212 75 0 1 8 1 1 1 1 0

EAT 23.2K 325.0K 20.1K 284.8K 7.4K 295.2K 76.9K 44.8K 25.0K 26.9K 4.1K 1 5 3 3 2 3 3

emailEuAll 265.0K 419.0K 54.5K 310.0K 1.0K 44.9K 65.1K 22.4K 15.2K 69.7K 49.0K 1 4 7 4 2 6 11

cit-HepPh 34.5K 421.5K 657 420.2K 65 1.3M 5.4K 5.3K 232 191 18 1 23 2 2 1 2 1

Slashdot 77.4K 828.2K 359.0K 110.2K 89 9.6K 42.8K 16.4K 10.0K 71.1K 401.9K 1 3 6 3 2 3 33

web-ND 325.7K 1.5M 379.6K 710.5K 9.5K 499.2K 309.7K 1.2M 40.6K 106.6K 6.8M 1 15 14 11 2 3 148

amazon 403.4K 3.4M 944.0K 1.5M 45 632.1K 974.9K 627.1K 58.1K 821.5K 872.8K 1 5 6 4 2 4 9

wiki-Talk 2.4M 5.0M 361.8K 4.3M 171.9K 227.7K 1.0M 1.6M 1.1M 2.2M 836.5K 2 12 7 7 6 18 18

soc-pokec 1.6M 30.6M 8.3M 14.0M 142.7K 5.0M 4.1M 3.9M 2.1M 10.4M 7.0M 2 25 9 5 3 7 18

liveJournal 4.8M 68.5M 25.6M 17.2M 202.3K 58.3M 33.9M 46.5M 6.6M 59.7M 80.6M 7 133 98 89 27 65 247

en-wiki 4.2M 101.3M 9.4M 82.6M 2.8M 163.3M 61.4M 34.8M 13.8M 22.1M 5.9M 7 26 22 24 5 18 29

• Takaguchi and Yoshida (TY) [58]. Cycle-truss and flow-truss

algorithms (see Section 2 for details).

• (r,s) nucleus [50]. Nucleus decomposition to find hierarchical

dense subgraphs in undirected networks (see Section 2).

Metrics.We consider three metrics to measure the quality of the

subgraphs. We also show anecdotal examples when feasible.

• Motif conductance. Edge conductance is adapted for motifs

in [8]. Motif conductance of a subgraph is defined as the ratio of

the number of motif instances cut (i.e., motifs in the boundary) to

the number of motif instance end points in the subgraph (i.e., nodes

participating in the motifs). The lower values are better.

• Average motif degree. Conductance metric is known to have a

bias toward giving better results for smaller numbers of clusters [4,

35]. As an alternative, we consider the average motif degree in

each subgraph, as given in Definition 2. In edge-based clustering

literature, the densest subgraph of a graph is defined as the one with

the largest average degree [20, 60]. Here we adapt this measure

for the motif-based subgraphs and simply consider the number of

motifs per node. The higher values are better.

•Edge density.We also consider the ratio of edges over all possible

in a subgraph (|E |/
( |V |

2

)
). We use this metric in Section 5.3 for

undirected networks. The higher values are better.

5.1 Directed networks

Datasets. We consider several directed networks from various

domains in our experiments: Florida Bay food web (foodweb), word
associations (EAT), emails (email-EuAll), citations (cit-HepPh),
online social networks (slashdot, soc-pokec, livejournal,
wiki-Talk), web networks (web-ND, wiki-Talk), and product co-

purchasing relations (amazon). All networks (except EAT [28]) are
obtained from SNAP [34]. Table 1 gives several statistics, including

the motif counts and maximum quark numbers.

Motifs.We instantiate the quark decomposition for directed net-

works by considering the edge and triangle motifs (Figure 1), corre-

sponding to the M and N in Definition 4, respectively. Note that

considering edge as motifM is more advantageous than node. Since

the edges are assigned quark numbers, k-quarks can overlap with

each other. Also, role confusion does not happen for out+ and in+
as explained in Section 4.1.1. We also incorporate the reciprocity by

considering the unidirectional and bidirectional edges separately,

rather than treating each bidirectional edge as two unidirectional

edges. This is because directed networks often have a significant

percentage of bidirectional edges (also observed in Table 1) and

those need to be treated differently, as discussed in [41, 53]. We
use the vanilla edge as the motif M and each of the seven directed
triangles (Figure 1) as the motif N .

Wefirst discuss themotif counts and quarks for directed triangles.

Thenwe compare quarkswith baselines using the EAT and foodweb
networks. We finish by comparing the runtimes.

5.1.1 Motif counts and subgraphs. Table 1 lists themotif counts

and maximum quark numbers for each motif. cycle is often the least

common motif. Networks with significant fraction of bidirectional

edges tend to contain reciprocalmotifs the most. Note that the most

frequent motif does not always yield the highest quark number.

In particular, reciprocals are often concentrated in a small region,

thus yield highly-dense subgraphs. For instance, en-wiki has 5.9M

reciprocal and 163.3M acyclic motifs but the maximum quark num-

bers for those motifs are 29 and 26, respectively. This is because the

maximum k-quark has 465 edges in the reciprocal case but has 9461
edges in acyclic. We also observe that the number of quarks are

independent of the motif counts. For example, the most prevalent

motif in EAT network is, by far, acyclic. However, acyclic yields only
447 k-quarks while the cycle+ locates 2826 subgraphs. Overall, the

abundance of a particular motif does not imply the existence of

dense subgraphs containing that motif.

5.1.2 Comparisonwith previousmethods. We compare quark

decomposition against the three baselines listed above. We use EAT
network, a collection of word association norms where the nodes

are English words and an edge (u,v) implies that human subjects

consider the word v when they are shown the word u as stimulus.

We first compare the quality of subgraphs given by the quark

decomposition andMC algorithms [8] using motif conductance and

average motif degree metrics. For quark decomposition, we only

consider the k-quarks with at least 10 nodes. ForMC algorithms,

we consider MC-Single and MC-Rec-Bisection. Note that we

aim to compare the ‘best’ clusters reported by the two algorithms

and do not intend any comparison with respect to the number

of clusters reported. Figure 3 gives the comparison for reciprocal,
out+, acyclic, and cycle++ motifs (other motifs show similar results

and omitted). For each subgraph, we report the size as well as the

quality metric; number of motifs per node in the top row and the



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Ahmet Erdem Sarıyüce

 1

 10

 100

 10  100  1000  10000

# 
m

ot
ifs

 p
er

 n
od

e

# nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

m
ot

if 
co

nd
uc

ta
nc

e

# nodes

MC-REC-BISECTION

MC-SINGLE

Quarks

(a) reciprocal

 1

 10

 100

 10  100  1000  10000

# 
m

ot
ifs

 p
er

 n
od

e
# nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

m
ot

if 
co

nd
uc

ta
nc

e

# nodes

(b) out+

 1

 10

 100

 10  100  1000  10000

# 
m

ot
ifs

 p
er

 n
od

e

# nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

m
ot

if 
co

nd
uc

ta
nc

e

# nodes

(c) acyclic

 1

 10

 100

 10  100  1000  10000

# 
m

ot
ifs

 p
er

 n
od

e

# nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

m
ot

if 
co

nd
uc

ta
nc

e

# nodes

(d) cycle++
Figure 3: Comparison of the quark decomposition andMC [8] in EAT network. Top row shows the results for number of motifs per node, i.e.,

averagemotif degree, (higher is better) and the bottom rowhas themotif conductance (lower is better).We considerMC-Single, which obtains

near-optimal motif conductance, andMC-Rec-Bisection, which is applied until the resulting cluster gets too small (less than 10 vertices) or

high conductance (more than 0.5). For quark decomposition, we only show the k-quarks with at least 10 nodes. Each subgraph is denoted by a

point; the size is shown on the x -axis and the metric is given on the y-axis. The large quarks for which the conductance computation requires

the rest of the graph (since the size is more than the half) are denoted by red circles for completeness (conductances for those are not real).

motif conductance in the bottom row. MC variants often give large

subgraphs, always with very low conductance, as expected. MC-

Single (optimal cluster) has more than 1000 nodes for out+, in+,
acyclic, and cycle++. For cycle+, however, it has only five nodes.

Quarks are often small, most in the range of 10-100 nodes, and

have higher conductance scores. For out+ and cycle++, some quarks

yield comparable conductance scores with MC-Rec-Bisection. We

also observe that a quark for acylic has a better conductance than
MC-Single (which is the near-optimal as shown in [8]). Regarding

the average motif degrees (top row), quarks perform significantly

better in all the motifs (note that y-axis is in log-scale). By definition

of the quark (the connectivity constraint in particular), if the size

is n, the number of motifs is at least n − 2 (for k = 1, a single

motif is a valid subgraph and can be extended by a new node that

creates a new motif, keeping the motif count n − 2). This ensures a

lower bound,
n−2

n (close to 1), for average motif degree in quarks.

In general, quarks tend to be smaller in size when compared to

MC results, have consistently higher average motif degrees, and

comparable conductance scores for some motifs. Overall, the top-

down partitioning approach in the motif clustering is likely to

result in larger subgraphs in varying quality whereas the bottom-

up computation in quark decomposition yields smaller subgraphs

with larger average motif degrees.

Next we compare quark decomposition with TY [58]. For EAT net-
work, TY reports maximum cycle-truss number of 3 and maximum

flow-truss number of 10. For each maximum truss subgraph, we

checked the quarks that are the most similar. Figure 4 presents the

results for cycle-truss, flow-truss, and their corresponding quarks

with size and average motif degree information. For cycle- and

flow-truss, we calculate the induced cycle and acyclic motif degrees

(i.e., bidirectional edges are not included). Next to each quark, we

denote the size of its intersection with the truss. Various types of

quarks are able to obtain almost all the nodes in those trusses. 70 of

77 nodes in cycle-truss are obtained with 15 quarks and all of the

45 nodes in flow-truss are given in 15 other quarks. This verifies

the artificial over-representation of cycle- and flow-trusses due to

the non-induced nature. Overall, treating the bidirectional edges

as atomic units enables finding diverse subgraphs while correctly

capturing the semantics of pairwise relationships.

Lastly, we compare quarkswith (2, 3) nucleus decomposition [50],

which ignores edge directions. We observe that incorporating the

edge directions results in more diverse subgraphs. The number of

subgraphs (of any quality) obtained by each quark decomposition

is significantly larger than what nucleus decomposition yields. As

an anecdotal example, we show a subgraph found by the nucleus

decomposition in Figure 5. The direction-oblivious subgraph con-

tains words related to astronomy and space. Quark decompositions

capture several diverse contexts related to those words. Thanks

to the overlapping quarks, in+ finds two subgraphs that contain

space and stars: one in astronomy theme (uranus, venus, ...) and
another in the religious context (god, eternity, ...). It also finds an-
other subgraph in the vacation theme (sun, holiday, sand, ...). Out+
yields a subgraph in the air-flight context (sky, aircraft, wing, ...).
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Figure 4: Comparison of cycle- and flow-truss to quarks in EAT net-
work. For each quark, size of its intersectionwith the truss is shown.
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astronomy cosmos earth moon planet 
planetarium planets sky solar-system 

space star stars sun universe

aeroplane air aircraft airport astronaut 
cosmos earth flight fly flying holst jet 
jupiter mars moon noise pilot plane 

planet planets rocket saturn sky           
solar-system space sphere sputnik  star 

stars universe wing wings world 

cycle++

darkness end endless eternal eternity 
ever everlasting finite for ever forever 

god infinite infinity lasting long love never 
perpetual space star stars universe

god jupiter mars moon planets saturn 
space star stars uranus venus

in+

abroad away holiday holidays home 
sand spain sun sunshine vacation

aeroplane air air-force aircraft flier fly 
glide kite parachute plane sky soar wing

out+

direction-oblivious subgraph by (2,3) nucleus

Figure 5: Comparison of a direction-oblivious (2, 3) nucleus and

various quarks in EAT network. The common words in quarks and

the nucleus is shown in black. Quarks by different motifs capture

different contexts for those words. in+ provides multiple contexts

for space, stars thanks to the fact that quarks are overlapping.

We also recognize that multiple meanings of the homonym words

are reflected in various k-quarks. For instance, lie is reported in

two subgraphs by cycle++: one is about incorrectness (falsehood,
untruth, ...) and the other is about staying at rest in the horizontal

position (couch, rest, ...). Overall, quark decompositions by various

motifs can locate diverse contexts for a given word thanks to the

motif-aware approach and overlapping nature of quarks.

5.1.3 Analysis of Florida Bay food web. Here we analyze the

structure of Florida Bay food web network (foodweb) where the
nodes are the compartments (i.e., organisms, species) and the edges

are the directed carbon exchanges (i.e., u → v if v eats u). Benson
et al. showed that high-quality clusters (i.e., with low conductance)

by MC only exist for out+, which implies that the organization

of compartments is better described with out+ (as opposed to the

common belief that acyclic is the key motif) [8]. They also show

that the 4 clusters byMC-k-means for out+ reflect the ground-truth
subgroup classifications better than the state-of-the-art clustering

algorithms such as spectral edge clustering (with k-means and

recursive bisection) [63], InfoMap [45], and Louvain method [9].

We first compare the quarks for out+ withMC-k-means. We find

7 quarks for out+, so we considerMC-k-means with 7 clusters as

well as with 4 clusters. The nodes that appear in multiple quarks are

only considered to be part of their largest quark (other choices give

similar results). Table 2 presents the results for two ground-truth

classifications given in [8, 62] by four metrics: Adjusted Rand Index

(ARI), F1 score, Normalized Mutual Information (NMI), Purity [38].

Quarks clearly outperforms MC-k-means variants in both

classifications by all the metrics. One particular difference is

thatMC-k-means considers some macroinvertebrates like preda-

tory crabs among the benthic predators of eels and toadfish whereas

quark decomposition finds all macroinvertebrates in the same sub-

graph. We believe the main reason is thatMC-k-means considers

motif counts from the node-perspective while quark decomposition

is based on the edges and their motif counts.

We also consider acyclic and use role-aware quark decomposition

(Algorithm 2) to determine the roles of the compartments in the

resulting quarks. For an acyclic formed by u→v , u→w , and v→w ,

we define u as the prey orbit, v as the balancer orbit, andw as the

predator orbit. The maximum quark obtained by QuarkDec (Algo-

rithm 1) and RA-QuarkDec (Algorithm 2) is the same and contains

48 compartments. RA-QuarkDec assigns three quark numbers for

Table 2: foodweb classification results. Best in each row is in bold.

out+ Metric

Quarks MC-k-means MC-k-means

(7 subgraphs) w/ 4 clusters w/ 7 clusters

C
l
a
s
s
1

ARI 0.3627 0.3005 0.1485

F1 0.4869 0.4574 0.3794

NMI 0.5415 0.5040 0.4843

Purity 0.5968 0.5645 0.5161

C
l
a
s
s
2

ARI 0.3816 0.3265 0.1871

F1 0.5675 0.5380 0.4601

NMI 0.5206 0.4822 0.4309

Purity 0.6452 0.6129 0.5645

each edge, corresponding to the three edge orbits in acyclic (each is

a union of its nodes’ orbits). We determine the role profile for each

node based on the quark numbers of its outgoing and incoming

edges. The compartments that are dominantly predator are the birds
including predatory ducks, big herons & egrets, greeb, and more.

Dominantly prey compartments include clown goby, four types of

zooplankton microfauna, and seven macroinvertebrates (includ-

ing pink and herbivorous shrimps). Lastly, the ones that have the

balancer role are the fishes, such as (bay) anchovy, sardines, and

mojarra. Note that it is not possible to understand the roles of the

compartments by QuarkDec since each edge has a single quark

number. For instance, the average quark numbers of incoming and

outgoing edges for predatory ducks and code goby are very close,

which tells nothing about their roles.

5.1.4 Runtimeperformance. Wemeasure the runtime for quark

decomposition and MC-Single on all directed networks, Table 3

lists the results for large networks.MC-Single (denoted M) gives

only one near-optimal cluster and quark decomposition (denoted

Q) finds all the quark numbers. Quark decomposition is faster

than MC-Single for all motifs in web-ND, amazon, soc-pokec, and
liveJournal. For some configurations, such as in+ in liveJournal,
we observe up to 10x speedup. For en-wiki, however, MC-Single

is faster for all motifs. Note thatMC-Single runtime includes motif

adjacency construction and spectral clustering to find one cluster.

In order to find more clusters, spectral clustering needs to be run

again. However, the spectral clustering takes 36% of the total time

for en-wiki (on avg.), hence obtaining 10 clusters will increase the

runtime by 4x. All in all, althoughMC-Single finds only one cluster,

quark decomposition is faster for most networks and motifs, and a

better choice especially when multiple subgraphs are targeted.

5.2 Signed-directed networks

Datasets.We use signed-directed networks that have categorical

labels on edges to denote one-sided positive/negative relationships

(no bidirectional edges). We have two Reddit hyperlink networks

that have directed connections among the subreddits. reddit-body

Table 3: Runtimes for large directed networks (sec). Best result in

each motif column is shown in bold.

cycle acyclic out+ in+ cycle+ cycle++
Q M Q M Q M Q M Q M Q M

web-ND 0.34 3.31 4.26 16.8 0.62 6.3 2.11 8.54 0.53 10.01 0.78 9.86

amzn 0.74 3.54 3.29 79 2.25 132 1.92 105 1.18 5.29 3.23 107

wiki 28.9 14.0 112 18.2 10.9 16.4 21.1 17.7 20.5 20.2 47.8 16.8

soc-p 23.6 79 66.9 99 37.0 119 34.2 139 48.9 129 98.1 128

live-j 37.4 200 180 943 118 1135 126 1438 112 828 289 2248

en-w 900 501 7746 864 1511 799 1709 677 398 724 2223 677
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Figure 6: Signed directed triangle motifs.

and reddit-title consider the positive and negative interactions

among users who belong to different subreddits [31]. We considered

the last interactions in the datasets. We also consider epinions, a
who-trust-whom social network [21], and slashdotwhich contains
the self-tagged friend/foe relationships [32]. All are obtained from

SNAP [34]. Table 4 gives the number of positive and negative edges,

motif counts, and maximum quark numbers.

Motifs.We use edge and triangle motifs, corresponding to theM
and N in Definition 4, respectively. This also ensures that quarks

can overlap with each other. There is no bidirectional edge and there

are twelve possible triangle motifs in total, as shown in Figure 6;

four cyclemotifs since there is a single orbit and eight acyclicmotifs

where each ++- and +-- appears in three different ways.We use the
vanilla edge asM and each of the twelve triangles (Figure 6) as N .

5.2.1 Motif counts and quark numbers. Acyclic variants are

significantly more common than the cycles in all networks. Among

the cycle variants, +++ is the most prevalent in reddit networks
and --- is the least common in all. This is also coherent with the

structural balance theory [14], which states that the triangles with

an odd number of negative links are rare. However, cycle++- is

more common than the other cycles in the epinions network. This
might be due to hierarchical status among the nodes; the lower

status nodes are likely to trust the ones with higher status but the

reverse is not true. The ratio of balanced triangles is 0.8 for reddit
networks but 0.42 for epinions. Per the maximum quark numbers,

we observe a correlation with the motif counts. Among all, only

acyclic+++ yields non-trivial subgraphs with large quark numbers.

Cycle variants fail to give significant quarks.

5.2.2 Comparison withMC. We compare the k-quarks with the

MC-Single andMC-Rec-Bisection for acyclic+++motif in Figure 7.

Some quarks are able to obtain very low conductance scores, close

toMC results. For the average motif degrees, quarks significantly
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Figure 7: Comparison of quarks and MC [8] for acyclic+++ in

reddit-body networkwith respect to the number ofmotifs per node

(left, higher is better) and motif conductance (right, lower is better).

Subgraphs with at least 10 nodes are shown. Each subgraph is de-

noted by a point; size is on the x-axis and metric is on the y-axis.

Table 4: Signed datasets. |V |, |E |, |E+ |, and |E− | are the number

of nodes, edges, positive, and negative edges. Motif counts (see Fig-

ure 6) and correspondingmaximumquark numbers are also shown.

red-body red-title epinions slashdot
|V | 34.7K 52.9K 125.8K 74.3K

|E | 110.8K 205.5K 581.6K 420.5K

|E+ | 102.5K 188.7K 465.4K 311.3K

|E− | 8.3K 16.8K 116.3K 109.2K

+ + + 4.9K 7.8K 14.1K 1.2K

+ + − 1.3K 1.9K 34.2K 1.3K

cycle + − − 166 233 10.9K 702

− − − 9 13 745 86

+ + + 145.7K 592.9K 1.1M 125.0K

motif + + −a 20.0K 88.8K 37.1K 15.3K

counts + + −b 22.1K 88.8K 14.1K 9.0K

acylic + + −c 18.0K 59.3K 115.0K 15.7K

+ − −a 3.4K 10.8K 88.5K 11.8K

+ − −b 3.1K 10.8K 8.3K 7.8K

+ − −c 6.2K 26.6K 92.1K 30.4K

− − − 1.1K 3.5K 39.7K 9.0K

max. cycle all 1 1-2 1-2 1

quark acyclic + + + 15 20 15 6

numbers others 2-3 2-4 2-5 2-5

outperform MC-Rec-Bisection. In particular, one quark has 284

nodes with average motif degree of 185.2.

One of the quarks by acyclic+++ has 21 subreddits about rap-

pers/singers, such as kanye and kendricklamar. The ones which

praised the others but have not received much praise (the white

node in acyclic in Figure 1) are boogalized, runthejewels, and char-
lieputh. The last two are a young rapper duo and a new Canadian

singer, respectively, with 6.6K and 279 members. On the other hand,

the subreddits that got praised by the others but have not recip-

rocated (the black node in acyclic) are theweeknd, frankocean, and
kidcudi. Those are experienced ones (active since 2010, 2005, and

2003) with tens of thousands of members in their subreddits.

5.3 Node-labeled networks

Datasets. Here we consider node-labeled undirected networks. We

use the Facebok100 dataset that contains the complete Facebook

networks of 100 American colleges from a single-day snapshot in

September 2005 [59]. Each node has multiple labels, here we only

consider the genders of the nodes (there are only two available

in the dataset; female and male) and use quark decomposition to

find subgraphs that have balanced gender ratios, i.e., close number

of females and males. Excluding the female-only institutions, the

overall average female ratio is %48.5 and there are 57 networks

with less than 50% female. We choose 18 networks with the lowest

female ratio (all have < 45%), Table 5 gives a partial list.

Motifs.We instantiate the quark decomposition in fiveways, where

F/M denotes the female/male nodes: (1) M is vanilla edge and N
is triangle in the following two forms: FMM and FFM; and (2) M is

vanilla triangle, N is four-clique in the following three forms: FMMM,
FFMM, and FFFM. Also, there is no role confusion for any variant

since the graph is undirected and node labels ensure that an edge

cannot serve in different roles in its triangles in (1) (likewise for

(2)).

5.3.1 Finding gender balanced subgraphs. Algorithmic fair-

ness is one of the most important problems in today’s automated
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Table 5: Node-labeled graphs. Statistics and avg. of the female ra-

tios in nuclei and quarks are given. Vf denotes the set of female

nodes. (2,3)n and (3,4)n are the nucleus decompositions.

|V | |E | |Vf |
|V |

edge, triangle triangle, 4-clique

(2,3)n

Quarks

(3,4)n

Quarks

FMM FFM FMMM FFMM FFFM

Mich67 3.7K 81.9K 25% 23.0%45.0%50.0%24.5%40.0%45.0%51.6%

Caltech36 769 16.7K 30% 39.4%46.0%52.0%38.5%43.1%50.2%52.8%

Carnegie49 6.6K 250.0K 37% 32.6%49.0%52.5%38.5%43.5%49.5%54.9%

MIT8 6.4K 251.3K 37% 38.8%48.0%52.1%42.0%44.3%50.3%53.9%

Stanford3 11.6K 568.3K 40% 46.8%48.1%49.0%44.1%45.4%49.2%55.4%

Cornell5 18.7K 790.8K 44% 44.3%47.6%51.8%45.6%43.7%48.7%54.9%

Penn94 41.6K 1.4M 44% 49.7%48.4%51.4%52.1%44.0%49.8%55.8%

UPenn7 14.9K 686.5K 44% 37.3%48.8%51.1%46.4%45.1%50.4%55.4%

Average of 18 networks: 40% 42.5%48.2%51.5%44.1%44.4%49.7%54.7%

world [27]. Algorithms can amplify the implicit bias in the data,

particularly based on the protected attributes like gender, race, eth-

nicity, and this can lead to unwanted consequences in criminal

justice system, hiring, credit scoring, and more [6]. The bias in the

network data is more complicated; regarding the gender attribute,

for example, the problem is not only the imbalanced gender distri-

bution but also how each gender category is connected to the other

categories. There are a few studies that analyze the implications on

information diffusion [25, 55]. In this context, the community struc-

ture in the network plays an important role and algorithms that

do not actively consider the protected attributes are likely to fail

getting fair results. Algorithms that can find balanced communities

even when there is an imbalance in the input network are essential.

Here we use quark decomposition to find subgraphs with balanced

gender ratios. As explained above, we set the input motif N in ways

to reflect the characteristics of gender balanced subgraphs.

Table 5 gives the female ratios in quarks in comparison to the

label-oblivious nucleus decomposition algorithms [50]. For each

network, we find the leaf quarks (Definition 5) and nuclei with at

least 10 nodes, calculate the female ratio in each quark or nucleus,

and then take the average of those ratios. We also show the average

ratios across all the 18 datasets at the bottom. The average female

ratio of all the networks is 40.3%. (2, 3)-nuclei have a bit better

number, 42.5%. Quarks for FMM get 48.2% and the ratios are con-

sistently good for all the networks, varying between 45% − 51.3%.

This significant jump from (2, 3)-nuclei is due to the fact that each

edge has to participate in a number of FMM triangles. Quarks for FFM
give an even better ratio, 51.5%. (3, 4)-nuclei are larger in number

and also denser than (2, 3). Its average female ratio (44.1%) is also

a bit better than (2, 3)-nuclei. Quarks for FMMM are very close to

(3, 4)-nuclei but more consistent. FFMM achieves 49.7% and FFFM
gets the best: 54.7%. Note that results get better for the motifs with

larger female ratio: FMMM < FMM < FFMM < FFM < FFFM.
Quarks cannot provide a good theoretical lower bound for the

female ratio since there is no size constraint in the quark definition.

For instance, a 1-quark for FFM can possibly be formed by a pair

of connected female nodes and n male nodes that are connected

to both females; the female ratio would be 2/(n + 2) in this case.

But in practice, quarks with female-dominant motifs yield dense

subgraphs with high female ratios. Even with FMM, which implies

a 1/3 ratio (smaller than the average female ratio of the datasets),

quarks can obtain better results than the label-oblivious (2,3)-nuclei.

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0
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Figure 8: Comparison of the female ratios in subgraphs obtained

by quark (FFFM) and (3, 4)-nucleus decompositions for UPenn7. For
each subgraph, size is given on the x-axis, female ratio is shown on

the y-axis, and the edge density is color-coded.

We also show all the subgraphs with size, edge density, and

female ratio information obtained by quark and nucleus decomposi-

tions in UPenn7 network. Figure 8 gives (3, 4)-nuclei and quarks for
FFFM on UPenn7 network. Quarks are consistently gender balanced

when compared to the nuclei; no quark with less than 25% female

ratio exists. Note that there is a bit degradation in the number and

density of the quarks for FFFM: 216 subgraphs with 0.88 avg. edge

density, compared to the 230 (3, 4) nuclei with avg. density 0.94.

Given the consistently high female ratios, we believe that this is an

affordable loss in quality.

6 DISCUSSION

Quark decomposition offers a principled approach for motif-driven

dense subgraph discovery in heterogeneous networks by success-

fully regularizing the motif degrees to quark numbers. Our evalua-

tion shows that the k-quarks can find dense subgraphs according

to a given motif. Role-aware variant solves the role confusion prob-

lem by creating multiple quark numbers for each motifM . Overall,

quark decomposition is versatile, efficient, and extendible.

For future work, it would be interesting to investigate the other

byproducts of the quark decomposition, such as hierarchy structure.

Our initial results show limited success; detailed and meaningful

hierarchies are rare for the most motifs. Theoretical and empirical

analysis of the impact of the input motifs,M,N , on the hierarchy

structure would be interesting . Also, adapting the quark decompo-

sition for numerical attributes on nodes/edges would be promising.
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